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PAPER

A New Cloud Architecture of Virtual Trusted Platform Modules

Dongxi LIU†a), Member, Jack LEE††∗, Julian JANG†, Surya NEPAL†, and John ZIC†, Nonmembers

SUMMARY We propose and implement a cloud architecture of virtual
Trusted Platform Modules (TPMs) to improve the usability of TPMs. In
this architecture, virtual TPMs can be obtained from the TPM cloud on
demand. Hence, the TPM functionality is available for applications that do
not have physical TPMs in their local platforms. Moreover, the TPM cloud
allows users to access their keys and data in the same virtual TPM even
if they move to untrusted platforms. The TPM cloud is easy to access for
applications in different languages since cloud computing delivers services
in standard protocols. The functionality of the TPM cloud is demonstrated
by applying it to implement the Needham-Schroeder public-key protocol
for web authentications, such that the strong security provided by TPMs
is integrated into high level applications. The chain of trust based on the
TPM cloud is discussed and the security properties of the virtual TPMs in
the cloud is analyzed.
key words: TPM, cloud, virtualization, trust service

1. Introduction

Trusted computing is a category of technology developed
by the Trusted Computing Group (TCG) [1] to facilitate the
development of trusted systems. The standards of trusted
computing specify the hardware and software components
needed to build trusted systems. In particular, the hardware
component is a chip called Trusted Platform Module (TPM),
which is used as the hardware root in system trust.

The trust of TPM lies in its capabilities of secure key
management (i.e., key generation, storage and use), and se-
cure storage and reporting of platform configuration mea-
surements. A TPM can generate RSA key pairs. The private
RSA keys are always used within the TPM, never leaving it
without encryption. A TPM stores measurements in a set of
Platform Configuration Registers (PCRs), which are physi-
cally protected. The platform measurements stored in PCRs
are signed with a key in the TPM when reporting the in-
tegrity of a system for remote attestation [2].

TPMs are currently provided by embedding them into
computer motherboards. For an application to benefit from
the TPM functionality, there are several requirements. First,
the computer running the application must have a TPM.
Second, the supporting softwares (e.g., TPM drivers and
TCG Software Stack (TSS) [3]) must be installed for the ap-
plication to access the TPM. Third, the application users
must be willing to use the TPM since the computer being
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used might not be owned by them.
However, the above requirements are sometimes not

easy to satisfy, thus making TPMs not so usable and ham-
pering the wide acceptance of TPMs by secure applica-
tions [4]. A lot of computers (new or legacy) are not man-
ufactured with TPMs. Most IBM blade servers [5] do not
contain TPMs, nor do many resource-constrained embed-
ded systems due to the size and cost overheads of a separate
TPM [6]. There is the software-based TPM emulator [7].
However, it is only developed for Unix and not as secure as
physical TPMs. For the requirement of supporting software,
the current TSS is mainly implemented in C language such
as TrouSerS [8] or in Java such as jTSS [9]. Hence, it is hard
for the applications developed in other languages to access
the TPM functionality. For example, Javascript code in web
applications cannot access the TPM functionality easily. At
last, application users may be reluctant to use TPMs in the
computers they use but do not own (e.g., a public computer
in an Internet bar) since the TPMs there may not have proper
keys and PCRs.

In this paper, we propose a cloud architecture of virtual
TPMs (the TPM cloud), embodying the concept of infras-
tructure as a service in cloud computing [10]. Our motiva-
tion is to improve the usability of TPMs. A usable secu-
rity mechanism is more likely to be widely and effectively
used [4], [11], [12]. The TPM cloud will help applications
to benefit from the strong security provided by TPMs.

From the TPM cloud, users can apply for their own
TPM instances (or virtual TPMs) on demand, as exempli-
fied in Fig. 1. The TPM cloud contains a cluster of physical
TPMs and virtualizes them to provide TPM instances for a
large number of users. Consequently, applications can ac-
cess the TPM functionality irrespective of the availability of
TPMs in the underlying computers. Moreover, even if users
run their applications in different computers, they still can
access the same TPM instance since it is provided as a ser-
vice in the cloud. Hence, there is no need to migrate private
keys among computers, avoiding inconvenience and poten-
tial security problems. Cloud computing advocates the de-

Fig. 1 A cloud of virtual TPMs.
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livery of services in standard protocols, such as Simple Ob-
ject Access Protocol (SOAP), so there is no interoperability
problem between the TPM cloud and its applications. Our
contributions of this work are summarized as follows:

• We propose an architecture of the TPM cloud (Sect. 2).
The TPM cloud facilitates the usability of TPMs since
it addresses the requirement problems as discussed
above. The TPM functionalities in the cloud are pro-
vided as Web service operations, so they can be easily
integrated into application design and implementation.
Easy access to TPM functionalities is also realized as
a key step to promote the wide acceptance of TPMs
and regarded as a future working direction in the re-
port [4]†.
• We formalize the functionality of the TPM cloud

(Sect. 3). The formal functionality specification lays
a foundation for analyzing and implementing the TPM
cloud. To support a large number of users, the TPM
cloud virtualizes a cluster of physical TPMs. Based on
the formalization, we suggest some improvement to the
TPM specification, which can make TPMs more flexi-
ble to be used in various contexts.
• We implement a prototype of the TPM cloud and ap-

ply it to implement the Needham-Schroeder public-key
protocol [14] for Web authentication (Sect. 4). In the
implementation of this protocol, both the user and the
Web server depend on the TPM cloud to decrypt en-
crypted messages. That is, their private keys are ma-
nipulated only by the TPMs in the cloud. Hence, even
if the user logs onto the server through a public com-
puter, the private key is still secure and not released
to the public computer. The TPM cloud brings strong
security to Web applications without sacrificing users
flexibility of using different computer platforms.
• We analyze the security properties of the virtual TPMs

in the TPM cloud by comparing them with physical
TPMs and software-based virtual TPMs. We conclude
that the virtual TPMs in the TPM cloud are as secure
as physical TPMs in practical applications (Sect. 5).

A preliminary version of this paper was presented in
[13]. In this new version, we revised the key hierarchy in
the TPM cloud, and formalized all components of the cloud
architecture and more cloud commands to cover the typi-
cal use of the TPM cloud. The new key hierarchy makes it
easier to migrate keys among physical TPMs, hence making
the cloud architecture simpler as discussed in Sect. 3. We
also discussed the establishment of trust chains based on the
TPM cloud and analyzed the security properties in this ver-
sion.

