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A Linear Manifold Color Descriptor for Medicine Package
Recognition
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SUMMARY This paper presents a color-based method for medicine
package recognition, called a linear manifold color descriptor (LMCD). It
describes a color distribution (a set of color pixels) of a color package im-
age as a linear manifold (an affine subspace) in the color space, and recog-
nizes an anonymous package by linear manifold matching. Mainly due to
low dimensionality of color spaces, LMCD can provide more compact de-
scription and faster computation than description styles based on histogram
and dominant-color. This paper also proposes distance-based dissimilari-
ties for linear manifold matching. Specially designed for color distribution
matching, the proposed dissimilarities are theoretically appropriate more
than J-divergence and canonical angles. Experiments on medicine pack-
age recognition validates that LMCD outperforms competitors including
MPEG-7 color descriptors in terms of description size, computational cost
and recognition rate.
key words: low-level color descriptor, linear manifold, medicine package
recognition

1. Introduction

Dispensing error, which means incorrect prescription of
medicines or dosages, is a serious social problem involv-
ing patients’ and even pharmacists’ lives, e.g. their law-
suits or suicides. Pharmacists have strongly demanded
computerized prescription checking systems for many years
since most dispensing errors are caused by human errors.
Medicine package recognition using image processing tech-
nology is one of the prospective solutions for preventing
from them. In order to actualize a practically useful check-
ing system, high-speed processing without any special hard-
ware is desired because prescribing operation should be
smooth and commodity devises are easy to introduce. In
view of this, we target real-time image recognition of Press-
Through Package (simply called a package), a common
package for pills/tablets/capsules.

Fortunately, medicine packages have discriminative el-
ements for recognition. As Fig. 1 shows, a package con-
tains several pills/tablets/capsules, and also some charac-
ters/symbols are regularly printed on its surface. Each pack-
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age is uniquely color-designed in order to prevent from vi-
sual confusing, normally showing in few distinct colors.
Thus, symbol matching and color distribution matching are
reasonable for package recognition. Actually, Ref. [1] rec-
ognizes character symbols printed on a package surface.
However, many packages share the same symbols, e.g. the
pura mark indicating plastic in Japan, and few packages are
with no symbols. Its computational cost also become a prob-
lem because local information matching consumes much
time in general. Therefore, this paper focuses on color dis-
tribution matching with low-level color descriptors, which
provide global color description with compact size and low
computational cost. This approach is significantly faster
than symbol matching and could also serve as a pruning pro-
cess for symbol matching.

Many color descriptors including MPEG-7 [2], [3], the
international standard for video retrieval, have been pro-
posed in the past. The most popular description style is his-
togram [4], [5], that is a quantized color distribution. It is
easy to build and match, and also insensitive to light amount
of outliers. However, the description size is relatively large.
Another well-known style is dominant-color (called clus-
ter) [6], [7]. Its size is much more compact than histogram,
since it describes only their cluster properties such as cen-
troids and variances under the assumption that a color dis-
tribution consists of several clusters. Medicine packages ba-

(a) Obverse side (pill-observable side)

(b) Reverse side (pill-unobservable side)

Fig. 1 Examples of medicine packages called PTP.
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sically satisfy this assumption. However, clustering process
to obtain the cluster properties is difficult to run fast.

This paper presents a color descriptor designed for
medicine packages, called a linear manifold color descrip-
tor (LMCD). It briefly describes a color distribution (a
set of color pixels in a image) as a linear manifold (an
affine subspace) in the color space. This paper also presents
distance-based dissimilarities for linear manifold match-
ing. An anonymous package can be recognized by linear
manifold matching using these dissimilarities. LMCD can
provide more compact description and faster computation
than histogram and cluster styles. The proposed dissimi-
larities theoretically suit package recognition more than J-
divergence [8], canonical angles [9], [10].

The rest of the paper is organized as follows: Sect. 2
specifies a reason to employ linear manifold style, the linear
manifold generation from color distributions and the dis-
similarities for linear manifold matching. Section 3 dis-
cusses differences from conventional methods including J-
divergence and canonical angles. Section 4 evaluates the
performance by several experiments. Finally, Sect. 5 pro-
vides our conclusions.

