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Decidability of the Security against Inference Attacks
Using a Functional Dependency on XML Databases

Kenji HASHIMOTO†a), Member, Hiroto KAWAI††, Nonmember, Yasunori ISHIHARA†††,
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SUMMARY This paper discusses verification of the security against
inference attacks on XML databases in the presence of a functional de-
pendency. So far, we have provided the verification method for k-secrecy,
which is a metric for the security against inference attacks on databases.
Intuitively, k-secrecy means that the number of candidates of sensitive data
(i.e., the result of unauthorized query) of a given database instance cannot
be narrowed down to k−1 by using available information such as authorized
queries and their results. In this paper, we consider a functional dependency
on database instances as one of the available information. Functional de-
pendencies help attackers to reduce the number of the candidates for the
sensitive information. The verification method we have provided cannot be
naively extended to the k-secrecy problem with a functional dependency.
The method requires that the candidate set can be captured by a tree au-
tomaton, but the candidate set when a functional dependency is considered
cannot be always captured by any tree automaton. We show that the ∞-
secrecy problem in the presence of a functional dependency is decidable
when a given unauthorized query is represented by a deterministic topdown
tree transducer, without explicitly computing the candidate set.
key words: XML database, inference attack, security, verification, func-
tional dependency

1. Introduction

Nowadays, many people and organizations have a growing
interest in data security. For a database system to be secure,
secrecy, integrity, and availability of data must be achieved
appropriately with respect to a given security policy. View
mechanisms has played a principal role in achieving the se-
crecy of database systems. Views can avoid direct accesses
to sensitive information in the database. However, there still
is a possibility of indirect accesses, i.e., the sensitive infor-
mation can be inferred using authorized views and/or gen-
eral domain knowledge. Such indirect accesses are called
inference attacks.

Example 1: We show an example of inference attacks on
XML databases, which are getting used actively in many
organizations recently. We consider a document D valid
against the following schema A:
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Fig. 1 The result T1(D).

Fig. 2 The result T2(D).

<!ELEMENT hospital (patient*)>

<!ELEMENT patient (room, name, disease)>

<!ELEMENT room (#PCDATA)>

<!ELEMENT name (#PCDATA)>

<!ELEMENT disease (#PCDATA)>

A hospital has zero or more patients. Each patient
has a room, a name, and a disease. Since #PCDATA roughly
represents string data, each of room, name, and disease has
a string as its value.

We consider the following two authorized queries T1

and T2 on D: Query T1 extracts, for each patient, the
room number in which the patient is and the name of
the patient. We assume that the result T1(D) is the tree
in Fig. 1. Query T2 extracts, for each patient who has
“leukemia”, the patient’s disease. We assume that the
result T2(D) is the tree in Fig. 2.

Now, let Ts denote the query which extracts the name
of the disease each patient has, and assume that Ts(D) is
sensitive data. Then, from the authorized queries T1 and T2,
and the results T1(D) and T2(D), it turns out that there exist
candidates for the value of Ts(D) as shown in Fig 3. Here,
we assume that the patients who are in the same room have
the same disease. Then, from T1(D), we know that patients
‘A’ and ‘C’ are in the same room. Thus, ‘A’ and ‘C’ have the
same disease. From T2(D), the number of the patients with
leukemia are two. Therefore, we find that patients ‘A’ and
‘C’ have leukemia, and patient ‘B’ has some disease other
than leukemia. �
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Fig. 3 Candidates for sensitive data.

Inference attacks, in particular on relational databases,
have been studied for a few decades. Inference attacks on
relational databases using aggregate functions are one of the
most famous threats [1]. Also, several sophisticated formal-
izations of the security have also been proposed, e.g., the
ones based on information theory [2], [3] and the one based
on rough set theory [4]. Moreover, Deutsch and Papakon-
stantinuou [5] and Miklau and Suciu [6] proposed stronger
security definitions where the probability distribution of
possible secrets does not change before and after authorized
views and the answers of them are given. Recently, the se-
curity against inference attacks is often discussed in the con-
text of privacy protection. Machanavajjhala et al. proposed
the notion of �-diversity [7], which means that for each per-
son, there are at least � possible values (or � bits in entropy,
etc.) for the person’s sensitive information.

We have proposed a verification method for k-secrecy,
a security criteria against inference attacks on XML
databases [8]. The concept of k-secrecy is as follows: Let
t be a target XML document to be attacked. Suppose that
the following information is available to the attacker:

• the schema AG of t,
• authorized queries (i.e., view definitions) T1,. . . , Tn,
• results of the authorized queries on t (i.e., views)

T1(t),. . . , Tn(t), and
• a query Ts to retrieve the sensitive information in t.

Also, suppose that the attacker infers the set C of all the can-
didates for the value of the sensitive information consistent
with the information available to the attacker. That is,

C = {Ts(t
′) | t′ ∈ TL(AG),

T1(t′) = T1(t), . . . ,Tn(t′) = Tn(t)},

where TL(AG) is the set of the XML documents valid against
AG. In particular, t is ∞-secret if |C| is infinite. However, in
our previous work [8], the functional dependencies are not

considered. For instance, in Example 1, the knowledge that
patients who are in the same room have the same disease
can be represented by a functional dependency. Functional
dependencies help attackers to reduce the number of the can-
didates for the value of sensitive information.

On the other hand, Yang and Li discussed XML data
publishing secure against inference attack considering func-
tional dependencies [9]. Attackers are supposed to use func-
tional dependencies as well as schema information and the
view XML document. Then, an algorithm for finding a max-
imal view document without allowing successful inference
attacks is proposed. They focus on data publishing, while
we discuss verification of the security against inference at-
tack.

We consider the verification for ∞-secrecy in the pres-
ence of a functional dependency. The verification method
in our previous work [8] cannot be naively extended to this
problem. In the method, first, the candidate set of the origi-
nal database instances from authorized queries and their re-
sults is computed. Without functional dependencies on the
database instance, the set can be represented by a finite tree
automaton (TA), that is, the set is regular. On the other hand,
the set of the candidates of the original database instance sat-
isfying a simple functional dependency is not always regu-
lar. The previous verification method requires the regularity
of the candidate set.

In this paper, as the first step, we show that ∞-secrecy
problem in the presence of a simple functional dependency
is decidable when an unauthorized query is represented by
a deterministic topdown tree transducer. Our decision algo-
rithm consists of three steps. First, we compute the candi-
date set for the original database instance from authorized
queries and their results in the same way as our previous
method [8]. Though the set is regular, it might include can-
didates which do not satisfy the functional dependency f .
Second, we divide the set into a finite number of sets each
of which can be captured by an f -path fixed tree automa-
ton. Intuitively, every tree accepted by an f -path fixed TA
has the same fixed parts in the sense of the satisfaction of f .
This allows us to check whether there is some tree accepted
by an f -path fixed TA which satisfies f more simply. Lastly,
we check, for each f -path fixed TA A, whether the image of
L through the unauthorized query Ts is infinite where L is
the set of trees each of which is accepted by A and satisfies
f . We provide a necessary and sufficient condition for such
infiniteness, which does not need to compute L explicitly.

