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Selective Gammatone Envelope Feature for Robust Sound Event
Recognition

Yi Ren LENG†a), Huy Dat TRAN†b), Nonmembers, Norihide KITAOKA††c), and Haizhou LI†d), Members

SUMMARY Conventional features for Automatic Speech Recognition
and Sound Event Recognition such as Mel-Frequency Cepstral Coefficients
(MFCCs) have been shown to perform poorly in noisy conditions. We in-
troduce an auditory feature based on the gammatone filterbank, the Se-
lective Gammatone Envelope Feature (SGEF), for Robust Sound Event
Recognition where channel selection and the filterbank envelope is used
to reduce the effect of noise for specific noise environments. In the ex-
periments with Hidden Markov Model (HMM) recognizers, we shall show
that our feature outperforms MFCCs significantly in four different noisy
environments at various signal-to-noise ratios.
key words: gammatone filterbank, HMM, robust recognition, sound event
recognition

1. Introduction

Sound Event Recognition (SER) is to classify of generic
sound events ([1]–[3]). The sounds to be classified can range
from common sounds like door bells and foot steps to spe-
cific sounds such as gunshots and explosions. This is analo-
gous to Automatic Speech Recognition (ASR) with the dif-
ference being the more diverse range of events to be rec-
ognized. This similarity motivates the use of conventional
ASR features such as Mel-Frequency Cepstral Coefficients
(MFCCs) [4] and auditory features ([5]–[8]) to be used for
SER. Possible applications for SER include home automa-
tion [9], where door knocks and telephone rings trigger the
appropriate response, and security [3], where gunshots and
explosions trigger alarms to the relevant authorities.

MFCC-based classifiers have been shown perform
poorly in noisy and noise-mismatched conditions [10] de-
spite good results in clean conditions. To address the ro-
bustness issues, many noise filtering/compensation methods
for ASR have been proposed in literature ([11]–[13]). While
these methods have shown improvements of performance
under moderate noise conditions, they are less effective un-
der low SNR conditions.

The auditory-motivated gammatone feature [14] is an
alternative feature extraction method which has shown bet-
ter robustness in ASR under noisy conditions ([5]–[8]). The
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gammatone filterbank is an auditory model that is designed
to resemble the basilar membrane in the human ear. The
gammatone feature can be used directly as filterbank en-
velops [5] or as cepstral coefficients ([6]–[8]).

This paper is an extension of [15] where we proposed
a novel feature, the Selective Gammatone Envelope Feature
(SGEF), which uses some training to select the most robust
gammatone filterbank channels to derive the robust feature
for each noise condition. The motivation of this method is
that the noise spectral shape varies with noise conditions
(Fig. 1). The channels of the gammatone filterbank output
are the results of applying gammatone filters with different
filter center frequencies to the input signal. Each channel
can thus be associated with a different center frequency of
the filterbank center frequency distribution. Common ex-
amples of noisy environments such as a busy shopping mall
and a train station do not have evenly distributed frequency
spectra. Some frequencies will be less affected by noise due
to this uneven distribution. By selecting the filterbank chan-
nels that are closest to these frequencies, the overall feature
will be more robust to noise.

The principle of performing recognition on a subset
of the filterbank channels for speech recognition was pro-
posed in ([16], [17]) where the classification accuracy for
each channel is merged with different weights to arrive at a
final decision. Our method is different in that we identify the

(a) Canteen (b) Car

(c) Hall (d) Office

Fig. 1 Frequency spectra for four different noise environments.
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robust channels from a small set of noisy data and combine
them into a robust feature. This idea is somewhat similar
to Missing Feature Theory (MFT) ([18], [19]) where the re-
liable elements of a filterbank representation are identified
and used for classification. The MFT concept of marginal-
ization, where the unreliable elements are marginalized in
the classification process, is close to our approach where
the noisy channels are discarded in order to derive a fea-
ture comprising of the noise robust channels. Our method
does not require modifications of the classifier thus it can
be used with conventional recognizers, unlike the MFT ap-
proach where the classifier has to account for missing data
in the feature.

Although the four noise environments presented in
Fig. 1 have different spectra, they are similar in that the high
frequency regions are relatively clean of noise. Theoreti-
cally, it is necessary to perform channel selection in each
new noise environment, followed by feature extraction and
recognizer model training. In practice however, if there are
similarities between the different noise environments such
as the ones we have shown in Fig. 1, the same features and
recognizer models can be used. Similarly, the same features
and models can be used if the events are not significantly dif-
ferent when changing the number and type of sound events
to be classified. This is unlike model adaptation techniques
which modify model parameters based on the statistical dif-
ferences between different noise environments.

