IEICE TRANS. INE. & SYST., VOL.E95-D, NO.1 JANUARY 2012

169

| PAPER Special Section on Trust, Security and Privacy in Computing and Communication Systems |

JXTAnonym: An Anonymity Layer for JXTA Services Messaging*

Marc DOMINGO-PRIETO®, Nonmember and Joan ARNEDO-MORENO™, Member

SUMMARY With the evolution of the P2P research field, new prob-
lems, such as those related with information security, have arisen. It is im-
portant to provide security mechanisms to P2P systems, since it has already
become one of the key issues when evaluating them. However, even though
many P2P systems have been adapted to provide a security baseline to their
underlying applications, more advanced capabilities are becoming neces-
sary. Specifically, privacy preservation and anonymity are deemed essential
to make the information society sustainable. Unfortunately, sometimes, it
may be difficult to attain anonymity unless it is included into the system’s
initial design. The JXTA open protocols specification is a good example
of this kind of scenario. This work studies how to provide anonymity to
JXTA’s architecture in a feasible manner and proposes an extension which
allows deployed services to process two-way messaging without disclosing
the endpoints’ identities to third parties.

key words: peer-to-peer, security, anonymity, JXTA, Java, onion routing

1. Introduction

Just as the popularity of P2P applications has risen, so have
concerns regarding their security. As P2P applications move
from simple data sharing, for example BitTorrent[1], to a
broader spectrum, such as e-learning environments [2], they
become more and more sensitive to security threats. There-
fore it becomes very important to design P2P frameworks
which not only can be easily adapted to a broad set of ap-
plication scopes, but also take into account an acceptable
security baseline. Under today’s standards, it is expected
that it is possible to deploy some degree of privacy, ensuring
that the contents of a message exchange are not revealed to
an eavesdropper, and authentication, guaranteeing which is
the identity of each endpoint during any message exchange.

As P2P systems evolve and become widespread in new
scenarios, more advanced security capabilities should be
considered. An example of them is message anonymity [3],
allowing a peer to send requests to an arbitrary service in
such a manner that nobody can determine the endpoints’
identities. The need for this feature ranges from everyday
situations such as a corporate suggestion box, a peer eval-
uation form or personal data sharing [4], to those related to

Manuscript received March 16, 2011.
Manuscript revised June 27, 2011.

"The authors are with the Estudis d’Informatica, Multimedia
i Telecomunicacié. Universitat Oberta de Catalunya. Rambla del
Poblenou 156, 08018, Barcelona, Spain.

*This work was partially supported by the Spanish MCYT
and the FEDER funds under grant TSI2007-65406-C03-03 E-
AEGIS and CONSOLIDER CSD2007-00004 “ARES”, funded by
the Spanish Ministry of Science and Education.

a) E-mail: mdomingopr @uoc.edu
b) E-mail: jarnedo@uoc.edu
DOI: 10.1587/transinf. E95.D.169

much serious topics, such as freedom of speech or whistle-
blowing. Unfortunately, because of its architecture, P2P
systems are specially weak to anonymity attacks unless this
capability is included in the system’s initial design. Even
when providing the aforementioned basic security capabil-
ities, it may be easy for other peers to acquire information
by monitoring message flows or intercepting queries routed
through them [5]. Consequently, message sources and final
services are completely exposed to neighboring peers and
super-peers.

JXTA (or “juxtapose”) [6] is an example of a P2P sys-
tem which already considers some basic security capabili-
ties, but not anonymity. Consisting in a set of open pro-
tocols that enable the creation and deployment of P2P net-
works, it provides applications with the capability to easily
discover and observe peers, exchange messages and publish
resources. Even though in its successive revisions security
mechanisms have slowly crept in, up to an acceptable de-
gree [7], in its latest version (2.7RC1), available on January
the 12th 2011, no previsions are made about being able to
provide any degree of anonymity some day.