2. Architecture

The architecture of TPM cloud is shown in Fig. 2. This ar-
chitecture includes a virtual TPM service, a user manage-
ment component, a cryptographic service, and a number of
physical TPM services and their management.

Fig. 2 The cloud architecture of virtual TPMs.

2.1 Virtual TPM Service

The virtual TPM service has the cloud port as the interface
to users or applications, such as the Javascript Web pages
and the Web server in the implementation of the Needham-
Schroeder public-key protocol. Through this port, users or
applications send cloud commands to consume TPM ser-
vices, such as registering new TPM instances, creating keys
and signing data.

The secure I/O module in this component protects the
communication between the TPM cloud and its users. The
TPM cloud is designed to have a Cloud Key (CK), which is
a RSA key. We denote the public part of CK as PKc. Every
cloud command received should be encrypted with PKc. In
the TPM cloud, all operations involving private keys must
be performed within physical TPMs (a security feature of
TPM), so the secure I/O module relies on physical TPMs to
decrypt the encrypted cloud commands. In other words, the
secure I/O module needs not to know the private CK.

The result of virtual TPM service should also be pro-
tected, since the result (such as a decryption result) might
contain valuable data. If needed, the result of cloud com-
mands is encrypted with symmetric encryption algorithms
before sending back. By using symmetric encryption, users
do not keep and manage private keys on their platforms. The
symmetric key for encrypting the result is generated by users
and provided as an argument in the cloud command.

The execution planner determines the execution of
cloud commands after being decrypted by the secure I/O
module. It needs to select the component (the TPM man-
agement, the cryptographic service or the user management)
and may need to divide a cloud command into a sequence of
steps, suitable for other components to execute. As an ex-
ample, to execute a cloud command for data decryption, the
execution planner needs to load the key into a physical TPM
and then call the physical TPM UnBind command.

2.2 User Management

The user management component manages the state of users
and maintains a TPM instance for each user. A TPM in-

†This report appears after our paper [13] is presented.
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stance includes the virtual TPM state, a key hierarchy and a
set of virtual PCRs.

The virtual TPM state indicates the state of a TPM in-
stance by simulating state flags in the physical TPM, such
as the flags indicating whether a TPM instance is enabled
or disabled, activated or deactivated. The virtual state does
not need to support all state flags in the physical TPM since
some flags might not make sense for TPM instances in
cloud, such as the state flag indicating the physical presence
of a human since virtual TPMs in the cloud are accessed as
a network service. On the other hand, TPM instances may
have flags not included in physical TPMs. As a future work,
a delegated flag could be used to indicate whether a TPM
instance is delegated by its owner to other users.

Before introducing the key hierarchy for a virtual TPM,
we describe briefly the key management in a physical TPM.
Each TPM has a unique endorsement key (EK), which is
generated by the chip manufacturer. Before using a TPM,
users need to take the ownership of the TPM and create a
storage root key (SRK). Both EK and SRK are RSA key
pairs. Other RSA keys in the TPM are created under a parent
key. Their private keys are always used within TPM and
when released outside TPM they are encrypted with their
parent keys. The SRK can be used as a parent key.

The key hierarchy for a virtual TPM is shown in Fig. 3.
A virtual TPM has a virtual EK and a virtual SRK, which
are both generated by a physical TPM with a Virtual TPM
Root Key as their parent key. As a migratable storage key
created under SRK, the Virtual TPM Root Key is created on
one physical TPM, and then migrated and loaded into every
physical TPM. Therefore, the virtual EK and SRK can be
loaded into every physical TPM since the Virtual TPM Root
Key is already there. Using Virtual TPM Root Key is an
important improvement over the old cloud architecture in
[13]. The Virtual TPM Root Key facilitates the management
of physical TPMs and the migration of keys among them,
with more details discussed in Sect. 3.1. In addition, the
Cloud Key is also created on one physical TPM, and then
migrated and loaded into every physical TPM.

The virtual EK is created as a binding key since its pub-
lic key is used to encrypt data, for instance, by Privacy CA
when activating an identity key. The virtual SRK is a stor-
age key and used as the parent key to create other keys. All
keys in the virtual TPM are migratable, such that they are
not bound to a physical TPM. This feature is useful to main-
tain the availability of virtual TPMs in case of physical TPM

Fig. 3 The key hierarchy for virtual TPM.

failure and balance the load among physical TPMs. A key
can move from one physical TPM to another for unbinding
data if the target TPM is not busy.

A virtual PCR is a sequence of bytes with the same
length as a physical PCR. Virtual PCRs stay outside phys-
ical TPMs. To protect their contents, we encrypt virtual
PCRs with the virtual public EK. Before executing a PCR
dependent TPM command, the virtual PCRs need to be de-
crypted with the corresponding virtual private EK. Since
virtual PCRs are not in physical TPMs, the TPM commands
dependent on PCRs need to be specially treated, as dis-
cussed below.

2.3 Cryptographic Service

The cryptographic service implements some cryptographic
operations (e.g., symmetric encryption algorithms) that are
not provided by physical TPMs. The cryptographic opera-
tions are similar to vendor-specific commands in some phys-
ical TPMs. For example, an Atmel TPM has the specific
commands TPM BindV20 and TPM VerifySignature for
public-key encryption and verification, respectively.

The cryptographic service also deals with the TPM
commands relying on PCRs. A critical feature for physi-
cal PCRs is that they can only be extended and not all of
them are resettable. Hence, it is hard to swap a set of vir-
tual PCRs into the physical PCRs as in classic virtual mem-
ory management systems. However, we realize that some
PCR dependent TPM commands can still be implemented
in physical TPMs after rewriting, while others have to be
simulated in software. Our solution is that if a command
only refers to the state of PCRs, then it is rewritten for ex-
ecution on a physical TPM; if a command needs the actual
values of PCRs, then it is simulated. A command is said
to refer to the state of PCRs if it does not change PCRs
and only use them to affect the execution of subsequent
TPM commands; otherwise we say it needs the actual values
of PCRs. For example, the command TPM Extend needs
the actual values of the argument PCRs since it changes
the values of PCRs; the command TPM CreateWrapKey
refers to the state of the argument PCRs since the result-
ing key can only be loaded into a TPM by a subsequent
command TPM LoadKey if the PCRs are not changed. That
is, the commands TPM CreateWrapKey and TPM LoadKey
do not care about the actual values of PCRs, just requir-
ing them to have the same values. Moreover, the command
TPM CreateWrapKey has to be executed by a physical TPM
since it generates RSA keys. The method of rewriting PCR
dependent TPM commands is described in Sect. 3.3.

