1680

IEICE TRANS. INF. & SYST., VOL.E95-D, NO.6 JUNE 2012

[LETTER

Active Learning for Software Defect Prediction

Guangchun LUO', Member, Ying MA', and Ke QIN', Nonmembers

SUMMARY An active learning method, called Two-stage Active learn-
ing algorithm (TAL), is developed for software defect prediction. Com-
bining the clustering and support vector machine techniques, this method
improves the performance of the predictor with less labeling effort. Exper-
iments validate its effectiveness.

key words: machine learning, defect prediction, active learning, support
vector machine

1. Introduction

Software defect prediction should identify defect-prone
modules prior to the release of software. Many researchers
apply supervised learning methods on software defect pre-
diction when there exist sufficient labeled data [1]-[3]. At
the same time, when labeled data is scarce, some researchers
build semi-supervised classifiers to predict software defect
modules [4], [S]. In practice, the labeled data are not avail-
able in many cases [6], [7], such as when a new project is
started in a new domain, the defect prediction technique is
applied for the first time, and fault data of the current soft-
ware version might not be collected. In these cases, super-
vised learning approaches and semi-supervised learning ap-
proaches cannot be used because of the absence of labeled
data. Labeled data are fairly expensive to obtain because
they require human effort. To the best of our knowledge, few
researchers have investigated new technology to support the
defect prediction under this circumstance.

The absence of labeled data causes the failure of tra-
ditional software defect predictors. Although unsupervised
learning has been applied, they also have unstable perfor-
mance [8],[9]. Different from unsupervised learning, the
active learning reduces the number of labeled instances re-
quired to achieve a stable performance in the majority of
reported results [10]. In order to improve the performance
and reduce the labeling efforts, we propose a method called
Two-stage Active Learning algorithm (TAL). This method
combines the clustering technique with support vector ma-
chine (SVM) technique in an active selection way. The main
feature of active selection is to select the representative and
informative data for labeling.

Our experimental results on real data sets show that
TAL results in better performance than cluster method and

Manuscript received November 2, 2011.
Manuscript revised March 2, 2012.
"The authors are with University of Electronic Science and
Technology of China, Chengdu, China.
a) E-mail: may @uestc.edu.cn
DOI: 10.1587/transinf. E95.D.1680

random selective SVM method. Since obtaining defective
modules data is difficult and time-consuming work, this
method is helpful for practical application.

2. Related Work

There are a few software defect prediction studies which ex-
ploit cluster techniques in the predictors. One of the first
reports for the defect prediction without prior fault data is
[6]. They applied K-means and Neural-Gas algorithm to
aggregate the software models into several clusters. Then,
experts were required to identify each cluster as defective
or non-defective. However, this clustering and expert-based
approach is dependent on the capability of the expert who
should be specialized in machine learning and software en-
gineering areas.

Seliya et al.[4] proposed a constraint-based semi-
supervised clustering scheme. In the first step, the scheme
utilizes the labeled program modules for initial seeding of
the clusters. Then, the software engineering experts are
asked to label them as either defective or non-defective.
However, the initial label data in the first step are required
and the number of clusters is still a critical issue in this
scheme.

Catal et al. [11] proposed a cluster and metrics thresh-
olds based approach, which used metrics thresholds for re-
moving the expert assistance. However, the selection of
the number of clusters k is done heuristically, and this pro-
cess can affect the model’s performance drastically. In [12],
they applied the X-means clustering method to cluster mod-
ules, and then the mean vector of each cluster was checked
against the metrics thresholds vector. However, it is still
difficult to determine the number of clusters and metrics
thresholds.

These methods are all passive leaning methods, which
can not use the query data information. We develop an ac-
tive learning method to predict the defective modules.

3. Active Learning for Software Defect Prediction
3.1 Background

The main difference between active learning and passive
learning is that, an active learning system asks the user to
label only those instances that would be most informative to
classification, while a passive learning system is trained on a
large pool of randomly selected labeled data [10]. There are

Copyright © 2012 The Institute of Electronics, Information and Communication Engineers

LETTER

two settings in active learning literature, stream-based se-
lective sampling and pool-based sampling. Pool-based sam-
pling selects the training instances from the pool, which is
usually assumed to be static, while stream-based selective
sampling decides whether to query or discard the instances
in sequence. In this research, we pay more attention to the
pool-based sampling method.