In this paper we extend our previous work in [8]
and present JXTAnonym, an anonymity layer which allows
peers to exchange messages with JXTA services without
disclosing the identity of the participating parties to neigh-
boring peers or super-peers. Thus, anonymous two-way
messaging is made possible in JXTA. The proposed layer
is based on a popular approach within the context of P2P
applications, onion routing [9]. However, it is specifically
adapted to the idiosyncrasies of JXTA, taking advantage of
service access mechanisms already provided by the plat-
form, instead of defining additional protocols. In addition,
the amount of required changes on an existing system in or-
der to integrate anonymous messaging is minimized. In that
manner, peers which support anonymity may coexist with
those who don’t, without incompatibilities.

The paper is structured as follows. In Sect.2 we pro-
vide a brief summary of the current mechanisms based on
onion routing, focusing on those methods which provide
bidirectional messaging capabilities in P2P networks. Sec-
tion 3 describes how our base system has been extended to
encompass bidirectional messaging, suiting to the idiosyn-
crasies of JXTA services. The outcome of our experimen-
tal results in order to evaluate its performance is provided
in Sect.4. Section 5 provides a security discussion of JX-
TAnonym. Finally, Sect. 6 concludes this paper and outlines
further work.

Copyright © 2012 The Institute of Electronics, Information and Communication Engineers

170

2. Related Work on Onion Routing

Anonymity in P2P networks can be achieved using three
different approaches: Unimessage-based, Split message-
based and Replicated message-based. Our work focuses
on the first one, since it is the most popular and efficient,
while maintaining a high degree of anonymity. Also it as-
sumes that nodes are completely autonomous [10] and al-
lows anonymous bidirectional communications. These char-
acteristics mesh with the structure of JXTA.

A unimessage-based approach, also known as Onion
Routing [9], provides anonymity by sending the message
through a random sequence of proxies before it reaches the
destination. Those proxies are labeled OnionRouters. Gen-
erally, the path of OnionRouters is pre-constructed by the
sender before the message is sent. The message is repeat-
edly encrypted in a manner that, during transit towards the
destination, a single encryption layer can be taken out, one at
a time, at each OnionRouter. Each time a layer is peeled off,
the identity of the next hop is obtained. Thus, at each hop,
an OnionRouter does not know whether the message is be-
ing sent to another proxy or to the actual final destination. In
the same manner, the destination peer cannot know whether
the received message comes directly from the source or it
has been relayed through a set of OnionRouters.

The onion routing approach is also able to provide
anonymous two-way communications in two ways:

e Constructing both a query (source to destination) and
response (backwards, destination to source) onion at
the source peer and including it inside the onion mes-
sage together with the data to be sent. Therefore the
destination peer, after replying the query, can forward
its reply data to the source using the response onion
path.

e Including a session ID within the onion route, which
is stored on transit, thus creating a kind of return path
virtual circuit [11]. When the destination peer responds
the query, the message is routed back following the es-
tablished path, but in the opposite direction.

Onion Routing is used as the core of many anonymity
protocols to achieve mutual anonymity, being APFS
(Anonymous P2P File Sharing) [11] and Tor [12] the ones
that share more features when constructing of the anony-
mous path.

As its name suggests, the APFS protocol is used for
P2P file sharing, providing mutual anonymity of the initia-
tor and the responder in a connection. In APFS, each peer
has to choose a proxy peer and create a Onion Route to it.
This proxy peer will be the entry point to the anonymous
network for that peer. Additionally, a well known bootstrap-
ping peer, called coordinator, exists, which maintains a list
of all the peers connected to the network and which are act-
ing as a servers. However, instead of peers address, their
proxy address are stored.

Tor is a circuit-based anonymous communication ser-

IEICE TRANS. INF. & SYST., VOL.E95-D, NO.1 JANUARY 2012

vice. The sender’s anonymity is maintained by constructing
a circuit from the source to an exit node, who will commu-
nicate with the destination. The construction of this route
is performed by incrementally extending the circuit, hop by
hop, and negotiating a different symmetric key with each
intermediate node. This circuit is periodically recalculated
and can be used at its entire length, or shortened to modify
the exit node. Answers to queries are transmitted through
the same circuit.