2.4 Physical TPMs and Their Management

The TPM cloud depends on physical TPMs to manipu-
late private keys and execute TPM commands (except some
commands replying on PCRs). The TPM cloud might have a
large number of users. For the scalability of the TPM cloud,
the cloud architectures supports a number of physical TPMs.
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The physical TPM management component coordinates all
physical TPMs to execute multiple TPM commands in par-
allel. The scheduler in this component determines which
physical TPM is selected to execute a new command, such
that the workload of physical TPMs is balanced. The execu-
tor accepts the requests to execute TPM commands and is-
sues the commands to physical TPMs. The key loader loads
a key into a physical TPM to be used by other TPM com-
mands. The key is not necessarily created on the same TPM.

3. Formal Functionality of the TPM Cloud

We describe formally the functionality of each TPM cloud
component and their interactions to explain the processing
of cloud commands. The formal functionality specification
lays a foundation for the analysis and implementation of
TPM cloud. We start with the description of several sim-
plified physical TPM commands to be used. Details of them
can be found in the TCG TPM specification [1].

TPM LoadKey(pHandle, pUsageAuth, key): Loads key
into a physical TPM and returns a key handle. The
parent of key is specified by the handle pHandle and
has the usage authorization (or password) pUsageAuth.

TPM BindV20(key, data): Encrypts data with key.
TPM UnBind(handle, usageAuth, encdata): Decrypts the

encrypted data encdata with the key specified by
handle. The usage authorization of the key is
useageAuth.

TPM Extend(index, data): Extends the PCR index with
data.

TPM PCR Reset(index): Resets the PCR index to its de-
fault initial value.

TPM CreateWrapKey(pHandle, pUsageAuth, usageAuth,
indices): Creates a new key having the usage autho-
rization usageAuth under the parent key pHandle with
the usage authorization pUsageAuth. The new key is
locked by PCRs indices.

TPM Sign(handle, usageAuth, data): Signs data with the
key specified by handle. The key has the usage au-
thorization useageAuth.

The Cloud Key and Virtual TPM Root Key are only
used inside the cloud, so in the following we give them a
default usage authorization, represented by a underscore .

3.1 Physical TPM Representation and Access Operations

In the TPM management component, a physical TPM is
represented as a tuple (id, ckhandle, rkhandle), where id is
an identifier, ckhandle the handle for the Cloud Key, and
rkhandle the handle for the Virtual TPM Root Key. Recall
that the Cloud Key and Virtual TPM Root Key are loaded
into every physical TPM. Let pTPM be a set of physical
TPMs managed by the TPM management component. Sup-
pose pTPM includes a TPM (id, ckhandle, rkhandle). Then,
we refer to this TPM by pTPM[id], its components ckhandle
and rkhandle by pTPM[id].ckhandle and pTPM[id].rkhandle,

respectively.
Due to the use of the Virtual TPM Root Key, the man-

agement of physical TPMs in this new cloud architecture
is simpler. Unlike the representation of physical TPMs in
[13], users are not linked to physical TPMs any more in the
above TPM representation, since the Virtual TPM Root Key
is used as the parent of all virtual EKs and virtual SRKs.
That is, by using the Virtual TPM Root Key, a user is no
longer bound to a particular physical TPM in this new cloud
architecture because the SRK of a physical TPM is not used
as the parent key for creating his virtual EK and SRK.

The TPM management component provides the fol-
lowing operations for other components to access physi-
cal TPMs. The operation schedule() returns the identifer
of a physical TPM, which is scheduled to execute a com-
mand. The operation execute(id, tpmcmd) executes the
TPM command tpmcmd on the physical TPM id. For exam-
ple, execute(id, TPM Extend(i, data)) sends the command
TPM Extend(i, data) to physical TPM id for executing.

The operation load(name, id, vsrkpwd, key) defined in
Fig. 4 loads key into the TPM id, and returns a handle. key is
supposed to be created under the virtual SRK of user name,
which has the usage authorization vsrkpwd. Briefly, this op-
eration first loads the virtual SRK of user name into the TPM
id, and then loads key into the same TPM. When loading the
virtual SRK, the TPM id uses the Virtual TPM Root Key on
it as the parent key. The virtual SRK is then used as the
parent key to load key. The virtual SRK vsrk is retrieved
through the operation getVTPM(name).keyhrk.srk, which is
described later. Compared with the load operation in [13],
the operation in Fig. 4 is simpler since we do not need to
rewrap key on the source physical TPM. The Virtual TPM
Root Key is loaded into every physical TPMs, so we can
directly load key and its parent virtual SRK into the target
physical TPM.

3.2 Representation of Users and Virtual TPMs

A user is described by a pair (name, vtpm), meaning that the
user name has the TPM instance vtpm. A TPM instance
vtpm is represented by a tuple (ownerauth, state, keyhrk,
{pcrs}pubek), where ownerauth is the owner authorization of
the TPM instance, state its state, keyhrk the key hierarchy
created for this TPM instance, and pcrs a set of PCRs en-
crypted with the public virtual EK pubek.

For a TPM instance, we consider only the own-
ership state for simplicity. That is, the state field in
vtpm is a boolean to indicate whether the command
TPM TakeOwnership is executed or not. Other state flags

load(name, id, vsrkpwd, key){
1. rkhdl = pTPM[id].rkhandle;
2. vsrk = getVTPM(name).keyhrk.srk;
3. vsrkhdl =execute(id, TPM LoadKey(rkhdl, , vsrk);
4. keyhdl =execute(id, TPM LoadKey(vsrkhdl, vsrkpwd, key);
}

Fig. 4 Loading key into TPM.