The second measure we use to make our feature noise
robust is by using the filterbank envelope (raw magnitude)
instead of any compression such as logarithm. For match-
ing conditions where the training and testing data are simi-
lar, this helps to reduce the differences between the training
and testing data, improving the recognition accuracy. In the
presence of noise, feature compression tends to confuse the
signal with the background noise as the difference between
them are reduced. The raw magnitude yields a sparse rep-
resentation that clearly distinguishes the signal and noise,
allowing us to select the cleaner regions with little noise for
classification. Figure 2, where the vertical axis represents
the 24 channel filterbank spread over the 8 kHz bandwidth,
shows the difference between the raw and log filterbank out-
puts. The top two figures clearly show where the noise is
added while in the bottom two figures, the noise appears to
have been added everywhere.

In the experiments, we generate random sequences of
sound events from 20 sound classes for training and testing,
unlike [15] where sequences with a fixed number of events
and a smaller set of 14 sound classes are used. Noisy con-
ditions are simulated by adding random segments of four
noise clips to the sound event clips. For the recognizer, we
use Hidden Markov Models (HMM) ([20], [21]) as they al-
low for the recognition of sequences of events without the
need for a separate event detection step. HMMs are trained
in clean conditions and tested on a variety of signal-to-noise
ratios (SNRs). From our experiments, we shall demonstrate
the noise-robustness of our SGEF.

(a) 0 dB (b) 40 dB

(c) Log 0 dB (d) Log 40 dB

Fig. 2 Raw and log gammatone filterbank outputs in clean (40 dB) and
noisy (0 dB) conditions.

2. Selective Gammatone Envelope Feature (SGEF)

Our proposed SGEF is derived from the envelope (raw mag-
nitude) of the gammatone filterbank. We perform channel
selection on the filterbank envelope features extracted from
a small subset of the noisy test database to determine the
set of channels that are least affected by noise. A selec-
tive gammatone filterbank, comprising of these noise-robust
channels only, is then used for the actual feature. Finally,
we perform additional processing on the envelope of the se-
lective gammatone filterbank to generate our SGEF.

2.1 Gammatone Filterbank

The zero-phase n-th order gammatone filter impulse re-
sponse (Fig. 3) is defined as follows:

g(t) = tn−1e−bt cosωt (1)

where t and ω are time and angular frequency respectively
and b is proportional to the bandwidth of the filter. We use
the 4th order (n = 4) gammatone filterbank for our features
as described in [22]. This involves taking the Laplace Trans-
form of Eq. (1) to give the following:

F(s) = 6(−b4−4b3 s−6b2 s2−4bs3−s4+6b2ω2+12bsω2+6s2ω2−ω4)
(b2+2bs+s2+ω4)4 (2)

where s is the Laplace variable. Equation (2) is then used to
derive a real 8th order digital filter.

To construct our gammatone filterbank, we generate a
distribution of filterbank center frequencies fi for the i-th
filter using Eq. (3) (Fig. 4).

fi = −α + ( fmax + α)

[
fmin + α

fmax + α

](1− i−1
n )

(3)

where α = 9.26449 × 24.7, n is the total number of filters
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Fig. 3 Impulse response for a 4th order gammatone filter.

Fig. 4 Center frequencies for a 12 channel filterbank.

Fig. 5 Frequency response for a 4th order gammatone filterbank.

and fmin and fmax are the minimum and maximum frequen-
cies in Hertz. The detailed description for our implementa-
tion of the gammatone filterbank can be found in [22]. The
frequency response for a 12 channel 4th order gammatone
filterbank is shown in Fig. 5.

The raw filterbank output yi(t) is full-wave rectified
Ei(t) = |yi(t)| so that the subsequent time-averaging does
not lose any information due to the sinusoidal behaviour

of the gammatone filter. To reduce the overall size of the
computed feature, the feature is time-averaged into frames
Ei( j) using rectangular windows Rj(t). The windowing
procedure is similar to the overlapping Hamming windows
used for conventional Mel-Frequency Cepstral Coefficients
(MFCCs) except the choice of rectangular windows for the
SGEF.