The rest of the paper is organized as follows. Section 2
introduces models of XML documents, schemas, queries,
and functional dependencies. Section 3 defines k-secrecy
problem in the presence of a functional dependency. Sec-
tion 4 presents the decidability result of the k-secrecy prob-
lem. In Sect. 5, we discuss the difficulty of applying our
algorithm to ∞-SIAF for more powerful query model such
as bottom-up tree transducers. Section 6 summarizes the
paper.
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2. Models

In this section, first, ordinary models of XML documents
and schemas are introduced. Then, a model of queries is
presented. Lastly, a functional dependency is introduced.

2.1 XML Documents

An XML document is represented by an unranked labeled
ordered tree, i.e., a labeled ordered tree where the number of
the children of a node is not bounded. Let Σ be an alphabet
including special symbols $ and �, which will be explained
in Sect. 2.3. Let TΣ denote the set of the unranked labeled
ordered trees over Σ, i.e., every node of the trees in TΣ is la-
beled with a symbol in Σ. By a(t1 · · · tn)(n ≥ 0), we mean the
tree whose root is labeled with a and has immediate subtrees
t1, . . . , tn from the left in the order. We often write a instead
of a(). The position of a node of t is defined as follows: the
position of the root node is ε; if the position of a node v is p
and vi is the i-th child of v, then the position of vi is p · i. Let
Pos(t) be the set of the positions of nodes in t. For a position
p of t, let Anct(p) be the set of the ancestor positions of p.
Also, for each position p in t ∈ TΣ, let λt(p) denote the label
of the node on the position p of t. Let λ̃t(p) denote the label
path from the root to the position p in t, and let λ̃−t (p) denote
the label path obtained from λ̃t(p) by removing the leading
label. Let t|p denote the subtree of t at the position p, and
t[p← t′] denote the tree obtained from t by substituting the
subtree at p with t′.

As many theoretical studies do, we would like to avoid
distinguishing text nodes (i.e., nodes with string values) with
element nodes (i.e., nodes with tag names). To do this, we
simulate such a node by an element node named string
and its children which are also element nodes labeled by
the constituent characters. Also, in this paper, numerical
values cannot be handled directly; they are treated as strings
of digits.

2.2 Sets of XML Documents

In this paper, we use a tree automaton (TA) to represent
schemas or sets of candidates for the value of the sensitive
information.

First, we define a regular expression. A regular expres-
sion (RE) over an alphabet Σ consists of constants ∅ (empty
set), ε (empty sequence), and the symbols in Σ, and opera-
tors · (concatenation), ∗ (zero or more occurrences), + (one
or more occurrences), | (disjunction), and & (interleaving).
The concatenation operator is often omitted as usual. The
string language represented by a regular expression e is de-
noted by L(e).

Next, we define an (unranked) TA over Σ. A TA A is a
4-tuple (Q,Σ,Qi,R), where

• Q is a finite set of states,
• Σ is an alphabet,

• Qi ⊆ Q is a set of initial states, and
• R is a set of transition rules in the form of (q, a, e),

where q ∈ Q, a ∈ Σ, and e is an RE over Q.

We introduce the run of a TA on a tree. Let A =
(Q,Σ,Qi,R) be an TA and t ∈ TΣ. A (successful) run rt

A
of A on t is a mapping from Pos(t) to Q with the following
properties:

• rt
A(ε) ∈ Qi.

• For each position p, if the node of p has n children,
there exists a transition rule (q, a, e) ∈ R such that

– rt
A(p) = q,

– λt(p) = a, and
– rt

A(p · 1)rt
A(p · 2) · · · rt

A(p · n) ∈ L(e).

We say that a tree t ∈ TΣ is accepted by A if there exists
a run of A on t. Let TL(A) denote the set of trees accepted
by A, i.e., the tree language recognized by A. For q ∈ Q,
let TL(A, q) be the tree language recognized by A when the
initial state is q. We extend the run to a set P of positions,
i.e., rt

A(P) = {rt
A(p) | p ∈ P}. For t ∈ TL(A), we define

the state path r̃t
A(p) to p on r̃t

A as follows: r̃t
A(ε) = rt

A(ε);
r̃t

A(p · i) = r̃t
A(p)rt

A(p · i). We say A is unambiguous if the
run rt

A is unique for each t ∈ TL(A). We say A is bottom-up
deterministic if TL(A, q1) ∩ TL(A, q2) = ∅ for any two states
q1, q2 ∈ Q.

2.3 Queries

We require a query model for which type inference [10]
can be done. Hence, as in our previous work [8], we
adopt (deterministic) bottom-up relabeling tree transducers
(BRTTs), (deterministic) top-down relabeling tree transduc-
ers (TRTTs), and (deterministic) deleting tree transducer
(DTTs). A BRTT and a TRTT relabel nodes dependently
on their descendants and ancestors, respectively. A DTT
deletes all nodes labeled with a special symbol �, and all
subtrees rooted by nodes labeled with another special sym-
bol $. A TRTT and a DTT are restricted ones of top-
down tree transducers [11] which can only relabel and delete
nodes of an input tree respectively. A BRTT is a straightfor-
ward extension of a bottom-up tree automaton. In this paper,
a query is assumed to be a composition of some of BRTTs
and/or TRTTs, followed by a DTT. For tree transductions
T R and T D, let T D ◦ T R denote T R composed with T D, i.e.,
T D ◦ T R(t) = T D(T R(t)) for any tree t. Consequently, a
query in our model can filter and/or relabel nodes selected
by expressions in the class XP{[ ],∗,//} [12], which is a frag-
ment of XPath consisting of node test, the child axis, the
descendant axis, wildcards, and predicates. Moreover, our
model can represent some, but not all, queries which pro-
cess nodes selected by expressions with the sibling axis. The
query cannot reconstruct the input tree with its document or-
der changed, add new nodes to the input tree, or copy nodes
of the input tree.

As a more powerful query model, an m-fold composi-
tion of macro tree transducers (m-MTT) [13] has sufficient
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expressive power where m is a constant. This model enables
insertion, copying, and concatenation of trees. However, we
conjecture that these abilities make analysis for ∞-secrecy
complicated. In this paper, as the first step, we shall tackle
analysis for ∞-secrecy with respect to queries expressed by
a composition of some of BRTTs and/or TRTTs, followed
by a DTT.