LIU et al.: A NEW CLOUD ARCHITECTURE OF VIRTUAL TRUSTED PLATFORM MODULES
1581

can be supported similarly. For example, we can add other
boolean-valued fields to indicate whether a TPM instance is
enabled or activated.

The key hierarchy in a TPM instance is described by
the tuple (ek, srk, {(key1, handle1), . . . , (keyn, handlen)}), in-
cluding the virtual EK ek, the virtual SRK srk, and a
set of pairs of keyi and handlei. The key keyi is cre-
ated under srk, as shown in Fig. 3. A key is a pair
({usageauth, privkey}srk.pubkey, pubkey), consisting of the
public key pubkey and a blob of private key privkey and
its usage authorization usageauth encrypted with the public
key srk.pubkey. Hence, the private key is protected when
stored in a virtual TPM.

LetU be a list of users. The operation getVTPM(name)
returns the TPM instance owned by the user name. That is,
if (name, vtpm) ∈ U, then getVTPM(name) = vtpm. Given
a TPM instance vtpm, its four fields are referred to by the
notations vtpm.ownerauth, vtpm.state, vtpm.keyhrk and
vtpm.encpcrs. For the key hierarchy in vtpm, the virtual
EK and the virtual SRK are accessed by using the notations
vtpm.keyhrk.ek and vtpm.keyhrk.srk, respectively. Other
keys in the hierarchy are referred to by vtpm.keyhrk.keys.
We use vtpm.keyhrk.keys[handle] for the key indexed
by the handle handle, and vtpm.keyhrk.keys[key] for
the handle of key. That is, if (key, handle) ∈
vtpm.keyhrk.keys, then vtpm.keyhrk.keys[handle] = key
and vtpm.keyhrk.keys[key] = handle. For a key key, its
public key and private key are accessed by key.pubkey and
key.privkey, respectively.

A new user or a new TPM instance is created by
using the registration operation register(name, passwd)
in Fig. 5. The operation starts by creating a virtual EK
ek under the Virtual TPM Root Key on TPM id. We
do not require PCRs to lock ek, so the last argument of
TPM CreateWrapKey is an empty PCR index list []. Next,
the initial PCRs initpcrs (an array with each entry initial-
ized as 20 bytes of 0 s) is encrypted by the public virtual EK
ek.pubkey. At last, a tuple for the new user is added intoU,
where the password is stored after hashing. Since the own-
ership of the new TPM instance is not taken, the ownership
state is false and accordingly the virtual SRK is not existing
(represented by an underscore ).

3.3 Simulation and Rewriting of TPM Commands

The implementation of cryptographic operations (e.g., sym-
metric encryption) is straightforward. In this section, we
describe how the TPM commands that are dependent on

register(name, passwd){
1. id = schedule(); rkhdl =pTPM[id].rkhandle;
2. ek = execute(id,TPM CreateWrapKey(rkhdl, , passwd,[]));
3. encpcrs =execute(id,TPM BindV20(ek.pubkey,initpcrs));
4. newuser = (name, (hash(passwd), false, (ek, , ∅), encpcrs));
5.U =U ∪ {newuser};
}

Fig. 5 Registration of new users.

PCRs are specially treated. The commands TPM Extend
and TPM CreateWrapKey are taken as examples.

The command TPM Extend is simulated since it needs
the actual PCRs values. The simulation in Fig. 6 follows
firmly the semantics of the physical TPM Extend com-
mand. In the simulation, the virtual PCRs of user name is
first decrypted with the virtual EK by calling the command
TPM UnBind. Next, the concatenation of virtual PCR index
and data (i.e., pcrs[index]‖data) is hashed, resulting in the
new (or extended) virtual PCRs. At last, the extended vir-
tual PCRs are encrypted with the public virtual EK of user
name and put back to the TPM instance.

The operation createkey in Fig. 7 creates a key under
the virtual SRK of user name and returns a handle khdl. The
usage of virtual SRK is protected by passwd, and the new
key has the usage authorization usageauth. Different from
pcrextend, the operation createkey relies on the corre-
sponding physical TPM command TPM CreateWrapKey to
create keys within a physical TPM, such that the private
keys are not released ourside physical TPMs during genera-
tion. There are two cases of invoking TPM CreateWrapKey.
If the argument indices is an empty list [], meaning that
the new key is not locked by any PCR, then the arguments
of createkey are passed to TPM CreateWrapKey directly.
Otherwise, the argument indices is rewritten (as described
below) before passed.

pcrextend(name, passwd, index, data){
1. id = schedule(); rkhdl =pTPM[id].rkhandle;
2. vek =getVTPM(name).keyhrk.ek;
3. vekhdl =execute(id, TPM LoadKey(rkhdl, , vek));
4. epcrs =getVTPM(name).encpcrs;
5. pcrs =execute(id, TPM UnBind(vekhdl, passwd, epcrs));
6. pcrs[index] = hash(pcrs[index]‖data);
7. getVTPM(name).encpcrs = execute(id,

TPM BindV20(vek.pubkey,pcrs));
}

Fig. 6 Simulation of TPM Extend.

createkey(name, passwd, usageauth, indices){
1. id = schedule(); rkhdl =pTPM[id].rkhandle;
2. vsrk =getVTPM(name).keyhrk.srk;
3. vsrkhdl =execute(id, TPM LoadKey(rkhdl, , vsrk));
4. if indices=[] then
5. khdl = execute(id, TPM CreateWrapKey(vsrkhdl,

passwd, usageauth, []));
6. else
7. vek =getVTPM(name).keyhrk.ek;
8. vekhdl =execute(id, TPM LoadKey(rkhdl, , vek));
9. epcrs =getVTPM(name).encpcrs;
10. pcrs =execute(id, TPM UnBind(vekhdl, passwd, epcrs));
11. execute(id, TPM PCR Reset(rindex));
12. for each index in indices do
13. execute(id, TPM Extend(rindex,pcrs[index]));
14. khdl = execute(id, TPM CreateWrapKey(vsrkhdl,

passwd, usageauth, rindex));
}

Fig. 7 Rewriting of TPM CreateWrapKey.
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We cannot simply put the virtual PCRs specified by
indices into the corresponding physical PCRs since PCRs
can only be extended. Our solution is to use a resettable
physical PCR rindex to record the current state of virtual
PCRs indices. To this end, we reset the PCR rindex and
extend this PCR with each specified virtual PCR. Then,
we invoke the physical command TPM CreateWrapKey
with rindex as its argument for specifying a physical
PCR. For the command TPM Load, it can also refer to
PCRs when loading a key (the argument of TPM Load
for specifying PCRs is not given in this paper). The vir-
tual PCRs for TPM LoadKey are also treated in the same
way. Hence, when the same virtual PCRs are specified
for TPM CreadWrapKey and TPM LoadKey, the resettable
physical PCR rindex would have the same value, allow-
ing a key locked by the specified PCRs to be successfully
loaded. Our solution shows an indirect way of using virtual
PCRs when considering the restriction of physical PCRs.