The previous steps can be summarized as follows:

1. Calculate filterbank center frequencies fi using Eq. (3)
2. Derive gammatone filterbank Gi from Eq. (2) with the

above center frequencies
3. Compute filterbank output yi from the signal x(t):
yi(t) = Gi[x(t)]

4. Take envelope of the filterbank output: Ei(t) = |yi(t)|
5. Frame the envelope using rectangular windows Rj(t) of

width T :

Ei( j) =
1
T

T∑
t=1

Ei(t)Rj(t)

2.2 Channel Selection

The gammatone filterbank returns n channels of filtered
waveforms Ei( j) from a single input waveform x(t). Based
on the frequency characteristics of common noisy environ-
ments, some channels are less affected by noise than oth-
ers. With a suitable selection criteria, it is possible to isolate
these noise robust channels to construct a feature that is ro-
bust to such additive noise.

We choose the t-test distance as the selection criteria as
it closely approximates the subband SNR which is empiri-
cally related to robust Automatic Speech Recognition per-
formance.

dic =
|μi − μc|√
σ2

i

ni
+
σ2

c

nc

(4)

μ, σ2 and n are the mean, variance and length of the chan-
nel output while the index i refers to the various noise levels
and c to the clean condition. Equation (4) makes use of the
difference of the means of the filterbank outputs thus it is
important to note that these outputs must not be mean nor-
malized. For noise robust channels, there is less difference
between the means and variances of the filtered waveforms
at different noise levels thus the distance dic should be min-
imized.

Starting with n = 36, we select the 12 channels with
the lowest t-test distance di j to use for our selective gamma-
tone filterbank. The choice for the number of initial chan-
nels is entirely arbitrary while the choice of 12 channels
is made to match the number of base cepstral coefficients
that are commonly used for Mel-Frequency Cepstral Coeffi-
cients (MFCCs).

With reference to the four noise environments in Fig. 1,
the computed t-test distances are shown in Fig. 6. The val-
ues shown are summed from the first 50 files in the testing
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(a) Canteen (b) Car

(c) Hall (d) Office

Fig. 6 t-test distance for four different noise environments.

database with i ranging over 5 signal-to-noise ratios (SNRs):
20, 15, 10, 5 and 0 dB. The 12 channels with the lowest t-test
distance always occur in the right-hand side of the graphs,
implying that the high frequency channels are less corrupted
by noise. This can be seen in Fig. 1 where the noise spec-
tra is only significant in the left-hand side of the graphs.
The t-test distances also reflect that the characteristics of
the noise environment are more important than those of the
sound events. If more exotic noise conditions are used, such
as ones where high frequency noise is dominant or multiple
noise peaks are present, the t-test distance should be able to
reflect these characteristics and select the less affected chan-
nels.

2.3 Additional Processing

The delta and double delta components are appended to
the output of the selective gammatone filterbank to provide
more information about the dynamics of the feature [23].
The addition of additive noise has a larger effect on the
SGEF compared to log-compressed features like the MFCC
as there is no compression factor to reduce the mismatch
between noisy conditions. Although channel selection is
able to remove the channels most heavily affected by noise,
it is impossible to completely eliminate noise from the fi-
nal output. We apply mean normalization on our features
to partially offset this effect. The final feature contains
12 + 12 (delta) + 12 (double delta) = 36 dimensions.

3. Comparison with Other Features

For all of the features described below, the deltas and mean
normalization are applied so that they share the same dimen-
sionality as our proposed feature (36). The frame length and
period for each feature are 25 and 10 ms respectively, the
same as that used for automatic speech recognition. In order
to justify the steps used to derive the Selective Gammatone
Envelope Feature (SGEF), we compare our feature with the

following features:

3.1 Mel-Frequency Cepstral Coefficients (MFCC)

We choose MFCCs as the baseline for comparison as
it is well-established for Automatic Speech Recognition
(ASR) [24]. The following steps describe the MFCC extrac-
tion procedure:

1. Short-Time Fourier Transform of the Hamming-
windowed waveform into a frequency-time represen-
tation

2. Using a triangular Mel-filterbank to bin the spectral
power and taking the natural logarithm

3. Converting the Log Mel-power vector into cepstral cof-
ficients with the Discrete Cosine Transform (DCT)

The first 12 cepstral coefficients obtained after the DCT, ex-
cluding the 0-th coefficient, form the MFCC.

3.2 Full Gammatone Filterbank

Instead of selecting the best 12 channels out of 36, the Full
Gammatone Filterbank only has 12 channels (n = 12 in
Eq. (3)). This comparison studies the effect of channel se-
lection on the gammatone filterbank-based features.