2. Linear Manifold Color Descriptor

This section explains the proposed method for medicine
package recognition. Figure 2 illustrates our package
matching process. First, we extract a package region from a
package image registered in a database and obtain its color

Fig. 2 Medicine packages (left), their color distributions (center) and
their linear manifolds (right).

Fig. 3 Distributions consisting of few clusters in three-dimensional space (K = 3).

distribution, that is a set of color pixels contained in the
package region. Second, the color distribution is simply de-
scribed as a linear manifold (an affine subspace). Third,
a query package image is recognized by linear manifold
matching between the query and each registered package
image. Note that the proposed method generates a linear
manifold from one image (a set of pixel vectors), not from
an image set such as subspace methods [9], [11], [12]. The
following subsections specify the main reason to employ
linear manifold style, linear manifold generation, and dis-
similarities between linear manifolds respectively.

2.1 Reason to Employ Linear Manifolds

Color distributions of medicine packages consists of few
colors. Cluster style descriptors are usually applied to such
a distribution. However, clustering process consumes much
computer resources. Is there any workaround? The basic
idea of the paper is to characterize clusters composing a
distribution as a line, a plane and etc. passing through all
the clusters. Consider a color distribution consisting of C
color clusters in K-dimensional color space, e.g. K = 3 for
RGB space and K = 4 for CMYK space, where each cluster
is assumed to be a dense point. Figure 3 depicts distribu-
tions with C = 1, 2, . . . , 5 under K = 3. If C = 1, 2, 3
(Fig. 3 (a)(b)(c)), we can imagine the point, the line and the
plane passing through all the clusters (called passing space)
respectively. Clearly, the directions of passing space express
cluster configuration. If C ≥ 4 (Fig. 3 (d)(e)), their passing
spaces are three-dimensional in most cases because of limi-
tation of K = 3.

This approach is linked to centroid, eigenvectors and
eigenvalues of distributions composed of clusters. Centroid
exists at/on/in passing space and plays a role of its ori-
gin point. Eigenvectors indicate the directions of passing
space. Eigenvalues express the power balance between clus-
ters on/in passing space. On theoretical grounds, passing
spaces are equivalent to affine subspaces, that is linear man-
ifolds. As long as C ≤ K, linear manifold can be expected to
efficiently characterize the distribution. Even if C > K, lin-
ear manifolds still work as statistical indices. However, the
more clusters, the more complicated relationship between
linear manifolds and their cluster configuration. This paper
concentrates on few cluster cases including color distribu-
tion of medicine packages.
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2.2 Linear Manifold Generation

Linear manifolds are generated from color distributions by
using the centroid, the eigenvectors and the eigenvalues.
Consider a color distribution consisting of N color pixels
with K channels. Let xn (n = 1, 2, . . . ,N) denote one of
the K-dimensional vectors composing the distribution. Its
covariance matrix can be expressed as

S =
1
N

N∑

n=1

(xn − x̄)(xn − x̄)�,

where � indicates transposition of a matrix or a vector, and
x̄ denotes the mean vector of xn. Eigenvalue decomposition
of S derives its eigenvalues λk (k = 1, 2, . . . ,K) and their
corresponding eigenvectors φk. Note that λ1 ≥ λ2 ≥ . . . ≥
λK ≥ 0 and (φi,φ j) = δi j (i, j = 1, 2, . . . ,K) where (·, ·)
indicates an inner product and δi j denotes Kronecker delta.
We define the M-dimensional linear manifold (M ≤ K) as

P = [x̄; p1, . . . , pM], (1)

where pk = λ
1/2
k φk (called weighted eigenvectors). M can

be adjusted based on C or according to recognition rate.
Smaller M actualizes stronger noise reduction in common
with subspace methods [13]. This technique, which de-
scribes a color distribution as Eq. (1), is called a linear man-
ifold color descriptor (LMCD) in the paper.

2.3 Dissimilarities between Linear Manifolds

This subsection entertains dissimilarities between linear
manifolds. Consider two M-dimensional linear manifolds
P = [x̄; p1, . . . , pM] and Q = [ȳ; q1, . . . , qM], which are gen-
erated from a query image and a reference image respec-
tively. The proposed dissimilarities are based on distance
between weighted eigenvectors. The following function is
introduced to deal with sign indefiniteness of eigenvectors.

δ2(p, q) = min
(
‖p− q‖2, ‖p+ q‖2

)
, (2)

where min(·) indicates a function which returns the mini-
mum value of the arguments.