3.3.1 Limitations of TPM Specification

From the formalization of createkey, we find that the TPM
specification should allow an extra argument for the com-
mand TPM TakeOwnership, which can configure whether
PCRs are or are not resettable when taking the ownership
of a TPM. This will bring much flexibility for the usage
of PCRs in various scenarios. For example, a user of a PC
might want all PCRs in its TPM not to be resettable, while
the TPM cloud wants all PCRs to be resettable. If all PCRs
are resettable, the virtual TPM commands using PCRs can
be implemented more easily.

In addition, the TPM specification requires the com-
mands TPM Seal and TPM UnSeal use nonmigratable keys.
Since the TPM cloud is only supposed to support migrat-
able keys for better load balancing, such commands pro-
vided by physical TPMs become useless. On the other hand,
the TPM Seal command binds the sealed data with the se-
cret value tpmProof, which is only known within a TPM.
That is, a sealed data cannot be unsealed by another phys-
ical TPM even if the two TPMs have the same PCRs. If
the TPM specification could allow TPM Seal to use migrat-
able keys to seal data only with the values of PCRs, then
the physical commands TPM Seal and TPM UnSeal can be
used in the TPM cloud. Moreover, it also makes it possible
to unseal data when it is sealed to a TPM that is broken.

3.4 Cloud Commands Processing

Cloud commands are encrypted with the public Cloud Key
PKC. To decrypt a cloud command ecmd, the secure I/O
module executes the following two steps: selects a physi-
cal TPM id and then executes the command TPM UnBind.

id = schedule();
cmd =execute(id, TPM UnBind(pTPM[id].ckhandle, , ecmd);

After a cloud command is decrypted, it is passed to the
execution planner, where the steps of processing cloud com-

mands are defined. In the following, we take several cloud
commands as examples to describe their processing. These
commands cover the typical uses of TPM cloud, ranging
from registration of new users, generation and use of keys
to extension of PCRs.

3.4.1 Preparation of New Virtual TPMs

A new virtual TPM is created when users send a regis-
tration command cTPM Register(name, passwd) (i.e., the
cloud command after decryption). The prefix “cTPM ” is
used to indicate cloud commands. The implementation of
cTPM Register is straightforward. The execution planner
just needs to call the operation register in the user man-
agement component with the same arguments.

After a new virtual TPM is created, users need to take
its ownership, like using a physical TPM. The cloud com-
mand cTPM TakeOwnership(name, passwd) is for this pur-
pose. Figure 8 gives the steps to take ownership. The execu-
tion planner first checks the user password and makes sure
the ownership of TPM instance for user name has not been
taken. After these checks, a new virtual SRK is created and
recorded into the TPM instance. Like the virtual EK, the
virtual SRK is also protected with the usage authorization
passwd. Hence, when a user is authenticated to own a TPM
instance, he can access the virtual EK and SRK without pro-
viding extra passwords. This design makes the cloud com-
mands more convenient to use. At last, the state of the TPM
instance is changed accordingly to indicate that the owner-
ship has been taken.

3.4.2 Key Creation and Loading in TPM Cloud

The cloud command cTPM CreateWrapKey(name, passwd,
usageAuth, indices) is used to create a key for user name
under his virtual SRK. The new key is protected by the
usage authorization usageAuth and locked by virtual PCRs
indices. The steps implementing this command is shown in
Fig. 9. First, the user name is authenticated by checking the
password passwd, and then the createkey operation in the
cryptographic service is invoked with the same arguments.
At last, the new key is added into the key hierarchy. There
is no key handle yet (indicated by a underscore ), since the
key has not been loaded into a TPM.

A key is loaded into a virtual TPM by the cloud
command cTPM LoadKey(name, passwd, key), defined in

cTPM TakeOwnership(name, passwd){
1. vTPM= getVTPM(name);
2. assert(hash(passwd)=vTPM.ownerauth);
3. assert(vTPM.state = false);
4. id = schedule(); rkhdl = pTPM[id].rkhandle;
5. srk =execute(id, TPM CreateWrapKey(rkhdl, , passwd,[]));
6. vTPM.keyhrk.srk = srk;
7. vTPM.state = true;
}

Fig. 8 Steps for taking TPM ownership.
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cTPM CreateWrapKey(name, passwd, usageAuth, indices){
1. vTPM= getVTPM(name);
2. assert(hash(passwd)=vTPM.ownerauth);
3. key = createkey(name, passwd, usageAuth,indices);
4. vTPM.keyhrk.keys = vTPM.keyhrk.keys∪{(key, )};
}

Fig. 9 Steps for creating keys.

cTPM LoadKey(name, passwd, key){
1. vTPM= getVTPM(name);
2. assert(hash(passwd)=vTPM.ownerauth);
3. id = schedule();
4. hdl = load(name, id, passwd, key);
5. vTPM.keyhrk.keys[key] = hdl;
}

Fig. 10 Steps for loading keys.

cTPM UnBind(name, passwd, hdl, usgAuth, encdata, sk){
1. vTPM = getVTPM(name);
2. assert(hash(passwd)=vTPM.ownerauth);
3. assert(vTPM.state = true);
4. id = schedule();
5. newhdl = load(name, id, passwd,vTPM.keyhrk.keys[hdl]);
6. data =execute(id, TPM UnBind(newhdl, usgAuth, encdata));
7. result =encrypt(data, sk);
}

Fig. 11 Steps for unbinding data.

cTPM Sign(name, passwd, hdl, usgAuth, data){
1. vTPM = getVTPM(name);
2. assert(hash(passwd)=vTPM.ownerauth);
3. assert(vTPM.state = true);
4. id = schedule();
5. newhdl = load(name, id, passwd,vTPM.keyhrk.keys[hdl]);
6. result =execute(id, TPM Sign(newhdl, usgAuth, data));
}

Fig. 12 Steps for signing data.