2.3.1 Bottom-Up Relabeling Tree Transducers (BRTTs)

A BRTT T B is a 4-tuple (Q,Σ, q̂, FB), where

• Q is a finite set of states,
• Σ is an alphabet,
• q̂ ∈ Q is the final state, and
• FB is a set of transformation rules in the form of a(e)→

q′(a′), where q′ ∈ Q, a, a′ ∈ Σ, and e is an RE over Q.
If FB contains two distinct rules a(e1) → q′1(a′1) and
a(e2) → q′2(a′2), then L(e1) ∩ L(e2) must be the empty
language.

Let ts be a tree in TΣ∪Q and tp = a(q1(t1) · · · qn(tn)) be a
subtree of ts, where a ∈ Σ, t1, . . . , tn ∈ TΣ and q1, . . . , qn ∈
Q. If (a(e) → q′(a′)) ∈ FB and q1 · · · qn ∈ L(e), then T B

can move in one step from ts to t′s such that t′s is obtained
from ts by replacing tp to q′(a′(t1 · · · tn)). A tree t ∈ TΣ
is transformed into t′ ∈ TΣ by T B if T B can move from t
eventually to q̂(t′). Then, let T B(t) denote the tree t′.

2.3.2 Top-Down Relabeling Tree Transducers (TRTTs)

A TRTT T T is a 4-tuple (Q,Σ, q̂, FT), where

• Q is a finite set of states,
• Σ is an alphabet,
• q̂ ∈ Q is the initial state, and
• FT is a set of transformation rules in the form of q(a)→

a′(q′), where q, q′ ∈ Q and a, a′ ∈ Σ. For each pair of
q and a, there must be at most one rule in FT whose
left-hand side is q(a).

Let ts be a tree in TΣ∪Q and tq = q(a(t1 · · · tn)) be a sub-
tree of ts, where a ∈ Σ, t1, . . . , tn ∈ TΣ and q ∈ Q. If
(q(a) → a′(q′)) ∈ FT, then T T can move in one step from
ts to t′s such that t′s is obtained from ts by replacing tq with
a′(q′(t1) · · · q′(tn)). Note that by definition a state associated
with a leaf node will disappear after the next transformation
step because a leaf node is a node with the empty sequence
of child subtrees. A tree t ∈ TΣ is transformed into t′ ∈ TΣ
by T T if T T can move from q̂(t) eventually to t′ ∈ TΣ. Then,
let T T(t) denote the tree t′.

2.3.3 Deleting Tree Transducers (DTTs)

A DTT T D deletes �-labeled nodes of the input tree and sub-
trees rooted by $-labeled nodes of the tree, traversing in a
top-down manner. For example, t = a(b�(de)b(� f $)$(de))
is transformed to t′ = a(bdeb( f )) by T D. Exceptionally, the
root of the input tree is never deleted to ensure that the out-
put is a tree.

2.3.4 Assumptions

We introduce the following two assumptions on our query
model. First, we assume for simplicity that each authorized
query Ta is total to TL(AG), where AG is the schema of the
target XML document D. That is, for each t ∈ TL(AG), there
is Ta(t) ∈ TΣ. Second, we assume that no constituent rela-
beling tree transducers of a query Ts to retrieve the sensitive
information relabels a node with �. Therefore, Ts can delete
some subtrees of the input tree, but cannot delete only inter-
nal nodes.

2.4 Functional Dependencies (FDs)

An FD is a triple of simple path expressions. The simple
path expression is a sequence over Σ. This class is a subclass
of XPath [14]. The semantics of a simple path expression s
over a tree t is defined by Pos(t, s):

Pos(t, s) := {p ∈ Pos(t) | λ̃t(p) = s}.

Pos(t, s) is the set of positions of t reachable from the root
by the path s including the root label. Also, for a position p
of t, let Pos(t, p, s) denote the set of positions of t reachable
from p by the path s excluding the label of the node at p.
Formally,

Pos(t, p, s) := {p · p′ ∈ Pos(t) | λ̃−t|p (p′) = s}.

In addition, we write the set of subtrees of t at positions in
Pos(t, s) (resp. Pos(t, p, s)) as s(t) (resp. s(t, p)).

An FD f is a triple (H, X,Y) where H, X,Y are simple
path expressions over Σ, and neither of X nor Y is a prefix of
the other. Given a tree t and an FD f , t is said to satisfy f if
and only if for any two positions p, p′ ∈ Pos(t,H), X(t, p)∩
X(t, p′) � ∅ ⇒ Y(t, p)∩ Y(t, p′) � ∅. For an FD f , let TL( f )
denote the set of trees which satisfy f .

For example, let f be a functional dependency
(sh, x, y). In Fig. 4, the tree (i) does not satisfy f because
both subtrees rooted by the nodes labeled with h include
the subtree x(a) but they do not include any common sub-
tree rooted by nodes labeled with y. On the other hand,
the tree (ii) satisfies f because both subtrees rooted by the
nodes labeled with h include the common subtrees rooted

Fig. 4 Functional dependency.
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by nodes labeled with x and y, respectively. In addition, the
functional dependency in Example 1 can be represented as
(hospital · patient, room, disease).

So far, Arenas and Libkin’s [15] and Yu and Ja-
gadish [16] have proposed definitions of functional depen-
dencies on XML. Our definition of FDs differs from them,
but is relatively close to Yu and Jagadish’s. In Yu and Ja-
gadish’s, the path H in our FD expression is called the
pivot path. However, as the semantics of agreement be-
tween X(t, p) and X(t, p′) (or Y(t, p) and Y(t, p′)) for any
two nodes specified by the pivot path, Yu and Jagadish’s
adopts X(t, p) = X(t, p′) (or Y(t, p) = Y(t, p′)), respec-
tively. On the other hand, we adopt X(t, p) ∩ X(t, p′) � ∅
(or Y(t, p)∩Y(t, p′) � ∅), respectively, which is closer to the
semantics of equality test of sets of nodes in XPath 1.0 [14].
In addition, Yu and Jagadish’s ignores the document order
on the equality of trees, but we consider it.

3. k-Secrecy Problem in the Presence of a Functional
Dependency

We consider a decision problem for k-secrecy (or ∞-
secrecy) against inference attacks in the presence of a func-
tional dependency, abbreviated as k-SIAF (or∞-SIAF).

Definition 1: The database schema AG of the instance t,
authorized queries T1, . . . ,Tn, results T1(t), . . . ,Tn(t) of the
authorized queries, unauthorized query Ts, and a functional
dependency f are given. Then, suppose that

C = {Ts(t
′) | t′ ∈ TL(AG) ∩ TL( f ),

T1(t′) = T1(t), . . . ,Tn(t′) = Tn(t)}.