2.3.1 Distance between Centroids with Matric Matrix

The first proposed dissimilarity is the distance between cen-
troids in differential linear manifold.

d2(P,Q) = (x̄ − ȳ)�D�D(x̄ − ȳ), (3)

where D = [p1 − q1, p2 − q2, . . . , pr − qr]. D�D indicates
a metric matrix of Riemann space. Equation (3) returns 0 if
either the centroids or the weighted eigenvectors is the same
as each other.

2.3.2 Diagonal Pairing

The second dissimilarity is the summation of M weighted
eigenvector pairs. Its calculation time is in O(KM).

d2(P,Q) =
M∑

k=1

δ2(pk, qk). (4)

If pk or qk is sign-reversed in advance such that δ2(pk, qk) =
‖pk − qk‖2, Eq. (4) can be rewritten as

d2(P,Q) = ‖D‖2F = tr
(
D�D

)
,

where and ‖ · ‖F indicates Frobenius norm of a matrix.

2.3.3 Minimum Cost Pairing

The third proposed dissimilarity is calculated with mini-
mization of the dissimilarity cost. Equation (4) might return
an improper value if some eigenvalues switch their places
because of noise influence. Although the weighted eigen-
vectors are paired in descending order of eigenvalues, eigen-
vectors are unordered intrinsically. A solution to the pairing
problem is to search all the pairs for the minimum dissim-
ilarity. Let B = {b1, b2, . . . , bM!} (|B| = M!) denote a set
of possible pairs, e.g. b1 = {(0, 0), (1, 1), (2, 2)} represents
Eq. (4). The dissimilarity for the weighted eigenvectors can
be expressed as

d2(P,Q) = min
b∈B

∑

(p,q)∈b
δ2(p, q). (5)

The pairing problem is identical to a minimum match-
ing problem of weighted bipartite graphs. Two typical so-
lutions are well-known: full search in exponential time
O(KM!) and Hungarian algorithm [14] in polynomial time
O(KM4) and O(KM3). In the case of low-dimensional space
such as color space, full search is expected to be faster and
easier to implement than Hungarian algorithm, which could
be more effective if M is large.

2.3.4 Round-Robin

Another more simple countermeasure against unordered
eigenvectors is round-robin, that is the summation of the dis-
tance between all the pairs.

d2(P,Q) =
M∑

i=1

M∑

j=1

δ2(pi, q j). (6)

The calculation time is clearly in O(KM2).

3. Discussion about Conventional Methods

This section introduces conventional methods based on lin-
ear manifold or linear subspace matching, and clarifies dif-
ferences from LMCD.
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3.1 Kullback-Leibler Divergence

Kullback-Leibler (KL) divergence [15] is a well-known
measure between two probability density functions. KL di-
vergence between two multivariate normal distributions can
be utilized as a dissimilarity between linear manifolds [12].
This is because liner manifolds derived by principal com-
ponent analysis can be theoretically regarded as an approxi-
mation of a multivariate normal distribution. Here, focus on
J-divergence [8] (also called symmetric KL divergence), a
modification bringing symmetry as distance-like measures:

d(P,Q) =(x̄ − ȳ)�(S−1
p + S−1

q )(x̄ − ȳ)

+ tr(S−1
p Sq) + tr(S−1

q Sp), (7)

where Sp and Sq are the covariance matrices of P and Q re-
spectively, and redundant coefficients/terms are abbreviated.

J-divergence is imperfect for color distribution match-
ing. Substituting x̄ = ȳ for Eq. (7) results in

d(P,Q) = tr(Λ−1
p Λq) + tr(Λ−1

q Λp), (8)

where Λp and Λq are the diagonal eigenvalue matrices of P
and Q. Obviously, Eq. (8) disregards eigenvectors. This is
a fatal information loss because eigenvectors are still useful
even if x̄ = ȳ. Incidentally, this loss occurs also in KL di-
vergence between two multivariate normal distributions. On
the other hand, the proposed dissimilarities utilize eigenvec-
tors for matching even if x̄ = ȳ.

3.2 Mutual Subspace Method

The mutual subspace method (MSM) [9] is a successful
technique on pattern recognition. It describes a set of pattern
vectors as a linear subspace and recognize a query pattern
set by subspace matching. MSM and LMCD are seemingly
similar in view of linear and affine subspaces. Nevertheless,
MSM is unfit to color distribution matching.