Fig. 10. This command depends on the load operation pro-
vided by the physical TPM management component. When
a handle for key is generated, it will be put into the key hi-
erarchy together with key.

3.4.3 Data Decryption and Signing

The cloud commands using private keys for data decryption
and signing are defined in Fig. 11 and Fig. 12, respectively.
The command cTPM UnBind(name, passwd, hdl, usgAuth,
encdata, sk) decrypts encdata for user name by using the
key hdl, which is protected by usgAuth. The decrypted re-
sult will be encrypted with the symmetric key sk. The sym-
metric encryption is done by using the encrypt operation
provided by the cryptographic service. Similarly, the com-
mand cTPM Sign(name, passwd, hdl, usgAuth, data) signs
data for user name.

These two commands have the same first five steps, in

which the key with handle hdl is reloaded into a physical
TPM, resulting in a new handle. The reloading is needed
because a physical TPM has limited slots to accommodate
loaded keys and thus a previously loaded key might have
been unloaded by the physical TPM management compo-
nent. Hence, we need to reload it without users notic-
ing their key have been unloaded. After a new handle is
generated, the physical TPM command TPM UnBind and
TPM Sign are used to do the actual decryption and signing
since private keys must be used within physical TPMs.

3.4.4 Extension of Virtual PCRs

The cloud command cTPM Extend(name, passwd, index,
data) extends the virtual PCR index with data for user
name. The implementation of this command is straight-
forward, as shown below. First, the user name is authenti-
cated. Then, the pcrextend operation provided by the cryp-
tographic service is invoked with the same arguments.

assert(hash(passwd)=getVTPM(name).ownerauth);
pcrextend(name, passwd, index, data);

4. Applications of The TPM Cloud

We have implemented a prototype of the TPM cloud to
demonstrate its functionality. Currently, physical TPMs are
usually embedded into computer motherboards, with one
computer having at most one physical TPM. Our prototype
uses a cluster of Dell Optiplex GX620 to provide physical
TPMs. The TPM functionalities on these computers are ex-
posed as web services, and they are accessed by the TPM
management component with SOAP. The cloud commands
are also exposed as web services, such that the TPM func-
tionality provided by the TPM cloud can be easily accessed.
The web service engine we used is Apache Axis2 [15].

TCG advocates that trusted computing technology can
be used to improve the security of computer systems (e.g.,
improved authentication and network access control) [1]. In
this paper, we apply the TPM cloud to the implementation of
the Needham-Schroeder public-key protocol (NS protocol)
for web authentication, as it is a simple and well-analyzed
authentication protocol. As a result, the TPM functional-
ity is incorporated into high-level applications, useful to im-
prove the acceptance of TPM functionalities by users.

To use the TPM service, users need to provide their
user names and passwords, as shown by the cloud com-
mands. When using the TPM service on a public computer,
the malware there might steal the passwords and thus can
access the secrets of users in the cloud. This problem can
be solved for instance by authenticating cloud commands
with some second factor (e.g., smartcard issued by the TPM
cloud provider). Hence, when just keeping one second fac-
tor for the cloud rather than many second factors for differ-
ent web servers, a user can securely exploit the cloud to run
strong protocols to authenticate him to many different web
servers.
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Fig. 13 The first login page.

Fig. 14 The second login page.

In the following, we introduce the implementation of
NS protocol for web authentication based on the TPM cloud.
Suppose that user A and the web server B have registered
TPM instances in the cloud and created their RSA keys
there. Let PKA and PKB be the public keys of A and B, re-
spectively. Then, the NS protocol is run by exchanging the
following three messages m1, m2 and m3. The two nonces
Na and Nb are random numbers generated by A and B, re-
spectively.

m1 A→ B : {Na, A}PKB

m2 B→ A : {Na,Nb, B}PKA

m3 A→B : {Nb}PKB

We show the web pages used by the user to run the NS
protocol. The pages are embedded with the Javascript code

that implements the RSA and DES encryption algorithms.
Recall that the cloud commands are encrypted with the pub-
lic Cloud Key, and the result of the cloud command might be
encrypted with some symmetric encryption algorithm (e.g.,
DES algorithm). In this application, the user and the server
use the TPM cloud to decrypt the messages in the NS pro-
tocol, so that their private keys are always kept inside the
TPM cloud.

The first page for logging on the web server is shown in
Fig. 13, where the user can click the “Generate m1” button
to generate the message m1 and click the Submit button to
send this message to the server. The TPM cloud is not used
for generating the first message since the public key PKB is
known and the encryption algorithm is provided in the page.
However, the server needs the cloud to unbind the received
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message since its private key is stored there.
After the server receives the decrypted message, it

sends back the second page, shown in Fig. 14. This page
shows the second message sent by the server. The user now
checks whether the second message is valid. If valid, the
user then sends the third message. The “Check m2” but-
ton is to check the second message. Clicking on this button
will send a cloud command to decrypt the second message
after prompting the user to input some necessary informa-
tion such as the user name and password. If the decrypted
message contains correct nonce Na, a popup window will
say the server is authenticated. And then, the user generates
the third message by clicking the “Generate m3” button and
sends it back by clicking the submit button. Upon receiving
the third message, the web server uses the cloud to decrypt
it and if the decrypted message contains correct Nb, then
it replies a page to tell the successful authentication of the
user.

This application demonstrated that the TPM function-
ality can be extended to high-level applications by using the
TPM cloud, which provides a way of improving the usabil-
ity of TPMs. To the best of our knowledge, our work shows
the first application of TPM functionality to the Javascript
programs in Web pages.

5. The Trust Chain Based on The TPM Cloud

In this section, we discuss the chain of trust that can be es-
tablished based on the TPM cloud. The TPM cloud has the
same functionality as a physical TPM. To implement remote
attestation, a platform can store its platform measurements
remotely into the cloud and then depend on the cloud to sign
and report the measurements. In the following, we discuss
how to establish the trust of chain based on the TPM cloud.