If |C| ≥ k then we say that t is k-secret with respect to
({T1, . . . ,Tn},Ts, f ). In particular, if C is infinite then we
say that t is∞-secret with respect to ({T1, . . . ,Tn},Ts, f ).

In this paper, we show the decidability of∞-SIAF. It is one
of our future work to investigate k-SIAF for any positive
integer k > 1.

As stated in Sect. 1, the verification method in our pre-
vious work [8], which does not consider functional depen-
dencies, cannot be naively extended to ∞-SIAF. It is be-
cause the set of the candidates of the original database in-
stance, which satisfy a functional dependency, is not al-
ways regular. For example, consider an FD f = (sh, x, y)
and a TA A which has the following five transition rules:
(S , s,HH), (H, h, XY), (X, x,C), (Y, y,C∗), (C, c, ε) where S
is the initial state. Then, TL(A) ∩ TL( f ) is not regular be-
cause each tree in TL(A) ∩ TL( f ) has the same two subtrees
the roots of which are labeled with h. Thus, TL(A) ∩ TL( f )
cannot be represented by any TA.

In this paper, we give a method to verify the∞-secrecy
without explicitly computing the set of the candidates of the
original database instance satisfying functional dependen-
cies.

4. Decidability Result of∞-SIAF

Here, we show that∞-SIAF is decidable when the unautho-
rized query Ts is restricted to a composition of TRTTs and a
DTT. Since TRTTs are closed under composition, we deal
with only a composition of one TRTT and a DTT.

4.1 Overview of Our Decision Algorithm

Our decision algorithm for ∞-secrecy with an FD consists
of three steps:

1. Construct a TA Aa which recognizes
⋂n

i=1 T−1
i (Ti(t)) ∩

TL(AG), where T−1
i is the inverse of Ti, that is,

T−1
i (t′) = {t | Ti(t) = t′}.

2. Divide Aa into a finite setA of f -path fixed TAs. (The
definition of f -path fixity of a TA will be given in
Sect. 4.2.)

3. Decide whether there is some TA A ∈ A such that
TL(A) ∩ TL( f ) � ∅ and Ts(TL(A)) is infinite.

In Step 1, given each Ti and Ti(t) (1 ≤ i ≤ n), a TA Ai
a

which recognizes T−1
i (Ti(t)) can be constructed from Ti(t)

and Ti by backward type inference. Note that Ti has the
backward regularity preserving property, i.e., for any regu-
lar tree language L, T−1

i (L) is also a regular tree language.
Finally, Aa can be obtained by constructing the intersection
TA of A1

a, . . . , A
n
a and AG.

In Steps 2 and 3, it is decided whether {Ts(t) | t ∈
TL(Aa) ∩ TL( f )} is infinite. It is complicated to decide it
directly from Ts, Aa, and f because trees accepted by Aa

have various structure related on f . Our strategy for the de-
cision is as follows: Divide the given TA Aa to a finite set
A of f -path fixed TAs, and then, for each Ai ∈ A, check if
Ai accepts some tree t satisfying f and Ts(TL(Ai)) is infinite.
Intuitively, the parts related on f of runs on accepted trees
of an f -path fixed TAs are identical. This property makes
the satisfiability check of f on the TAs relatively simple.

4.2 f -Path Fixity

Before giving details of our decision algorithm for∞-SIAF,
we first give the definition of f -path fixity of a TA. For
an FD f = (H, X,Y), we say that A is f -path fixed if and
only if A is unambiguous and satisfies the following three
conditions:

(1) ∀t, t′ ∈ TL(A).rt
A(Pos(t,H)) = rt′

A(Pos(t′,H)),

(2) ∀t, t′ ∈ TL(A).∀p ∈ Pos(t,H).∀p′ ∈ Pos(t′,H).

(rt
A(p) = rt′

A(p′)⇒
∀Z ∈ {X,Y}.rt

A(Pos(t, p,Z)) = rt′
A(Pos(t′, p′,Z))),

(3) ∀t ∈ TL(A).∀Z ∈ {X,Y}.∀p, p′ ∈ Pos(t,HZ).

rt
A(p) � rt

A(p′)⇒ t|p � t|p′ .

The condition (1) means that for every tree in TL(A), the
set of states assigned to nodes at the positions in Pos(t,H)
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Fig. 5 f -path fixity.

is fixed. The fixed set is denoted by QA
H . The condition

(2) means that for any tree in TL(A) and any position p in
Pos(t,H), the set of states assigned to nodes at the positions
in Pos(t, p, X) (resp. Pos(t, p,Y)) is fixed on the state as-
signed to the node at the position p. For each qh ∈ QA

H , the
fixed sets are denoted by QA

qh,X
and QA

qh,Y
, respectively. The

condition (3) means that for any tree in TL(A) and any two
positions in either of Pos(t,HX) or Pos(t,HY), if the states
assigned to the nodes at the positions are distinct, then so
are the subtrees at the positions.

For example, let f = (sh, x, y). Then, consider the
TA A1 which has the transition rules listed in Fig. 5 (i).
For every tree t ∈ TL(A1), rt

A1
(Pos(t, sh)) = {qh}, and for

each position p in Pos(t, sh), rt
A1

(Pos(t, p, x)) = {qx} and
rt

A1
(Pos(t, p, y)) = {qy1, qy2}. Thus, A1 satisfies the con-

ditions (1) and (2) of the f -path fixity. Also, A1 satisfies
the condition (3) because TL(A1, qy1) ∩ TL(A1, qy2) = ∅.
Thus, A1 is f -path fixed. On the other hand, consider the
TA A2 which has the transition rules listed in Fig. 5 (ii).
A2 accepts the tree t′ = s(h(x, y), h(x, y(a))). Then, we
have that Pos(t′, sh) = {1, 2}, rt′

A2
(Pos(t′, 1, y)) = {qy1} and

rt′
A2

(Pos(t′, 2, y)) = {qy2}, and thus the condition (2) is not
satisfied. Therefore, A2 is not f -path fixed.

We give some notations on an f -path fixed TA A where
f = (H, X,Y). Let QA

HX =
⋃

qh∈QA
H

QA
qh,X

and QA
HY =⋃

qh∈QA
H

QA
qh,Y

. For a tree t ∈ TL(A) and px ∈ Pos(t,HX),
let QPt

HX(px) denote the pair (rt
A(ph), rt

A(px)) of states of A
such that px = ph · p and λ̃t(ph) = H. Let QPt

HX denote the
set {QPt

HX(px) | px ∈ Pos(t,HX)}. Note that QPt
HX is fixed

over all t ∈ TL(A) because of the f -path fixity of A. The
fixed set is also denoted by QPA

HX .
Now, we show some properties on f -path fixed TAs.