The mechanism of MSM is as follows: MSM requires
pattern vectors belonging to a category to locate in a linear
subspace. Consider an extremely simplified subspace, that
is a line passing through the origin. MSM also requires each
category line to locate to a unique direction. The dissimi-
larity between two categories is calculated as the angle be-
tween the two category lines. The angle is called canonical
angle.

First, color distributions cannot satisfy the require-
ments because all the clusters composing a distribution do
not locate on a linear subspace passing through the origin
(namely black) in general. Even if the centroid is translated
to the origin, the clusters locating at various directions could
not be accurately approximated as a low-dimensional sub-
space. Thus, linear subspaces cannot describe color clusters
efficiently.

Second, MSM treats φk only and disregards λk. This is
because λk (variance) is unreliable as a statistical index on
character or face recognition. More samples provide more

reliable statistical indices. However, a distribution of char-
acter or face pattern vectors is composed of at most 100 pat-
tern vectors. This is not enough to rely on λk. By contrast,
a color distribution consists of at least 10000 pixel vectors.
Thus, λk is a reliable index on color distribution matching.

4. Performance Evaluation

This section evaluates the performance of LMCD in terms of
recognition accuracy, robustness, description size and cal-
culation time. The test environment mounts Intel Core2
Quad 2.33 GHz CPU with 2 GB main memory. The com-
petitors are (i) RGB/HSV histograms quantized into 2×2×2,
4×4×4 and 8×8×8 bins, (ii) the scalable color descriptor
(SCD) in MPEG-7, a histogram-style one, (iii) the domi-
nant color descriptor (DCD) in MPEG-7, a cluster-style one,
(iv) J-divergence, (v) canonical angles and (vi) LMCD. The
histograms and SCD are matched by the nearest neighbor
search using the histogram intersection [16] and Euclid dis-
tance respectively. We use the MPEG-7 descriptor imple-
mentation by Lux and Chatzichristofis [17]–[19] and self-
produced implementations for the others.

Table 1 lists three test sets used for the experiments
where #Category indicates the total number of package cat-
egories and #Image indicates the total number of package
images. OBV contains obverse side image (Fig. 1 (a)), REV
contains reverse ones (Fig. 1 (b)), and ALL is simply the mix
of OBV and REV. Note that ALL treats the obverse/reverse
sides of a package as two different categories in order to
increase the number of categories because more categories
contributes to more severe experiments. Each test set is
equally-divided into two subsets for training and matching
phases. All the test images are 24-bits RGB and their size is
roughly from QVGA (320×240 pixels) to VGA (640×480
pixels). Although each image captures one whole package
under the almost same light condition, some of the packages
provide highlight or shadow regions owing to metallic sur-
face or package bend respectively. The package region in
each image is extracted in advance.

4.1 Recognition Accuracy

Table 2 lists the recognition rate of the competitors.
“LMCD-Eq. (3)” means LMCD using the dissimilarity of
Eq. (3). The bold numbers in the table are the best rate in
2×2×2, 4×4×4 and 8×8×8 bins for the histograms or in
M = 1, 2, 3 for LMCD for each test set of each method.
These results reveal the following facts:

• Comparison between LMCD-Eq. (3) with D�D = I,
i.e. Euclid distance between centroids, and LMCD-
Eq. (3) shows the effect of a metric matrix D�D. Even

Table 1 Three test sets for performance evaluation.

Test Set #Category #Image Note
OBV 84 900 Pill-observable
REV 84 936 Pill-unobservable
ALL 168 1836 OBV+REV
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Table 2 Recognition rate [%].

OBV REV ALL
2×2×2 4×4×4 8×8×8 2×2×2 4×4×4 8×8×8 2×2×2 4×4×4 8×8×8

RGB histogram 59.11 83.56 95.33 47.44 80.13 81.62 49.35 78.98 88.02
HSV histogram 61.56 89.11 95.56 35.47 71.80 84.19 42.92 79.74 89.65

OBV REV ALL
M = 1 M = 2 M = 3 M = 1 M = 2 M = 3 M = 1 M = 2 M = 3

SCD [2], [3] 98.67 86.75 92.37
J-divergence [8], Eq. (7) 100.00 89.74 94.77
Canonical angles [9], [11] 82.00 59.78 N/A 77.78 15.60 N/A 68.63 29.85 N/A