Suppose there is a platform that executes a sequence
of programs P0, P1, P2,. . . , Pn after its power is switched
on. The program P0 is firstly executed, and then it starts the
second program P1, which launches the next program P2,
until the Pn is started by Pn−1. Usually, the program P0 is a
boot loader. We assume there is a program Pnet (0 ≤ net ≤
n), which enables the platform to access network (hence the
TPM cloud) after being executed. The establishment of the
trust chain is discussed in two cases.

In the first case, we suppose a platform that does not
have a physical TPM. For this platform, the trust estab-
lishment technique in [2] is not applicable since there is
no physical TPM to store and sign the program measure-
ments. By using the TPM cloud, the platform gets the op-
portunity to build the trust chain. The method is that before
Pnet launches Pnet+1, it measures the program Pnet+1 and
the measurement (i.e., the hash of Pnet+1) is extended into
the PCRs in the TPM cloud by using the cloud command
cTPM Extend; the chain of trust is established until Pn is
measured and extended into the PCRs in the cloud by Pn−1.

In this case, the programs from P0 to Pnet comprise
the trusted computing base. By comparison, in [2], only P0

(the boot loader) is included in the trusted computing base

if there is a physical TPM on the platform. To make the
trusted computing base smaller, the program Pnet should be
executed after P0 as closely as possible. For example, the
program P1 can be designed to enable network access and
then launch the operating system or virtual machine moni-
tor, such that the TPM cloud can be used to build the trust
chain by trusting only P0 and P1.

In the second case, the platform is assumed to have a
physical TPM. For this platform, the trust chain from P0 to
Pnet is built into PCRs in the physical TPM, as described in
[2]. After the program Pnet is executed, it sends to the TPM
cloud the measurements of programs from P1 to Pnet, to-
gether with the PCR values quoted from the physical TPM.
The TPM cloud then checks the integrity of the measure-
ments based on the signed PCR values. If valid, then they
are extended into the PCRs in the TPM cloud. The programs
from Pnet+1 to Pn are dealt with similarly as in the first case.
In this case, the trusted computing based is only P0 (the boot
loader).

In this case, if P1 is a virtual machine monitor, each
virtual machine on the monitor is allowed to have their own
trust chain even if the platform is shared by all virtual ma-
chines. That is, the trust chain for each virtual machine in-
cludes the measurements of the virtual machine monitor, the
virtual machine, and other programs managed by the virtual
machine. This is important for the cloud computing plat-
forms such as Amazon Elastic Compute Cloud (Amazon
EC2), where virtual machines usually belong to different
users and their trust chains should be separated.

6. Security Analysis of The TPM Cloud

The TPM cloud improves the usability of physical TPMs
by virtualizing the physical TPMs in a cloud architecture.
In this section, we analyze the security properties of vir-
tual TPMs in the TPM cloud, which is based on physical
TPMs to execute all commands involving private keys and
other commands suck as TPM Extend. The analysis is done
by comparing them with physical TPMs and the software-
based virtual TPMs (vTPMs) [16], which implement TPM
functionality as user-space software.

To compare the security property of the various TPM
implementations, we first need to determine an attack
model. That is, what information an attacker is allowed to
know and what operations an attacker is allowed to do. In
different attack models, a system may have different security
properties. For example, if an attack model allows attackers
to tamper hardware rather than software, then the software-
based TPM can provide more secure TPM functionality than
physical TPMs and virtual TPMs based on physical TPMs
in the TPM cloud.

In this section, we use an attack model that is more
possible. In this model, we suppose the attacker has in-
stalled some malicious software on a platform and thus the
attacker can know all contents semantically in the platform
memory and change those contents if he wants. To do our
analysis, we assume a platform is a machine that has a phys-
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Table 1 Security analysis of three TPM implementations.

Physical TPMs Software-based virtual TPMs Virtual TPMs in TPM Cloud
(pTPMs) (vTPMs) (vpTPMs)

Key Generation
√

X
√

Signing with Private Keys
√

X
√

Decrypting with Private Keys
√

X
√

PCR Reset
√

X X

PCR Extend X X X

ical TPM or a software-based virtual TPM, or the platform
that implements the TPM cloud. For example, if a key is
put into the memory, then the attacker knows it is a key
and its value. This situation can happen when the platform
is compromised during execution even after trusted boot-
ing, known as the vulnerability of time-of-check time-of-use
(TOCTOU) [17]. In addition, we assume that the physical
TPM can only be handled by using TPM commands and the
attacker cannot decrypt a message if the needed key is not
known by him.

After determining the attack model, we choose the se-
curity properties of TPM functionality to compare. As intro-
duced in Sect. 1, a TPM lies in its capabilities of secure key
management, and secure storage and reporting of platform
configuration measurements in PCRs. Hence, the secrecy
of private keys and the integrity of PCR values are the most
important security properties of TPMs.

We compare the secrecy of private keys and the in-
tegrity of PCR values with respect to several kinds of
TPM commands implemented in the physical TPMs, the
software-based virtual TPMs, and the virtual TPMs based
on physical TPMs in the cloud. These commands deal with
private keys or PCRs. The comparison result is given in
Table 1, where the symbol

√
means the secrecy or integrity

property is respected, while Xmeans not. The comparison is
explained below and for brevity we use pTPMs for physical
TPMs, and vpTPMs for the virtual TPMs based on physical
TPMs.

For key generation, private keys are secret in both
pTPMs and vpTPMs since privates keys are generated
within physical TPMs and when they are moved to the
platform memory they are encrypted with the parent keys,
which have their private parts only used within physical
TPMs. Hence, the attacker has no way to know the private
keys in pTPMs and vpTPMs. For vTPMs, the private keys
are generated in the platform memory, so the attacker can
read the generated private keys in our attack model.

When signing or decrypting with private keys, pTPMs
and vpTPMs do not expose private keys to the attacker, since
they are used within physical TPMs. vTPMs expose private
keys when they are used by signing or decrypting software
since they have to be first loaded into the platform memory.

For vTPMs and vpTPMs, the contents of PCRs need to
be put into platform memory before processing. Hence, in
both vTPMs and vpTPMs, the integrity of PCRs values can-
not be guaranteed since they can tampered by the attacker
in the platform memory. For pTPMs, the PCR Reset com-
mand, which initializes PCR values, can guarantee the in-

tegrity of newly initialized PCR values (i.e., they must be
zero after initialization). However, the PCR Extend com-
mand in pTPMs cannot guarantee the integrity of extended
PCR values since it may use an argument that has already
been tampered before it is sent from the platform memory
into pTPMs.