3.3 Selective Log-Gammatone Filterbank

The extraction process for this feature is the same as that for
the SGEF, with the sole addition of taking the natural loga-
rithm of the filterbank output. The log is taken both at the
channel selection step and for the final selective filterbank.
This comparison studies the effect of log-compression on
the overall feature.

3.4 Gammatone Cepstral Coefficients

The gammatone filterbank output replaces the Mel filter-
bank output used in MFCCs. As with most cepstral coeffi-
cients, the natural logarithm of the filterbank output is taken.
24 filters for the gammatone filterbank and 12 cepstral co-
efficients are taken based on the common setting for Mel
filters and cepstral coefficients for MFCCs. This feature is
used to compare the effectiveness of gammatone filterbank-
based cepstral coefficients against using the filterbank out-
put directly.

3.5 Selective Mel Filterbank

Finally, we adopt the procedure for generating the SGEF to
the Mel filterbank used for MFCCs to generate the Selec-
tive Mel Filterbank Feature. We follow the MFCC extrac-
tion process to generate the Mel-power, skipping the sub-
sequent log compression and DCT steps. This Mel-power
vector shares the same dimensions as the gammatone filter-
bank envelope if we choose 36 filters for the Mel filterbank
thus we can apply the channel selection procedure to create
a Selective Mel Filterbank with 12 channels.
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4. Experimental Setup

4.1 Sound Event Database

Our sound event database is made up of sequences of one
to five concatenated sound events. A random amount of si-
lence is inserted between each sound event to simulate short
pauses. At the start and the end of each sequence, 0.2 sec-
onds of silence is appended.

The sound events are randomly selected from a pool
of 20 sound classes sampled at 16 kHz: 19 sound events
from “RWCP Sound Scene Database in Real Acoustic Envi-
ronment” [25] and one speech class from CENSREC-4 [26].
The 19 sound events are:

1. bank: Beating a handheld moneybox with a metal stick
2. bells: Ringing suspended bells
3. bowl: Beating a handheld bowl with a metal stick
4. buzzer: Sound of an electronic sound toy
5. castanet: Clicking castanets
6. china: Beating of china placed on a sound absorbing

board with a wooden stick or a spoon
7. clock: Ringing of an electronic alarm clock
8. dice: Dropping dice on a wooden board
9. dryer: Sound of hair dryers

10. file: Filing a metal stick with a metal file
11. horn: Blowing a bugle
12. maracas: Shaking maracas
13. mechbell: Ringing of mechanical bell of a bicycle
14. phone: Beep of a cellular phone
15. ring: Ringing a bell by shaking
16. string: Twanging of a stringed musical instrument
17. tear: Tearing copy paper
18. whistle: Blowing a whistle
19. wood: Beating a wooden board with a wooden stick

The speech class comprises of the digits one to five spoken
by different females in Japanese. Each class consists of 100
clips, 60 of which are allocated to the training pool and the
remaining 40 are allocated to the testing pool.

For the training database, a total of 600 sequences are
generated from the sound clips in the training pool. 40 dB of
additive noise is added to the sequences to simulate a more
realistic recording condition. The noise clip used for the
training database is not used in the testing database.

For the testing database, a total of 400 sequences are
generated from the sound clips in the testing pool. Four
types of additive noise are added to the sequences at 40, 20,
15, 10, 5 and 0 dB to create a total of 2400 testing clips. The
40 dB condition is defined as the “clean” testing condition.

The clips for additive noise are taken from the
CENSREC-4 and NOISEX-92† databases. The “Car”,
“Hall” and “Office” clips from CENSREC-4 are used di-
rectly while the “Speech Babble” clip from NOISEX-92 is
downsampled to 16 kHz to give the “Canteen” noise types.
The training database utilizes the “Japanese Room” noise
clip from CENSREC-4.

4.2 Hidden Markov Model (HMM) Recognizer

The statistical models used are trained and tested using the
Hidden Markov Model Toolkit (HTK)††. The recognizer
setup is based on AURORA-2J [27] with 18 HMM states.
Of the 18 states, only 16 are emitting states with 20 Gaus-
sians for the sound events and 36 Gaussians for the silence
model. We note that this HMM configuration is chosen due
to the existence of speech class in the database. Although
some impulsive sound classes may require less states than
speech, to have a fair comparison of the classification, the
same configuration is applied for all the sound classes. We
note that it is possible to optimize the number of states for
each class separately which might improve the performance
and is worth studying for future works.