LMCD-Eq. (3) with D�D = I 58.89 50.86 48.80
LMCD-Eq. (3) 56.00 88.44 89.33 54.70 74.57 79.06 45.31 76.58 81.26
LMCD-Eq. (4) with λk = 1 82.00 84.44 83.11 77.78 36.75 35.04 68.63 54.58 53.16
LMCD-Eq. (4) 92.89 99.33 99.11 92.31 93.59 92.52 89.00 95.10 94.77
LMCD-Eq. (5) 92.89 99.33 99.33 92.31 92.52 91.67 89.00 94.55 94.44
LMCD-Eq. (6) 92.89 99.56 99.78 92.31 92.95 93.16 89.00 95.21 95.75

(a) OBV (b) REV (c) ALL

Fig. 4 Cumulative recognition rate [%].

though the metric matrix can raise the rate drastically,
the rate cannot reach to that of LMCD-Eq. (4).
• Centroid information are essentially sensitive to bright-

ness change as we expected in Sec. 2.3. Since the pack-
ages are especially metallic, the rate is relatively worse.
Incidentally, the simple sum of Eq. (3) and Eq. (4) can-
not surpass the rate of LMCD-Eq. (3).
• Comparison between canonical angles and LMCD-

Eq. (4) with λk = 1 supports efficiency of the proposed
dissimilarity against canonical angles. LMCD-Eq. (4)
with λk = 1 achieves higher rate than canonical angles
at M = 2, 3. Canonical angles are rather inaccurate at
M = 2 and impossible to use M = 3.

• Comparison between LMCD-Eq. (4) with λk = 1 and
LMCD-Eq. (4) validates that weighted eigenvectors
are efficient for color distribution matching. LMCD-
Eq. (4) shows more than 50% higher rate than LMCD-
Eq. (4) with λk = 1 at M = 2 in REV.
• LMCD-Eq. (5), which minimizes dissimilarity by par-

ing search, shows slightly lower rate than LMCD-
Eq. (4). In fact, minimization is unnesessary because
no pair mismatch occurs by LMCD-Eq. (4) in the test
sets. The rate decreasing may be attributed to dissimi-
larity depression of incorrect categories.
• Clearly, LMCDs are more accurate than RGB/HSV

histograms.

Next, Fig. 4 plots the cumulative recognition rate of SCD, J-

divergence, LMCD-Eq. (4) with M = 2 and LMCD-Eq. (6)
with M = 3, which are the methods showing top-level rate
in Table 2. The two LMCDs are comparable in OBV and
superior in REV and ALL to SCD and J-divergence.

4.2 Analysis on Incorrect Answers

Given a query image, matching phase answers the categories
nearest to the query (called candidates). Table 3 lists four
cases of answering incorrect categories by LMCD-Eq. (4).
For each row, the left image is a query and the four right
images are from first candidate to fourth candidate for the
query. The number shown below in each category indicates
the dissimilarity between the corresponding query and the
category prototype. Apparently, each query and the four
candidates share their dominant colors, e.g. they share the
sheet, the pill and even the symbol colors. It is difficult
even for people to visually distinguish them instantaneously.
Conversely, these results demonstrate that LMCD can accu-
rately distinguish categories with distinct colors.

4.3 Robustness Tests

Robustness is also an important factor for color descriptors.
It can be quantified as the dissimilarity between an original
image and one of its operated images. Figure 5 shows the
robustness test results of LMCD-Eq. (4) to rotation, scale
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Table 3 Query images and their incorrect answers (the correct one is in boldface).

Query Image 1st. Candidate 2nd. Candidate 3rd. Candidate 4th. Candidate

OBV 3.459 4.316 5.125 7.769

OBV 9.203 10.666 10.942 21.828

REV 9.570 11.130 14.677 19.786

REV 5.103 7.257 7.797 9.039

(a) Rotation (b) Scale change (c) Gamma correction (d) JPEG compression

Fig. 5 The dissimilarity between an original image and one of its operated images.

change, gamma correction and JPEG compression. The
scale index indicates size scaling by 2(ScaleIndex)×2(ScaleIndex).