For a tree t ∈ TΣ and an FD f = (H, X,Y), let Pos f
Nblw(t) =

Pos(t)−{p · p′ | p ∈ Pos(t,HX)∪Pos(t,HY), p′ ∈ Pos(t|p)−
{ε}}.

Lemma 1: Suppose that a TA A is f -path fixed where f =
(H, X,Y), and ta ∈ TL(A) satisfies f . Then, there is some
mapping Mta : TL(A) → TL(A) such that for any t ∈ TL(A),
Mta (t) satisfies f , Pos f

Nblw(t) = Pos f
Nblw(Mta (t)), and for each

p ∈ Pos f
Nblw(t), rt

A(p) = rMta (t)
A (p).

Proof . We construct three functions FH , FHX , FHY from
ta, which are used to construct Mta . The first function
FH is a total function from rta

A (Pos(ta,H)) to Pos(ta,H)
such that for each qh ∈ rta

A (Pos(ta,H)), rta
A (FH(qh)) = qh.

The second function FHX is a total function from QPta
HX to

Pos(ta,HX) such that for each (qh, qx) ∈ QPta
HX , FH(qh) ∈

Ancta (FHX((qh, qx))) and rta
A (FHX((qh, qx))) = qx. The

third function FHY is a total function from rta
A (Pos(ta,HY))

to Pos(ta,HY) such that for each qy ∈ rta
A (Pos(ta,HY)),

rta
A (FHY (qy)) = qy.

Now, we construct Mta : TL(A) → TL(A) such
that for each t ∈ TL(A), Mta (t) is the tree obtained from
t by replacing t|px with ta|FHX (QPt

HX (px)) for each position
px ∈ Pos(t,HX), and t|py with ta|FHY (rt

A(py)) for each posi-
tion py ∈ Pos(t,HY). Note that this replacement is always
possible because QPta

HX = QPt
HX and rta

A (Pos(ta,HY)) =
rt

A(Pos(t,HY)) by the conditions (1) and (2) of f -path fixity.
We see that Mta (t) ∈ TL(A) for any tree t ∈ TL(A) because
for each position pz ∈ Pos(t,HX) ∪ Pos(t,HY), Mta (t)|pz ∈
TL(A, rt

A(pz)). We also have that for each tree t ∈ TL(A),
Pos f

Nblw(t) = Pos f
Nblw(Mta (t)) and for each p ∈ Pos f

Nblw(t),

rt
A(p) = rMta (t)

A (p). It is because Mta (t) is obtained by chang-
ing only subtrees at positions in Pos(t,HX) ∪ Pos(t,HY),
maintaining the states assigned to the positions.

Moreover, we can see that Mta (t) satisfies f for each
tree t ∈ TL(A). Consider an arbitrary tree t ∈ TL(A),
and assume that Mta (t) does not satisfy f . Then, there
are two positions ph1, ph2 ∈ Pos(Mta (t),H) such that
X(Mta (t), ph1) ∩ X(Mta (t), ph2) � ∅ and Y(Mta (t), ph1) ∩
Y(Mta (t), ph2) = ∅. Let qh1 = rMta (t)

A (ph1) and

qh2 = rMta (t)
A (ph2). From the construction of FHX ,

we have that for each i ∈ {1, 2}, X(Mta (t), phi) ⊆
X(ta, FH(qhi)). Thus, X(ta, FH(qh1)) ∩ X(ta, FH(qh2)) �
∅. On the other hand, from the construction of FHY

and the condition (3) of f -path fixity, we also have that
rMta (t)

A (Pos(Mta (t), ph1,Y)) ∩ rMta (t)
A (Pos(Mta (t), ph2,Y)) = ∅.

For each i ∈ {1, 2}, from the condition (2) of f -path fixity
and rMta (t)

A (phi) = rta
A (FH(qhi)), rMta (t)

A (Pos(Mta (t), phi,Y)) =
rta

A (Pos(ta, FH(qhi),Y)). Hence, rta
A (Pos(ta, FH(qh1),Y)) ∩

rta
A (Pos(ta, FH(qh2),Y)) = ∅. Again, from the condition (3)

of f -path fixity, Y(ta, FH(qh1)) ∩ Y(ta, FH(qh2)) = ∅. There-
fore, ta does not satisfy f , and it is a contradiction. �

Next, we show that satisfiability of an FD f = (H, X,Y)
with respect to an f -path fixed TA A, i.e., whether TL(A) ∩
TL( f ) � ∅, is decidable. Now, for qx ∈ QA

HX let k(qx) denote
the size of the maximum subset Q′H of QA

H satisfying the
following condition: For any two distinct states qh1, qh2 ∈
Q′H , qx ∈ QA

qh1,X
∩ QA

qh2,X
and QA

qh1,Y
∩ QA

qh2,Y
= ∅. Then, we

have the following lemma.
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Lemma 2: Suppose that A is an f -path fixed TA. Then,
there is some tree t ∈ TL(A) which satisfies f if and only if
|TL(A, qx)| ≥ k(qx) for any qx ∈ QA

HX .

Proof . Assume that TL(A, qx) contains at least k(qx) trees
for any qx ∈ QA

HX . We can consider the following two map-
pings MHX and MHY . The first mapping MHX satisfies that
MHX((qh, qx)) ∈ TL(A, qx) for each (qh, qx) ∈ QPA

HX , and
for any (qh1, qx), (qh2, qx) ∈ QPA

HX such that qh1 � qh2 and
QA

qh1,Y
∩ QA

qh2,Y
= ∅, MHX((qh1, qx)) � MHX((qh2, qx)). Since

|TL(A, qx)| ≥ k(qx) for each qx ∈ QA
HX , MHX is constructible.

The second mapping MHY satisfies that MHY (qy) ∈ TL(A, qy)
for each qy ∈ QA

HY . Now, there is some tree t ∈ TL(A) such
that t|px = MHX(QPt

HX(px)) for each px ∈ Pos(t,HX) and
t|py = MHY (rt

A(py)) for each py ∈ Pos(t,HY). Then, for any
two ph1, ph2 ∈ Pos(t,H), we have that Y(t, ph1)∩Y(t, ph2) =
∅ ⇒ X(t, ph1) ∩ X(t, ph2) = ∅. Hence, t satisfies f .