The word network used for the recognizer is allowed to
select any combination of the 20 sound events with optional
silence at the beginning and end of each event and optional
short pauses between events. The detection and classifica-
tion of these optional silence and short pauses are not con-
sidered in our reported results. The HTK Viterbi word rec-
ognizer HVite is allowed to make any number of insertions
and deletions in the reported word sequences. To control
this, we vary the log-insertion penalty for each word from 0
to −1000 at −100 intervals and report the highest accuracy
from these variations. For the recognition results, we use the
“Word Accuracy Rate” given by the HTK recognizer. This
value reflects the number of events per sound clip reported
correctly and accounts for insertions and deletions.

5. Results and Discussion

The results for our experiments in four noise environments
and over six signal-to-noise ratios (SNRs) are presented
in Fig. 7. In clean (40 dB) or matching conditions, the
features with log-compression (Cepstral Coefficients and
Log-Gammatone) show similar good results with accura-
cies greater than 95%. We are more concerned with robust
recognition where noise is present thus the clean condition
scores are not relevant. The results for the SGEF and Selec-
tive Mel Filterbank Feature are almost identical due to their
similar extraction procedures thus we can treat them to be
the same for the purpose of comparisons with the other four
features.

Figure 8 shows the average accuracy results for our ex-
periments. When the clean condition results are removed
for the second graph, the accuracies decreased for all the
features except the Selective Gammatone Envelope Feature
(SGEF). Even with the inclusion of the clean condition re-
sults where the conventional Mel-Frequency Cepstral Coef-
ficients (MFCC) is known to be superior, the SGEF is still
able to perform better on average.

†http://spib.rice.edu/spib/select noise.html
††http://htk.eng.cam.ac.uk/
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(a) Canteen (b) Car

(c) Hall (d) Office

Fig. 7 Recognition accuracy (%).

(a) All conditions (b) Noise mismatched conditions

Fig. 8 Average accuracy (%) for all (0–40 dB) and noise mismatched conditions (0–20 dB).

5.1 Selective Gammatone Envelope Feature (SGEF)

Our proposed feature is shown to have the highest overall
accuracy in these experiments. Compared to the other four
features, this feature shows the least variation over signal-

to-noise ratios (SNRs) with an average decrease of about
20%. The notable exception is the “Canteen” noise condi-
tion where the decrease is about 50%. This particular condi-
tion appears to give the worst results for all the other features
thus we can attribute the poor performance to be specific to
the noise condition.
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The other main characteristic of the SGEF is the poor
clean condition accuracy of about 79%. This can be ex-
plained by the loss of information due to the channel se-
lection process and the lack of feature compression which
exacerbates the slight differences between the training and
testing conditions. The need to eliminate noisy channels
necessitates the loss of certain channels of the gammatone
filterbank thus it no longer spans the entire frequency spec-
trum. This loss of information will affect the representation
of the signal unless the signal contains no information in
those missing channels. The second factor regarding the
lack of compression is related to the differences between
the training and testing data, even if both are in matching
conditions. These differences tend to be small and easily
overcome by compressing the feature thus the lack of com-
pression makes them more readily apparent, resulting in a
decrease in recognition accuracy.

5.2 Mel-Frequency Cepstral Coefficients (MFCC)

MFCCs have the second highest average accuracy among
the five features compared and the highest accuracy at clean
(40 dB) and nearly clean (20 dB) conditions with accura-
cies of around 99% and 85% respectively. At 15 dB, both
the MFCC and the SGEF share similar results but at lower
SNRs, the SGEF shows its superior performance. This rel-
ative improvement ranges from around 30% at 10 dB to
nearly 100% at 0 dB.

5.3 Full Gammatone Filterbank

The results show clearly that the Full Gammatone Fea-
ture offers the worst recognition performance. This is con-
trasted by the SGEF which has the highest accuracy in noisy
(<15 dB) conditions and the highest overall accuracy. The
only difference between the two set of features is channel
selection. Without removing the noisy channels from the
feature, there is a large mismatch between the clean training
condition and the noisy test conditions that mean normaliza-
tion alone cannot compensate. Even in the clean test condi-
tion, the accuracy of the Full Gammatone Feature (≈ 86%)
is inferior to the log-compressed feature. This justifies the
use of some form of dynamic range compression if the main
concern is clean or matching condition accuracy.

For a fair comparison in terms of feature dimension, the
12 non-selective filter system is chosen as the reference. We
also note that for the non-selective systems, increasing the
number of filters to 36 did not significantly improve the per-
formance accuracy while resulting in a much larger feature
thus it not recommended.