There have been many proposed ways of formulating
the query strategies in this setting. The Uncertainty Sam-
pling is the most commonly used query strategy. This strat-
egy selects the training instances whose classes are least cer-
tain to label. The Query-By-Committee is a theoretically-
motivated query strategy, which has a generalization error
of & with only O(log 1/¢) labels. This method maintains a
committee of models Q = {6, ..., 6}, which are all trained
on the current labeled set. This strategy has two steps: ran-
domly select two models; then select the instance to label,
when it has different labels. The most informative query is
considered to be the instances about which the two mod-
els are most disagree. The Expected Model Change strategy
selects the instances which are likely to most influence the
mode. Different form measuring model changes, the Ex-
pected Error Reduction strategy selects the instance, when
the generalization error of the model is likely to be reduced.
The Variance Reduction strategy reduces this generalization
error indirectly by minimizing output variance, E7[(§ —y)*],
where 7 is shorthand for the model’s predicted output for
a given instance x, while y indicates the true label for that
instance. The Density-Weighted strategy chooses uncertain
and representative training instances to label.

These strategies are all proposed with some limited la-
beled data. However, the prior labeled data are not available
in many cases [6], [7], these strategies cannot be applied in
software defect prediction directly. Combining the cluster-
ing and SVM techniques, we develop a Two-stage Active
Learning (TAL) method to deal with this problem.

3.2 Two-Stage Active Learning

In traditional defect predictor, L = {(x1,y1), (x2,y2), . .., (x1,
y)} € X X Y denotes the labeled data set with size / and
U = {x141, X142, - . . » X14u} C X denotes the unlabeled data set
with size u. In our active learning settings, no labeled data
is available at the very beginning, i.e., [= 0.

We can not use existing active learning methods di-
rectly, since we can not build classifier without any la-
beled data. In order to get the initial labeled data, which
called representative data, we exploit the clustering tech-
nique. Then, we combine active learning techniques, SVM-
based active learning, to get the informative data [10]. Note
that the number of the representative data and informative
data is very small, so the proposed method can greatly re-
duce the labeling efforts.

3.2.1 Representative Set Collection Stage

The centers of the clusters are the representative data in K-

1681

means [13]. Representative set denoted as W(D) consist of
these representative data of the data set D. In order to find
Yr(D), we exploit the clustering method. Let C; denote the
jth cluster, then U’;Zl Ci=D,and CiNC; =D (,j =
1,2...k,i # j), where k is the number of clusters. Let R;
denote the center of the cluster C;, then Wr(D) = U’j‘.:1 R;.
In K-means algorithm, the quality of the clustering is deter-
mined by the following error function [13]:

k
E=) > Iu-RjP (1

Jj=1 x;eC;

where C; is the jth cluster, x; € U, i = 1,2...u. By ap-
plying the K-means clustering technique, we can find the
representative data. However, we found that the two classes
may not be contained in the Wx(D), since the defective mod-
ules are rare in the data sets. We develop another clustering
technique, called Cascade-cluster, based on K-means cluster
technique. The pseudo-code of Cascade-cluster is shown as
Algorithm 1.

Cascade-cluster iteratively calls the K-means cluster to
find the centers of the clusters, until the centers with differ-
ent labels are found. Since there are only two classes in our
defect prediction, the centers of clusters are initialized by
two random selected examples. Theoretically, [log, n] + 1
(or [log,(n + 1)7) calling times are needed in the worst case,
where #n is the number of instances.

Algorithm 1 Cascade-cluster algorithm.

Require:
D, A data set of u unlabeled instances
K: K classes problem
Initialize:
Random initial Ry, R3,...,Rg % K centers
1: repeat
2: for each input instance x € D, do
3: Calculate j = argmin|x—R;|,i = 1,2,...,K
4: Assign x to the cluster C;
5: end for
6: for each center R; do
7: Update R; = ¥ ,ec, X/ICil
8: end for
9: Compute Error according to (1)
10: until E not change or each cluster not change

—_
—

: Label the y; for each R;
- while | UL, yil # K do

—_
(3]

13: for each cluster C; do

14: Initial D, « C;, repeat Cascade-cluster algorithm,
15: end for

16: end while

3.2.2 Informative Set Collection Stage

We can build a classifier using the representative set, which
are obtained from the first stage. Then, we focus on in-
stances closest to the decision boundary of the classifier.
These instances are easy misclassified, but contain very im-
portant information for building classifier [10]. Here, the set

1682

of all these instances is called informative set. The informa-
tive set of the data set D can be denoted as W¥;(D).

In order to select the informative set ¥;(D), we ex-
ploit the Support Vector Machine (SVM) technique. This
technique attempts to find a maximum margin hyperplane,
which is induced from available examples, called support
vectors. This hyperplane maximizes the distance to the clos-
est points from each class. The classification boundary will
generalize best to future data, through this maximum mar-
gin way. In our settings, the informative point is closest to
the decision boundary w vector [14]. The distance can be
simply calculated by |w - x|. If the data are nonlinearly sep-
arable, we can introduce the Mercer kernel. Then this value
is |w - O(x)|. We repetitively select these points to form the
Y,(D) set.