Although vpTPMs are not as secure as pTPMs with re-
spect to the PCR Reset command, we can argue that this
is not a problem for security of applications. This is be-
cause PCR values always need to be extended after initial-
ization when they are used in applications and the PCR Ex-
tend command in vpTPMs and pTPMs are at the same se-
curity level in our attack model, as discussed above. Appar-
ently, vTPMs are not as secure as pTPMs and vpTPMs since
the secrecy of private keys are not guaranteed in our attack
model.

At last, we mention that pTPMs and vTPMs do not
have good usability as virtual TPM in our TPM cloud. The
usability problem was discussed in Sect. 1. For example,
even if a host has a physical TPM and the correct driver, a
Javascript program running in a Web browser cannot access
the TPM functionality on the same host due to the interop-
erability problem between TSS and Javascript, and the se-
curity limitation to Javascript enforced by the Web browser.
Hence, the NS protocol cannot be implemented with pTPMs
and software-based vTPMs.

7. Related Work

The system of vTPMs [16] provides virtual TPMs for virtual
machines on a single hardware platform. The vTPMs are
implemented in software that is running in the host mem-
ory as user-space processes or in a secure co-processor. A
vTPM has its own virtual EK and virtual SRK. However, all
keys of vTPMs are created not by the physical TPM, instead
by software. On the contrary, our TPM cloud depends on
physical TPMs to generate and manipulate keys. The ben-
efit is that private keys are always protected by TPMs even
when the TPM cloud is intruded by malware. More impor-
tantly, the system of vTPM and other work of TPM virtu-
alization [18], [19] cannot address all the usability problems
of TPMs discussed in the first section.

A software-based TPM (SW-TPM) [6] is developed for
resource-constrained embedded systems because they can-
not afford the size and cost overheads of a separate TPM.
Similarly, the work [20] proposes the customizable trusted
modules for mobile phones to address the resource limita-
tion of mobile phones when using trusted modules. The
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TPM cloud can be applied to the mobile embedded systems
if they can access network. Using the TPM cloud is also a
way to reduce the energy overheads of embedded systems
caused primarily by 2,048-bit RSA operations [6].

The work [21] deals with the complexity and inflexi-
bility of TPM functionality by proposing the µTPM archi-
tecture. In this architecture, some TPM functionality is im-
plemented outside the physical TPMs. On the one hand,
the physical µTPMs do not have to be very complex to im-
plement too much functionality. On the other hand, the
functionality outside physical µTPMs can be changed more
easily to get flexibility. Similarly, in our architecture of
TPM cloud, we move some TPM functionality from physi-
cal TPMs to the cryptographic service module.

The Bind attestation service [22] has been used to per-
form fine attestation of applications such as several dis-
tributed computation applications and the implementation of
Border Gateway routing Protocol (BGP). The Bind service
needs the TPM on the platform running those applications.
By redirecting the TPM commands (such as TPM Extend,
TPM PCR Reset, TPM Seal and TPM UnSeal given in
[22]), the Bind service can de used on the platform with-
out TPMs. This also applies to other TPM-based applica-
tions like [23], [24]. The remote attestation is a key compo-
nent to build trusted distributed systems (such as computa-
tion grids) [25]. If a host in a distributed system does not
have a physical TPM, the trust among hosts can still be built
by relying on the TPM cloud, which can store and sign the
measurements of the host applications.

The work [26], [27] analyzes how to build trust into
cloud computing (in particular, how to build trusted virtual
machine monitors). A typical architecture of cloud com-
puting is a virtual machine monitor supporting many virtual
machines for many users. So users can apply for comput-
ing resources in an on-demand, pay-as-you-go manner. The
TPM cloud can be used together with the mechanisms in
[26], [27] to attest the integrity of virtual machines in cloud
computing. To attest the integrity of a virtual machine, the
underlying virtual machine monitor, whose integrity is guar-
anteed by the mechanisms in [26], [27], can hash the image
of the virtual machine before launching it and then extend
the hash value into a virtual TPM in the TPM cloud.

The virtual smart cards [28], [29] are proposed as a se-
cure and convenient way of managing private keys. By using
virtual smart cards, users store their private keys in the Trust
Provider [28] or in the Virtual Smart Card Server [29], which
are the only places where the private keys can be used for
making signature and decryption. To use their own private
keys, users need to authenticate to the the Trust Provider or
the Virtual Smart Card Server by using some second authen-
tication factor. The TPM cloud is similar to virtual smart
cards in the style of managing private keys and authenticat-
ing users with second factors. However, the private keys in
TPM cloud are used within the physical TPMs, rather than
by software running on a server as in the virtual smart card
systems. Moreover, the TPM cloud has other functionality,
such as the management of platform measurement with vir-

tual PCRs.

8. Conclusion

TPM has been applied to build trusted systems. However,
it has been limited in its use and adoption as we analyzed
before. We proposed the TPM cloud to promote acceptance
of TPM functionality. From the TPM cloud, users can apply
for their own TPM instances on demand. It allows users to
benefit from the security properties of TPM without owning
a physical TPM. Moreover, the TPM functionality in the
cloud is easy for users to access when they move to plat-
forms not owned by them. The TPM functionality also can
be easily integrated into applications developed in various
languages without the interoperability problem. The em-
bedded devices can use the TPM functionality in the cloud
to reduce the energy overheads caused by physical TPMs.

We formalized the functionality of the TPM cloud, and
made it clear how cloud commands are executed. Some pos-
sible improvements to the TPM specification are proposed
to make TPMs more useful in various usage contexts. We
demonstrated the functionality of the TPM cloud by using it
to implement Needham-Schroeder public-key protocol for
web authentication. This example showed that using the
TPM cloud is a viable way to incorporate strong security
into high-level applications. At last, we discussed the estab-
lishment of trusted chains by using the TPM cloud and an-
alyzed the security properties of virtual TPMs in the TPM
cloud, concluding that the virtual TPMs in the TPM cloud
are as secure as physical TPMs in practical applications in
our attack model.
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