Mutual anonymity can be achieved on Tor by using
hidden services. The basic idea of hidden services is that
the service provider is hidden behind some peers who act
as his Introduction Points (IP) while the service consumer
is behind a Rendezvous Point (RP). The communication be-
tween these points is done by following circuits. The steps
required to use a hidden service are:

e The service consumer contacts with one of the IPs, an-
nouncing his RP.

e The IP forwards the message to the service provider,
who will create a circuit to the RP

e At this point, mutual anonymity communication be-
tween both can be established through the RP.

3. A Proposal for JXTA Anonymous Messaging

JXTA provides mechanisms to share services. Such ser-
vices are commonly consumed by exchanging bidirectional
messages. In order to provide anonymity in services con-
sumption, is important to inspect the JXTA messaging ar-
chitecture. From this review, it is possible to identify the
elements that can be taken advantage of in order to define
an anonymity layer for which is transparent and finely in-
tegrated to JXTA architecture, without the need of defining
additional protocols.

3.1 JXTA Messaging Architecture

In this subsection, we provide an overview of those of
JXTA’s main architectural elements related to our proposal.
A detailed explanation can be found in [13].

The main idiosyncrasy in JXTA’s design, which sets it
apart from other P2P frameworks, is introducing the concept
of Peer Group, a segmentation of the global JXTA network.
All peers publish and consume services within the context
of a group, interacting with each other by using some JXTA
core services, the most important ones being the Discovery
Service and the Pipe Service.

Every resource in a JXTA group is described by an Ad-
vertisement, a metadata document. A resource cannot be
accessed unless its Advertisement is previously retrieved.
Advertisements must be periodically published, since they
expire and are flushed from the network after some time (by
default, 2 hours). The Discovery Service’s responsibility is
managing advertisements, allowing peers to publish and find
available resources. The most important types of Advertise-
ments are:

DOMINGO-PRIETO and ARNEDO-MORENO: JXTANONYM: AN ANONYMITY LAYER FOR JXTA SERVICES MESSAGING

o Peer Advertisement: Describes a peer and the resources
and services it provides. Each peer is responsible for
the publication of its own Peer Advertisement, and is
considered online only while it continues to do so.

e Pipe Advertisement: Describes a JXTA Pipe, the main
mechanism in JXTA to exchange data between two ap-
plications or services.

The Pipe Service is responsible for managing message
exchanges using JXTA Pipes. The simplest pipe in JXTA,
the JxtaUnicast, provides an asynchronous, unidirectional
message transfer mechanism which can be easily estab-
lished and managed. Nevertheless, there is a higher-level
communication abstraction provided by the JxtaBiDiPipe
which provides a bidirectional communication channel. The
latter is usually preferred by services, since it allows the di-
rect use of a straightforward query-response exchange. The
description of JXTA’s standard service model based on this
procedure follows:

1. Each service provider starts a JXTAServerPipe using
the Pipe Service, which exposes and listens to an input
pipe in order to process communication requests. This
input pipe is defined using a Pipe Advertisement.

2. This Pipe Advertisement is made public by the service
provider using the Discovery Service.

3. The Advertisement is propagated within the group by
Rendezvous Peers, special super-peers who efficiently
distribute Advertisements.

4. To consume a service, a peer must retrieve the Pipe Ad-
vertisement (via the Discovery Service) and then a bidi-
rectional connection must be established via the Pipe
Service, creating a JxtaBiDiPipe.

5. Once a communication request is received at the server
side, an independent JxtaBiDiPipe is created and bound
with the request. A message exchanges may begin
from now on.

Message exchanges can be secured in JXTA by using
a group based on the PSE (Personal Security Environment)
Membership Service. Under this kind of peer group, each
peer is provided with a credential based on PKIX [14] cer-
tificates. This guarantees that each peer has initialized a
valid pair of public-private keys and that the public key of
each peer is automatically distributed inside its Peer Adver-
tisement, in a special service parameter entry.