So far we have described how we get the two subsets
Yr(D) and ¥;(D) of the date set. Through this active learn-
ing process, we also build a SVM classifier, as shown in
Algorithm 2. Existing active learning algorithms select the

Algorithm 2 Two-stage Active Learning (TAL).
Require:
D: A data set of n instances
Initialize:
D; = @; n; = 0 % no labeled data is available
D, = D; n, = n % the pool of unlabeled data
Yr(Dy) = 9 Y (D) = @;

1: Get the Wg(D,), using Cascade-cluster algorithm on D,

2 Update Dy = Dy UYR(Dy); Dy = Dy /Yr(Dy)

3: while the number of queries or the required accuracy is reached do
4: Biuld SVM classifier on D;

5: Getthe ¥;(D,)

6: D;=D;u¥((D,); Dy = D,/¥1(Dy)

7: end while

unlabeled data to label, until all the classes are found. Since
positive instances are relatively rare in the software defect
data set, many of the randomly chosen instances will be neg-
ative. These algorithms will cost a lot of label efforts. The
Cascade-cluster can guarantee to find the positive instance.
The simple SVM based active learning can reduce the label
effort. By combing these two techniques, the proposed TAL
algorithm can improve the performance of the predictor. It
will be shown in the next experimental section.

4. Experiments
4.1 Data Set

All our source data come from the NASA data sets, which
are collected at the function level [15]. Hence, a module is a
function or method in our experiment.

pcl: This data set is from an Earth-orbiting satellite
software that is no longer operational. It consists of 40
KLOC of C code. The software measurement data set con-
tains 1107 modules, of which 76 (6.97%) have one or more
defects and 1031 (93.03%) have no defect.

cml: This data set is from a science instrument written

IEICE TRANS. INF. & SYST., VOL.E95-D, NO.6 JUNE 2012

in C code, with approximately 20 KLOC. It contains 498
modules, of which 49 (9.84%) have one or more defects and
449 (90.16%) have no defect.

They contain 21 attributes, five Loc attributes, three
McCabe attributes, four Basic Halstead attributes, eight De-
rived Halstead attributes, and one BranchCount attribute.

4.2 Experimental Settings

In order to investigate the performances of our algorithms,
we compare it with K-means Clustering, and Random se-
lective SVM (Gaussian RBF kernel y = 10, ¢ = 1000). For
each data set, we perform 5-fold cross validation, as per fol-
lowing details.

K-means Clustering: Let N be the number of labeled
examples. Firstly, cluster each data set into N clusters, and
then label each cluster as the class of the center. Since this
method is not a classification algorithm, we randomly select
N examples as initial data for five times.

Random selective SVM: Each data set is split into five
folds, four folds are used as a pool, and the left one fold is
used for testing. N examples are randomly selected from
the pool for labeling. Then SVM is built on the N labeled
examples, and tested on the testing fold.

TAL: Each data set is also split into five folds, four
folds are used as a pool, and the left one fold is used for
testing. Algorithm 1 is used to select the representative data
from the pool to label. Then, SVM is built on these labeled
data. The informative data are selected from the rest data in
the pool for labeling until the number of labeled examples N
is reached, as shown in steps 3—7 in Algorithm 2. Note that
the number N is the total number of the two stages. Finally,
the obtained SVM is tested on the testing fold.

This operation allows for a variation of training and
testing sets during the experiments. The number of labeled
examples N is increased from 5 to 50 in our experiments.

4.3 Experimental Result

We use AUC (area under the receiver operator characteristic
curve) and F-measure (the weighted harmonic mean of pre-
cision and recall) performance metrics which are commonly
used in the field of software defect prediction.

The results for all the three methods are shown in
Figs. 1, 2. We can see that TAL is superior to other algo-
rithms in the aspect of AUC. The F-measure rate of TAL
increases with increasing labeled data. When more than 35
instances are labeled, the TAL outperforms other algorithms
in the aspect F'-measure. Both of the figures show that TAL
learning algorithm can improve the performance, by provid-
ing selected queries. That is to say, the quality of the clas-
sifier not only depends on the absolute number of labeled
instances, but also depends on the representation and infor-
mation of the labeled instances.