Conversely, assume that TL(A, qx) contains at most
k(qx)−1 trees for some qx ∈ QA

HX . Then, from the f -path fix-
ity of A, for any t ∈ TL(A), there are positions ph1 and ph2 in
Pos(t,H) such that (a) two distinct states qh1, qh2 ∈ QA

H are
assigned to ph1 and ph2, (b) QA

qh1,Y
∩ QA

qh2,Y
= ∅, and (c) for

some positions px1 ∈ Pos(t, ph1, X) and px2 ∈ Pos(t, ph2, X),
rt

A(px1) = rt
A(px2) = qx and t|px1 = t|px2 . Thus, we have that

X(t, ph1)∩X(t, ph2) � ∅ and Y(t, ph1)∩Y(t, ph2) = ∅. Hence,
there is no tree in TL(A) satisfying f . �

For each qx ∈ QA
HX , k(qx) is computable and it is de-

cidable whether |TL(A, qx)| ≥ k(qx). Thus, we can decide
whether there is some tree in TL(A) satisfying f .

Lemma 3: Satisfiability of an FD f = (H, X,Y) with re-
spect to an f -path fixed TA A is decidable.

4.3 Details of the Decision Algorithm

We explain the details of our decision algorithm for ∞-
secrecy with an FD. The detail of Step 1 is omitted because
Step 1 is the same as Steps 1 and 2 of the algorithm proposed
in our previous work [8].

4.3.1 Step 2: Division into f -Path Fixed TAs

In this step, the TA Aa obtained in Step 1 is divided into
f -path fixed TAs. We assume that Aa = (Q,Σ,Qi,R) is a
bottom-up deterministic TA without loss of generality. We
give a procedure for dividing Aa into a finite set of f -path
fixed TAs. First, we construct an unambiguous TA Af =

(Qf ∪ Q̄ f ,Σ,Qi
f ,Rf ) such that (a) TL(Af ) = TΣ, (b) Qf ∩

Q̄ f = ∅, and (c) for any tree t ∈ TΣ, the run of Af on t
assigns states in Qf to nodes on the path H, HX, or HY ,
and assigns states in Q̄ f to the other nodes v. The detail
of Af is presented in Appendix A. Then, we construct the
intersection TA Ap of Aa and Af constructed in the similar
way as the product.

Here, we define the following binary relation ≺ over
Q × Qf : q′ ≺ q if there is some rule (q, a, e) in Ap such

that q′ appears in e. From the construction of Af (see Ap-
pendix A.), no state in Qf is recursive on Af , and thus the
reflective transitive closure ≺∗ of ≺ is a partial order. Ac-
cording to a topological ordering of ≺∗, starting from the
smallest state, for each q ∈ Q × Qf , we do the equivalence
transformation of Ap as follows: if the rule (q, a, e) exists
in Ap, let Qe be the set of states appearing in e. For each
Q′ ⊆ Qe, create a new state qQ′ , and a new rule (qQ′ , a, e′)
such that e′ is the intersection RE of e and (q′1

+& · · ·&q′m
+)

where Q′ = {q′1, . . . , q′m}. Moreover, for every rule (q′, a′, e′)
such that q appears in e′, substitute q in e′ with q∅ | · · · | qQe .
The equivalence transformation eventually terminates be-
cause ≺∗ is a partial order. Let Adv be the TA obtained by
the equivalence transformation. By this transformation, for
each state appearing on the label path HX or HY , the set of
states assigned to their children position is fixed in any tree
accepted by Adv. Let Qini

dv be the set of the initial states of Adv.
For each initial state q̂i ∈ Qini

dv , the TA Ai
dv obtained by re-

stricting the set of initial states to the singleton {q̂i} is f -path
fixed. We have that TL(Aa) = TL(Adv) =

⋃
q̂i∈Qini

dv
TL(Ai

dv).

Lemma 4: Given a TA Aa and an FD f , Aa can be divided
into a finite number of f -path fixed TAs A1, . . . , An such that
TL(Aa) =

⋃
i TL(Ai) and for every pair Ai and Aj (1 ≤ i, j ≤

n, i � j), TL(Ai) ∩ TL(Aj) = ∅.

Let A(Aa, f ) denote the finite set of f -path fixed TAs
with respect to Aa and f . Then, we have the following
lemma on∞-secrecy.

Lemma 5: Suppose that Aa is the TA obtained at Step 1
with respect to authorized queries T1, . . . ,Tn and their re-
sults T1(t), . . . ,Tn(t). Then, t is∞-secret if and only if there
is some Ai ∈ A(Aa, f ) such that C(Ai,Ts, f ) = {Ts(t) | t ∈
TL(Ai) ∩ TL( f )} is infinite.

Proof . For the if part, because C(Ai,Ts, f ) ⊆ C(Aa,Ts, f ),
if C(Ai,Ts, f ) is infinite, then C(Aa,Ts, f ) is infinite. Con-
versely, assume that C(Aa,Ts, f ) is infinite. Since A(Aa, f )
is finite and C(Aa,Ts, f ) =

⋃
Ai∈A(Aa, f ) C(Ai,Ts, f ), there is

a TA Ai ∈ A(Aa, f ) such that C(Ai,Ts, f ) is infinite. �

4.3.2 Step 3: Decision of∞-Secrecy

In this step, we decide whether t is ∞-secret using the nec-
essary and sufficient condition stated in Lemma 5. To show
the decidability of the condition, we just show that it is de-
cidable whether C(Ai,Ts, f ) is infinite for one f -path fixed
TA Ai because A(Aa, f ) is finite. Now, we give a necessary
and sufficient condition for C(Ai,Ts, f ) to be infinite.

Lemma 6: Suppose that A is an f -path fixed TA and that
Ts is a composition of a TRTT T R

s and a DTT T D. Then,
TL(A) ∩ TL( f ) � ∅ and Ts(TL(A)) is infinite if and only if
C(A,Ts, f ) is infinite.

Proof . The if part is obvious because Ts(TL(A)) ⊇
C(A,Ts, f ), and C(A,Ts, f ) � ∅ implies TL(A) ∩ TL( f ) � ∅.
So, we give the proof for the only if part.