3.2 Anonymizing Procedure

We propose an anonymity layer that causes the minimum in-
terferences on the JXTA messaging architecture, according
to the review done in Sect. 3.1. JXTAnonym, an anonymiz-
ing service, is deployed in those peer group members
which want to anonymously exchange messages, creating an
anonymous subnetwork within the context of a peer group.
Group members may freely join and leave this network.
The proposed service is tailored to JXTA’s core ser-
vices features, such as invisible publication, discovery and

171

Source Onion
Peer Peer Peer

| — ar
I Application
I
I

End
[JXTAnonym] " [JXTAnonym] [Service J

JXTA
Applications

JXTA
Community
Services |

I Discovery
IXTA Core
Services Membership

| _ Pipe

XTA

Core]
,

Fig.1 JXTAnonym service operation in the context of JXTA’s architec-
tural design.

access to services (via the Discovery Service), message
management via the Pipe Service and usage of the PSE
secure environment for cryptographic data generation and
distribution. Therefore, the deployment procedure follows
the same steps as for any other peer service, making use of
JXTA’s service model without the need of modifying JXTA’s
initial design.

The service’s anonymity mechanism is based on an
onion routing approach, examined in detail in Sect. 2, pro-
tecting the identity of end clients (consumers) and services
(providers) from the rest of the group members. In addition,
the end service is also unable to establish the end client’s
identity. Its general architecture is summarized in Fig. 1.

The execution of JXTAnonym in any peer encompasses
three different steps: JXTAnonym Service Publication, Mes-
sage Setup and Message Processing.

3.2.1 JXTAnonym Service Publication

Just like any other JXTA service, an instance of the JX-
TAnonym service in a peer group member listens to incom-
ing queries using an input pipe. This pipe is made avail-
able to other peer group members by periodically publish-
ing its Pipe Advertisement, via the Discovery Service. How-
ever, we propose that Pipe Advertisements are not published
as standalone documents. They are piggybacked inside the
service parameters section of the Peer Advertisement, iden-
tified by a hardcoded well-known JXTAnonym service ID.
The inclusion of service related-data in this section is also
used by some other JXTA services, such as the PSE Mem-
bership Service. The main advantage of this approach is that
it is guaranteed that the service’s Pipe Advertisement is al-
ways being published while the peer is online, thus being
always available and up to date. In addition, each peer’s
Peer Advertisement contains all the information required by
JXTAnonym: the local service Pipe Advertisement and the
peer’s cryptographic data.

Once a peer decides to stop participating in the anony-
mous network, the service parameter entry is removed from
the Peer Advertisement, continuing its publication as nor-
mal. Due to the JXTA’s architecture, this new Advertise-
ment will be propagated across the Peer Group, replacing
the old one. If a peer becomes unreachable, its Peer Adver-
tisement is not going to be updated any longer, being flushed

172

after the expiration time is reached. Once this happens, the
JXTAnonym Pipe Advertisement will stop being available
too, guaranteeing that at any time only active instances of
the service are published.

3.2.2 Message Setup

This step initiates the onion routing process and is per-
formed by the peer that wants to anonymously access an end
service deployed at a remote peer within the same group.

First of all, we will describe the onion layering pro-
cedure in JXT Anonym, since it is used at several steps in
the message setup process. The layering procedure ac-
cepts two parameters: OnionCore, which is a JXTA Mes-
sage structure which may contain any arbitrary data, and
PeerAdvList = Advy,---,Adv,, an ordered sequence of
Peer Advertisements.

For each Peer Advertisement Adv;, fromn ... 1, the fol-
lowing process is iteratively executed. Onion; is considered
the result of each iteration, being Onion, the final result:

1. This iteration’s input, inputData, is chosen.

a. For the first iteration (i = n) the OnionCore struc-
ture is considered inputData.

b. For the rest of iterations (i = n—1,...,1), the
result of previous iteration, Onion;, is considered
inputData.

2. The public key PK; is retrieved from Adv;’s Member-
ship Service definition entry. Under the context of a
peer group which implements the PSE Membership
Service, it is guaranteed that PK; actually exists.