LETTER

06 ; ; ; ; ; ; ;
055 /.Q & * /@
; =B % "o Lo %"
sy 7 ; -
‘2’ 0_5§, 3 \/*/' N / \% |
) —&5— TAL
045 — % —swM

—(O— - KMeans

0.4

5 10 15 20 25 30 35 40 45 50
number of labeled examples

(a) AUC performance

0.35 : : : : : : :
03f = — i
025} Q K ~0~ B §
- e
o ke e N \% 3
5 02f ~W
g /
E 0151 .
* ol 7 —5— TAL
: . — ¥ —swM
0.05 | - —(0O— - KMeans
/
0() L L L L L L L L
5 10 15 20 25 30 35 40 45 50
number of labeled examples
(b) F-measure performance
Fig.1 Performances compared on cm]1.
0.7 : : . : : : : :
06 S TAL WQ—Q—?
05— — % —sw i
—(O— - KMeans
o 04} O A4
3 03 e o - o
o K o
02k~ =% N Tk R — e ok
— % T ~J
0.13%. s * *
~
5 10 15 20 25 30 35 40 45 50
number of labeled examples
(a) AUC performance
0.4
0.35
0.3
2 025k
5
17
g 02\ % ,
: 3
Lootst X [
¥ -
01F — ¥ —swM
0.05 | —0O— - KMeans
0
5 10 15 20 25 30 35 40 45 50

number of labeled examples

(b) F-measure performance

Fig.2 Performances compared on pcl.

5. Conclusion

In this paper, we introduce the active learning method into
software defect prediction. The proposed algorithm TAL ex-
ploits the clustering technique and SVM technique to select
the representative and informative data for labeling. Exper-
imental results on real data sets validate its effectiveness.

1683

Acknowledgments

This work was supported in part by the fundamental re-
search funds for new century excellent talents in uni-
versity (NO. NCET-10-0298) and foundation of science
and technology department of Sichuan province (NO.
2011GZ0192). We appreciate the encouraging suggestions
from anonymous reviewers.

References

(1]

[2]

(3]

(4]

(3]

(6]

(71

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

C. Catal, “Review: Software fault prediction: A literature review and
current trends,” Expert Systems with Applications: An International
Journal, vol.38, no.4, pp.4626-4636, 2011.

0. Mizuno and T. Kikuno, “Prediction of fault-prone software mod-
ules using a generic text discriminator,” IEICE Trans. Inf. & Syst.,
vol.E91-D, no.4, pp.888—896, April 2008.

Y. Ma, G. Luo, X. Zeng, and A. Chen, “Transfer learning for cross-
company software defect prediction,” Inf. Softw. Technol., vol.54,
no.3, pp.248-256, 2012.

N. Seliya and T.M. Khoshgoftaar, “Software quality analysis of un-
labeled program modules with semi-supervised clustering,” IEEE
Trans. Syst. Man Cybern., A, Syst. Humans, vol.37, no.2, pp.201-
211, 2007.

C. Catal and B. Diri, “Unlabelled extra data do not always mean ex-
tra performance for semi-supervised fault prediction,” Expert Sys-
tems, vol.26, no.5, pp.458-471, 2009.

S. Zhong, T.M. Khoshgoftaar, and N. Seliya, “Analyzing software
measurement data with clustering techniques,” IEEE Intelligent Sys-
tems, vol.19, no.2, pp.20-27, 2004.

T. Menzies, J. Greenwald, and A. Frank, “Data mining static code at-
tributes to learn defect predictors,” IEEE Trans. Softw. Eng., vol.33,
no.1, pp.2-13, 2007.

T. Menzies, B. Turhan, A. Bener, G. Gay, B. Cukic, and Y. Jiang,
“Implications of ceiling effects in defect predictors,” Proc. 4th In-
ternational Workshop on Predictor Models in Software Engineering
(PROMISE 2008), pp.47-54, 2008.

T.M. Khoshgoftaar and N. Seliya, “Software quality classification
modeling using the SPRINT decision tree algorithm,” Proc. 4th
IEEE International Conference on Tools with Artificial Intelligence,
pp.365-374, 2002.

B. Settles, “Active learning literature survey,” Computer Sci-
ences Technical Report 1648, University of Wisconsin-Madison,
http://active-learning.net/

C. Catal, U. Sevim, and B. Diri, “Clustering and metrics thresh-
olds based software fault prediction of unlabeled program mod-
ules,” Proc. 6th International Conference on Information Technol-
ogy: New Generations, pp.199-204, 2009.

C. Catal, U. Sevim, and B. Diri, “Metrics-driven software qual-
ity prediction without prior fault data,” Electronic Engineering and
Computing Technology, Electronic Engineering and Computing
Technology Series: Lecture Notes in Electrical Engineering, vol.60,
pp-189-199, 2010.

A.K. Jain, “Data clustering: 50 years beyond K-means,” Pattern
Recognit. Lett., vol.31, no.8, pp.651-666, 2010.

S. Tong and D. Koller, “Support vector machine active learning with
applications to text classification,” J. Machine Learning Research,
vol.2, pp.45-66, 2001.

G. Boetticher, T. Menzies, and T. Ostrand, The PROMISE Reposi-
tory of Empirical Software Engineering Data, 2007,
http://promisedata.org/repository