Before starting the proof, we give a definition for a pair
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tree of input and output trees on a TRTT. Consider an ar-
bitrary tree t and the output tree T R

s (t) of the TRTT T R
s on

t. Since a TRTT can only relabel nodes, t and T R
s (t) have

the same set of the positions, i.e., Pos(t) = Pos(T R
s (t)). This

enables us to define a pair tree, denoted by [t,T R
s (t)], of t

and T R
s (t) such that Pos([t,T R

s (t)]) = Pos(t) and for each
position p ∈ Pos([t,T R

s (t)]), λ[t,T R
s (t)](p) = (λt(p), λT R

s (t)(p)).
For example, when t = a(bc) and T R

s (t) = x(yz), [t,T R
s (t)] =

(a, x)((b, y)(c, z)). Let πi denote the i-th projection of the
label pair (a, x), i.e., π1((a, x)) = a and π2((a, x)) = x.
We extend the projection to a label path � = l1 · · · ln, i.e.,
πi(�) = πi(l1) · · · πi(ln). Given an f -path fixed TA A and
a TRTT T R

s where f = (H, X,Y), we can construct a TA
Aio such that TL(Aio) = {[t,T R

s (t)] | t ∈ TL(A)} by us-
ing almost the same technique as type inference. Here,
consider the first element projection π1(Aio) of Aio, which
is obtained by replacing each rule (q̄, (a, α), ē) of Aio with
(q̄, a, ē). Then, π1(Aio) is f -path fixed because A is f -
path fixed and a TRTT cannot distinguish nodes reachable
via the same path from the root. Thus, from Lemma 1,
if there is some tree [ta,T R

s (ta)] such that ta satisfies f ,
there is some mapping Mta : TL(π1(Aio)) → TL(π1(Aio))
such that for each tree t ∈ TL(π1(Aio)), Mta (t) satisfies f ,
Pos f

Nblw(t) = Pos f
Nblw(Mta (t)), and for each p ∈ Pos f

Nblw(t),

rt
π1(Aio)(p) = rMta (t)

π1(Aio)(p). We extend Mta to a pair tree in
TL(Aio), i.e., Mta ([t,T R

s (t)]) = [Mta (t),T R
s (Mta (t))].

Assume that TL(A) ∩ TL( f ) � ∅ and Ts(TL(A)) is infi-
nite. Since TL(A)∩ TL( f ) � ∅, there is some tree ta ∈ TL(A)
satisfying f , and t̄a = [ta,T R

s (ta)] ∈ TL(Aio). Thus, there is
some mapping Mta as stated above. On the other hand, since
Ts(TL(A)) is infinite, there is some state qc of Aio and some
tree t̄′ = [t′,T R

s (t′)] such that:

1. for some position pc of t̄′, the symbol $ does not appear
in π2(λ̃t̄′ (pc)), rt̄′

Aio
(pc) = qc, and the state qc appears at

least twice in r̃t̄′
Aio

(pc); or
2. for some position pc = p′ · i of t̄′ where i ∈ N, the

symbol $ does not appear in π2(λ̃t̄′(pc)), rt̄′
Aio

(pc) = qc,
rt̄′

Aio
(p′) = q′, and for the rule (q′, a, e) and some words

α, β, γ such that β includes qc, the word αβ jγ is in L(e)
for any positive integer j ≥ 1.

In other words, t̄′ is pumpable at pc vertically and/or hori-
zontally. In addition, we can see that for any two distinct
trees [t′′,T R

s (t′′)] and [t′′′,T R
s (t′′′)] obtained by pumping t̄′

at pc, t′′ � t′′′ and also Ts(t′′) � Ts(t′′′). Here, we have
three cases according to where the pumpable position pc is
with respect to f . We shall show, in each case, that there are
an infinite number of trees in TL(A) satisfying f such that
the outputs of Ts on them are all distinct.

(i) (See Fig. 6 (i)) Assume that neither HX nor HY is a
prefix of λ̃t′ (pc). Let t̄′′ = [t′′,T R

s (t′′)] = Mta (t̄′). Then,
t′′ satisfies f by Lemma 1. Moreover, Mta has no in-
fluence on the position pc, and thus pc ∈ Pos(t̄′′) and
rt̄′′

Aio
(pc) = qc. By pumping t̄′′ at pc on qc, we can obtain

an infinite number of trees such that they satisfy f and

Fig. 6 The proof of Lemma 6.

the outputs of Ts on them are all distinct.
(ii) (See Fig. 6 (ii)) Assume that HX is a prefix of λ̃t′ (pc).

Let px and ph be the ancestor positions of pc such
that λ̃t′(px) = HX and λ̃t′ (ph) = H respectively. Let
t̄′′ = [t′′,T R

s (t′′)] = Mta (t̄′), and let t̄e = [te,T R
s (te)]

be the tree such that t̄e = t̄′′[px ← t̄′|px ]. Then,
since t̄e|px = t̄′|px , we have that pc ∈ Pos(t̄e) and
rt̄e

Aio
(pc) = qc. Note that t′′ satisfies f but te might

not satisfy f . Since the difference of t′′ and te is only
the subtree at px, for any two positions ph1 and ph2

in Pos(te,H) − {ph}, X(te, ph1) ∩ X(te, ph2) � ∅ im-
plies Y(te, ph1) ∩ Y(te, ph2) � ∅. We also have that
Y(t′′, ph) = Y(te, ph). The difference of t′′ and te af-
fects only the dependencies between te|ph and the other
subtrees in H(te). Now, note that TL(Aio, r

t̄e
Aio

(px)) is

infinite because px ∈ Anct̄e (pc) and TL(Aio, r
t̄e
Aio

(pc)) is
infinite. So, we can consider a tree t̄x = [tx,T R

s (tx)] ∈
TL(Aio, r

t̄e
Aio

(px)) such that tx � t′′x for any t′′x ∈ HX(t′′).
Let t̄′e = [t′e,T

R
s (t′e)] be the tree such that t̄′e = t̄′′[px ←

t̄x]. Then, t′e satisfies f . By pumping t̄e at pc on qc,
an infinite number of distinct subtrees can be derived
at pc without changing the other part. Hence, there are
an infinite number of distinct trees [t′e,T

R
s (t′e)] such that

t′e|px � t′x for any t′x ∈ HX(t′e). Therefore, we can obtain
an infinite number of trees such that they satisfy f and
the outputs of Ts on them are all distinct.

(iii) (See Fig. 6 (iii)) Assume that HY is a prefix of λ̃t′ (pc).
Let py and ph be the ancestor positions of pc such
that λ̃t′ (py) = HY and λ̃t′ (ph) = H respectively. Let
qy = rt̄′

Aio
(py). Let t̄′′ = [t′′,T R

s (t′′)] = Mta (t̄′), and
let t̄e = [te,T R

s (te)] be the tree obtained from t̄′′ by
replacing each subtree at each position p such that
rt̄′′

Aio
(p) = rt̄′′

Aio
(py) and λ̃t′′ (p) = HY with t̄′|py . Then,

since t̄e|py = t̄′|py , we have that pc ∈ Pos(t̄e) and
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rt̄e
Aio