3. inputData is encrypted using PK; under a wrapped key
scheme [15], generating EncInputData.

4. Adv;’s PID field (the peer’s unique identifier) is re-
trieved.

5. A new OnionLayer structure is generated by creating a
JXTA Message with the following fields:

e NextHop = PID
e OnionRoute = EnclnputData

6. The OnionLayer structure becomes this iteration’s re-
sult (Onion;).

Once the layering procedure has been established, the
message setup process description follows:

1. A peer S decides to use a service (EndS ervice) execut-
ing on peer D.

2. S’s corresponding client (EndClient) creates a query
message (JXTAQueryMessage), specifying which is
the destination peer (peer D), and a callback structure
(PipeListener). Such structure is used by JXTA ap-
plications to allow asynchronous processing of the in-
coming response, so they do not need to block until the
reply is received.

3. EndClient locates the EndService’s JXTABidiPipe
Pipe Advertisement, from now on EndServicePipe, us-
ing the Discovery Service.

10.

11.

12.

13.

14.

IEICE TRANS. INF. & SYST., VOL.E95-D, NO.1 JANUARY 2012

. So far, steps 1-3 describe the required steps to access a

generic JXTA service. At this point, EndClient would
open a connection using EndS ervicePipe and use it to
directly send JXTAQueryMessage. Instead, it decides
to use the anonymity service, JXT AnonymS vc.

. If an instance of JXTAnonymSvc is being executed

at S, an anonymous client (JXTAnonymClient) is
also available. Such client is invoked, receiving
EndS ervicePipe, D’s identity, JXTAQueryMessage
and PipeListener as parameters. From now on,
JXT AnonymClient will manage the rest of the message
setup process. EndClient considers message process-
ing completed as far as it is concerned.

. A random symmetric key (FinalSymmetricKey) is

generated and used to encrypt both JXTAQue-
ryMessage and EndS ervicePipe, obtaining QueryEn-
cryptedMessage.

. A new record is created in a local table Pending-

Queries, containing FinalS ymmetricKey and PipeLis-
tener, the former being the primary key.

. A set of random data (RndData) is generated. The

length of this data should be between 2411 and
4614 bytes. The reasons will be explained in detail in
Sect. 5.

. S generates a ResponseCore structure. This structure

is a JXTA message composed of the following name-
value pairs:

e RandomData = RndData
o SymmetricKey = FinalSymmetricKey

At this point, a number of OnionRouter peers must be
chosen in order to create a response path. It is consid-
ered that 3 hops is good enough [12]. This is done by
using the Discovery Service to get a set of Peer Adver-
tisements RP = Adv;, Adv,, Advs, Advs where is it true
that YAdv;, (i < 4),Adv; # Advs&Adv; + Advp and
Advy = Advg, and in all of them the JXT AnonymsS vc
service parameter field exists (all of them deploy JX-
TAnonym). It is worth remarking that, since S holds
the end client waiting for the response, thats the reason
why it must be the last peer in the response path.

Once the response path is established, an onion struc-
ture ResponseOnion is created using the layering pro-
cedure previously described. The input parameters are
ResponseCore and RP.

From ResponseOnion the NextHop (ResponseFirst-
Hop) and the OnionRoute (ResponseRoute) fields are
extracted.

A QueryCore structure is created. This structure is a
JXTA Message composed of the following name-value
pairs:

o NextHop = ResponseFirstHop
e OnionRoute = ResponseRoute
o SymmetricKey = FinalS ymmetricKey

Now the query path, QP must be generated. This pro-
cess is identical to step 10, but in this case, Advy =

DOMINGO-PRIETO and ARNEDO-MORENO: JXTANONYM: AN ANONYMITY LAYER FOR JXTA SERVICES MESSAGING

Onion Message decrypt Onion Layer (i) Send to NextHop
NextHop = PID Service Pipe

Encrypted Message

Local Private Key

[OnionRoute = nextRoute OnionMessage l

Fig.2 Processing of OnionMessage at an onion peer.

Advp instead of Advg. Ideally, RP # QP.