5.4 Selective Log-Gammatone Filterbank

The Selective Log-Gammatone Feature produces results
that are inferior to the two cepstral features by about 20%,
especially in the middle SNRs (5–20 dB). The only differ-
ence between this feature and the SGEF is the inclusion of

log-compression for both the channel selection and the final
filterbank output. Comparing the results between the two, it
is clear that log-compression improves the clean condition
accuracy at the expense of the noisy conditions.

Assuming that the clean signal X(ω) and noise N(ω)
are uncorrelated (X(ω)N(ω) = 0), the amplitude of the fil-
terbank output S (ω) is given by Eq. (5):

S (ω) = X(ω) + N(ω) (5)

Taking the natural log entangles the signal and noise as
shown in Eq. (6):

log S (ω) = log [X(ω) + N(ω)] (6)

For X >> N, log [X(ω) + N(ω)] ≈ log X(ω) thus the noise
is largely suppressed at high SNRs. As the noise increases,
this effect is lost and taking the log only serves to confuse
the signal and the noise since they cannot be separated easily
from the non-linear log function.

Taking the log of the filterbank output and performing
channel selection appears to have two effects: improving the
clean condition accuracy and reducing the noise robustness
of the feature. Despite the loss of information due to channel
selection, the Selective Log-Gammatone Feature is able to
produce clean condition accuracies that are similar to the
cepstral features. This suggests that some of the channels
used are redundant since there is little to no improvement to
using all of the available channels. On the other hand, taking
the log reduces the noise robustness that channel selection
offers thus for robust recognition, we should not take the log
of the filterbank output.

5.5 Gammatone Cepstral Coefficients

The extraction procedure for this feature is more similar
to the MFCC than the other three gammatone-based fea-
tures and the results verify this. The relative improvement
of the MFCC over the Gammatone Cepstral Coefficient is
around 10% at all SNRs thus the gammatone cepstral co-
efficients can be considered to be an inferior version of the
MFCC. Compared to the Selective Log-Gammatone Fea-
ture, the Gammatone Cepstral Cofficients replaces channel
selection with the DCT. The result is an overall improve-
ment in accuracy over all SNRs thus we can conclude that
channel selection is inferior to using cepstral coefficients for
log-compressed filterbank features.

5.6 Selective Mel Filterbank Feature

The performance of the Selective Mel Filterbank Feature is
very similar to that of the SGEF. The better accuracy of the
SGEF in high noise conditions (<15 dB) can be attributed to
the increased robustness of the gammatone filterbank over
the Mel filterbank. The difference in accuracy between the
Selective Mel Filterbank Feature and the MFCC show that
our method of combining channel selection and using the
uncompressed feature leads to increased noise robustness at
the expense of matching condition performance.
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6. Conclusion

We have presented a novel feature, the Selective Gamma-
tone Filterbank Feature (SGEF), and studied the three main
differences between it and Mel-Frequency Cepstral Coeffi-
cients (MFCCs): the use of the raw filterbank output, chan-
nel selection and the choice of not using cepstral coeffi-
cients. Our feature is designed to maximize the recognition
accuracy in noisy conditions and the experimental results
show that indeed, the SGEF is more effective in noisy con-
ditions at signal-to-noise ratios (SNRs) of below 15 dB.

The major drawback of our proposed feature is the poor
clean condition (>15 dB) accuracy when compared to dy-
namic range compressed features. It is impractical to use
a feature designed for noisy recognition at low noise levels
when conventional features already cater to such require-
ments. A possible solution is for the recognizer to obtain an
estimate of the noise level before deciding which feature to
use. Based on our findings, it would be best to use the con-
ventional MFCC if the SNR is high, only switching to the
SGEF in noisy conditions (<20 dB). The other disadvantage
of the SGEF, the need for channel selection with different
noise environments and sound events, can be eliminated if
similar noise environments and sound events are used. By
reducing the differences between the new settings with an
existing one, the t-test distance will not vary significantly
thus the channels selected will be the same.

It must be noted that there are many possible ways to
employ the gammatone filterbank in a feature vector and
that our results are not representative of all such methods.
The simple implementation presented can serve as a base-
line for further studies to improve upon gammatone-based
features in the future. The methods we employed to develop
the SGEF can also be used for similar time-frequency rep-
resentations such as the Gabor filterbank. This should allow
similar noise robust features to be implemented as we have
shown with the Selective Mel Filterbank Feature.
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