(pc) = qc. We show that te satisfies f . Let Posrp
y =

{p | λ̃te (p) = HY, rt̄e
Aio

(p) = rt̄e
Aio

(py)} and Posrp
h = {p |

p′ ∈ Posrp
y , p ∈ Ancte (p′), λ̃te (p) = H}. Then, for any

two p1, p2 ∈ Posrp
h , t′|py ∈ Y(te, p1) ∩ Y(te, p2). We

also have that for any qy1, qy2 in Qπ1(Aio)
HY , qy1 � qy2

implies TL(Aio, qy1) ∩ TL(Aio, qy2) = ∅ by the f -path
fixity. It holds that Y(t′′, p1) ∩ Y(t′′, p2) � ∅ im-
plies Y(te, p1) ∩ Y(te, p2) � ∅ for any two p1, p2 ∈
Pos(t′′,H) = Pos(te,H). Thus, te satisfies f . By pump-
ing t̄e at pc on qc, an infinite number of distinct subtrees
can be derived at pc without changing the other part.
The same subtrees can be derived at p in Pos(te,HY)
such that rt̄e

Aio
(p) = qc. Therefore, we can obtain an in-

finite number of trees such that they satisfy f and the
outputs of Ts on them are all distinct. �

From Lemma 3, It is decidable whether TL(A) ∩
TL( f ) � ∅. It is also decidable whether Ts(TL(A)) is infi-
nite because a TA which recognizes Ts(TL(A)) can be con-
structed from Ts and A by type inference, and the finiteness
of a regular tree language is decidable. Thus, from Lem-
mas 4 and 5, we have proved the correctness of our algo-
rithm.

Theorem 1: ∞-SIAF is decidable when the unauthorized
query is restricted to a composition of TRTTs and a DTT.

5. Discussion

We have provided a decision algorithm for ∞-SIAF when
the unauthorized query is restricted to a composition of
TRTTs and a DTT. When the unauthorized query includes
BRTTs, our algorithm does not work well because Lemma 6
does not hold. For example, consider a TA A, an FD f , and
Ts such that:

• The rule set of A contains

(S , s,U), (U, u, A1A2), (A1, a,H), (A2, a,HB),

(B, b, ε), (H, h, XY), (X, x, ε), (Y, y,C∗), (C, c, ε),

• f = (suah, x, y),
• Ts = T D ◦ T3 ◦ T2 ◦ T1

– T1: relabels the node assigned A2 to with a2.
– T2: relabels the node which is a descendant of the

node labeled with a2 and the label is y with y2.
– T3: if some node exists below the node labeled

with x or y, relabels the u-labeled node with $.
– T D: the topdown deleting tree transducer.

Then, A is an f -path fixed TA. Note that T1 and T3 can be
represented by BRTTs but not by TRTTs. TL(A) contains
an infinite number of trees satisfying f , and Ts(TL(A)) is in-
finite. However, {Ts(t) | t ∈ TL(A) ∩ TL( f )} contains only
two trees, s and s(u(a(h(x, y)), a2(h(x, y2), b))). In this case,
the nodes reachable from the root through the path suahy
are distinguished by T2 ◦ T1. Our decision algorithm re-
quires that Ts assigns the same states to the nodes reachable

through the same path. If Ts includes BRTTs, the condition
is not always satisfied. In such a case, our algorithm does
not work well. Decidability of ∞-SIAF for more powerful
query models is an open problem.

6. Conclusion

This paper has discussed verification of the security against
inference attacks on XML databases, considering a func-
tional dependency. We have provided a decision algorithm
for ∞-secrecy in the presence of a simple functional depen-
dency when the unauthorized query is represented by a de-
terministic topdown tree transducer.

One of our future work is to investigate a more power-
ful class of unauthorized queries for which∞-secrecy prob-
lem with a functional dependency is decidable. As another
future work, we would like to extend the verification method
to be able to deal with multiple FDs or more complicated
FDs. Moreover, we would like to propose an algorithm to
solve the k-secrecy problem with FDs for any positive inte-
ger k > 1.
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Appendix A: An FD Automaton

Here, we give the FD automaton Af (see Sect. 4) with re-
spect to f = (H, X,Y). First, we construct two TAs AHX and
AHY as follows. Let H = h1 · · · hn and X = x1 · · · xm. Then,
AHX = (QH

X ∪ Q̄H
X ,Σ, {qh1 , q̄h1 , qh̄1

},RH
X ) where

QH
X = {qh1 , . . . , qhn } ∪ {qx1 , . . . , qxm },

Q̄H
X = {q̄h1 , . . . , q̄hn−1 } ∪ {qh̄1

, . . . , qh̄n
}

∪{q̄x1 , . . . , q̄xm−1 } ∪ {qx̄1 , . . . , qx̄m } ∪ {qany},

and RH
X consists of the following transition rules:

• for each i (1 ≤ i ≤ n − 2),

– (qhi , hi, (qhi+1
+ & q̄hi+1

∗ & qh̄i+1
∗)),

– (q̄hi , hi, (q̄hi+1
∗ & qh̄i+1

∗)),
– (qh̄i

, α, qany
∗) for each α ∈ Σ − {hi},

• for i = n − 1,

– (qhi , hi, (qhi+1
+ & qh̄i+1

∗)),
– (q̄hi , hi, qh̄i+1

∗),
– (qh̄i

, α, qany
∗) for each α ∈ Σ − {hi},

• for i = n,

– (qhi , hi, (qx1
∗ & q̄x1

∗ & qx̄1
∗)),

– (qh̄i
, α, qany

∗) for each α ∈ Σ − {hi},

• for each j (1 ≤ j ≤ m − 2),

– (qxj , x j, (qxj+1
+ & q̄x j+1

∗ & qx̄ j+1
∗)),

– (q̄x j , x j, (q̄x j+1
∗ & qx̄ j+1

∗)),
– (qx̄ j , α, qany

∗) for each α ∈ Σ − {x j},

• for j = m − 1,

– (qxj , x j, (qxj+1
+ & qx̄ j+1

∗)),
– (q̄x j , x j, qx̄ j+1

∗),
– (qx̄ j , α, qany

∗) for each α ∈ Σ − {x j},

• for j = m,

– (qxj , x j, qany
∗),

– (qx̄ j , α, qany
∗) for each α ∈ Σ − {x j}, and

• (qany, α, qany
∗) for each α ∈ Σ.

We construct AHY in the same way. Then, Af = (Qf ∪
Q̄ f ,Σ,Qi,Rf ) is the intersection TA of AHX and AHY where
Qf = QH

X ×(QH
Y ∪Q̄H

Y )∪(QH
X ∪Q̄H

X )×QH
Y and Q̄ f = Q̄H

X ×Q̄H
Y .

Since AHX and AHY are unambiguous, so is Af . In addition,
for any tree t ∈ TΣ and position p ∈ Pos(t), if there is some
position p′ such that p ∈ Anct(p′) and λ̃t(p′) is HX, HY , or
H, then rt

Af
(p) ∈ Qf ; otherwise, rt

Af
(p) ∈ Q̄ f .
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