The results reveal that LMCD is robust to rotation and
scale change but variant to gamma correction and JPEG
compression. In rotation and scale change, amount of dis-
similarity change is consistently small, because LMCD dis-
regards pixel position in images and scale change does not
change the shape of color distributions. In gamma correc-
tion and JPEG compression, the amount is comparatively-
large, since the two operations directly affect color informa-
tion, e.g. JPEG compression changes pixel color by quantiz-
ing color distribution to reduce file size.

Robustness to reflection under real situations should be
also considered. LMCD-Eq. (4) appears to slightly tolerate
change of gamma parameter in Fig. 5 (c). This is because
disregarding centroids in Eq. (4) probably produces a toler-
ability of light-dark change over the entire image such as
Gamma correction. Next, highlight regions arise particu-
larly on metallic surface such as medicine packages. As far
as we can predict, LMCD is easily influenced by white high-

Table 4 Size and calculation time [ms/package].

Descriptor Size Training Matching
RGB histogram 8 × 8 × 8 = 512 1.20 1.85
HSV histogram 8 × 8 × 8 = 512 2.95 3.72
SCD (histogram) 8 × 8 × 4 = 256 6.85 7.04
DCD (cluster) KC at least 374.05 245.21
MSM K2 at most 1.70 2.72
LMCD-Eq. (4) K2 + K at most 1.70 1.79

lights since white strongly pulls eigenvectors from a cor-
ner in RGB color space. Intuitively, robust regression al-
gorithms could ease reflection problem. Further validations
are desirable in the future.

4.4 Description Size and Calculation Time

Table 4 indicates the description size of RGB/HSV his-
tograms, SCD, DCD, MSM and LMCD. MSM and LMCD
is the most compact in them. The histograms including
SCD requires many elements to store. The other methods
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require far fewer elements than SCD. The size of DCD is
proportional to C and usually larger than MSM and LMCD.
MSM and LMCD requires just nine and twelve elements in
RGB case respectively. Note that the degree-of-freedom of
LMCD is smaller than its size owing to orthogonality condi-
tions between eigenvectors (c.f. Cholesky decomposition).

Table 4 also indicates their training and matching time.
Interestingly, LMCD shows the processing time compara-
ble to RGB histogram and shorter than HSV histogram be-
cause of color convert. Many histogram elements cause
slow matching. DCD is severely slower than the others
since clustering process runs heavy iterative computation.
The others are fast sufficiently to run in real-time. Matching
of MSM is nearly 1 [ms/package] slower than that of LMCD
because of eigenvalue decomposition for each matching.
This result validates that LMCD can be calculated as fast
as histograms can.

4.5 The Number of Clusters and Dimensions

The relationship between C and M, as mentioned in Sec. 2.1,
can be examined also from Table 2. OBV shows higher
rate than REV in every case because obverse side shows in
more colors than reverse side in most cases thanks to pill
colors. More colors cause easier category separation. Most
obverse and reverse side images in the test sets show in two
and three colors respectively. According to the fact that an
M-dimensional linear manifold can efficiently characterize
(M + 1) clusters, M = 2 for OBV and M = 1 for REV are
supposed to be optimum. LMCD-Eq. (4) and λk = 1 actu-
ally shows the best rate at the parameters in the both sets.
The rate difference between M = 1, 2 additionally supports
our analysis. For example, in the case of LMCD-Eq. (4), the
difference in OBV (99.33− 92.89 = 6.44%) is significantly-
larger than that in REV (93.59 − 92.31 = 1.28%). This fact
indicates that the second eigenvector is more meaningful for
OBV than for REV.

5. Conclusions

This paper has presented a color-based method for medicine
package recognition, called LMCD. It simply describes a
color distribution as a linear manifold. We have clarified
the superiority of linear manifolds and distance-based dis-
similarities on color distribution matching by theoretically
comparing with MSM and J-divergence. Our experiments
revealed that LMCD clearly outperformed competitors in
terms of recognition accuracy, description size and train-
ing/matching time. Surprisingly, the processing speed was
comparable to RGB histograms.

The experiments have also resulted in supporting our
initial idea: an M-dimensional linear manifold can charac-
terize (M + 1) clusters. This requirement is slightly limited
and LMCD might be difficult to run in real environments
because of widely variable light condition and camera pa-
rameter. However, as long as environments satisfying the
assumption, LMCD can provide much more compact de-

scription and much faster computation than the conventional
color descriptors.
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