15. Once the query path is established, an onion struc-
ture QueryOnion is created using the layering proce-
dure previously described. The input parameters are
QueryCore and QP.

16. From QueryOnion the NextHop (QueryFirstHop) and
the OnionRoute (QueryRoute) fields are extracted.

17. An OnionMessage structure is generated. This struc-
ture is a JXTA Message composed of the following
name-value pairs:

e OnionRoute = QueryRoute
e EncryptedMessage =QueryEncryptedMessage

18. The Peer Advertisement of QueryFirstHop is obtained
via the DiscoveryService, and its JXTAnonymSvc Pipe
Advertisement extracted. A new connection to this
pipe is created and OnionMessage sent through it.

3.2.3 Message Processing

This step is performed when an anonymous message is re-
ceived at any peer that has deployed JXT AnonymSvc. The
process starts when a running instance of JXT AnonymsS vc
receives an incoming message (OnionMessage), which con-
tains a EncryptedMessage and OnionRoute fields. Then,
the value in the OnionRoute field is extracted and decrypted
using the peer’s local private key, accessible using JXTA’s
PSE Membership service. At this point, three things may
happen:

1. The extracted data becomes an OnionLayer (see
Fig.2). Thus, the message must be routed to another
peer.

a. The values stored in the NextHop and Onion-
Route fields, respectively PID and nextRoute, are
extracted.

b. A new OnionMessage structure is generated,
where:

e OnionRoute = nextRoute
e EncryptedMessage =EncryptedMessage

c. Using the Discovery Service, PID’s Peer Adver-
tisement is located. From this advertisement, the
JXT AnonymSvc service Pipe Advertisement is
extracted.

d. A new connection to the next hop is established
using the previously recovered Pipe Advertise-
ment. The newly generated OnionMessage is sent
through it.

173
Send to NextHop
Query Core \ JXTAnonymous
Service Pipe
Onion Message { NextHop = ResponseFirstHop } /
e | o)
Encrypted Message SymmetricKey = FinalSjmmetricKey]»
Y, encrypt
Local Private Key Message ™\ JIXTAMessage
Received from
[EndServicePipe = EndServicePipe] gﬁgg;‘r’v ice | Endservice
Pi
decrypt - L|Pipe
(exm JXTAQuer) -

Fig.3 Processing of OnionMessage at the destination peer.

Response Core

Onion Message

Encrypted Message

Local Private Key

decrypt

RandomData

SimmetricKey = FinalSymmetricKey PendingQueries

Message Execute
[JXT M = UXT/ ; PipeListener with
the response

Fig.4 Processing of OnionMessage at the source peer.

2. The extracted data becomes a QueryCore (see Fig. 3).
Thus, the current peer is the destination, D, and holds
EndS ervice. The query must be processed by this ser-
vice. In this scenario, the EncryptedMessage field
holds the value QueryEncryptedMessage.

a. The values stored in the NextHop, OnionRoute
and SymmetricKey fields, ResponseFirstHop,
ResponseRoute and FinalSymmetricKey respec-
tively, are extracted.

b. QueryEncryptedMessage is decrypted using
FinalS ymmetricKey, obtaining the original
JXTAQueryMessage and EndS ervicePipe.

c. A bidirectional connection is established to
the EndS ervice using EndS ervicePipe and the
client’s query, JXTAQueryMessage, is sent
through it. As far as the EndService is concerned,
a normal connection has been established. It is
oblivious to the anonymity layer.

d. The process waits until a response, JXTARe-
sponseMessage, is received.

e. The response is encrypted using FinalSymmet-
ricKey, generating ResponseEncryptedMessage.

f. A new OnionMessage structure is generated,
where:

e OnionRoute = ResponseRoute
e EncryptedMessage =ResponseEncrypted-
Message

g. OnionMessage is sent to the JXTAnonym’s pipe
of ResponseFirstHop.

3. The extracted data becomes a ResponseCore (see
Fig.4). Thus, the current peer is the source, S. The
query-response has completed its round-trip. In this
scenario, the EncryptedMessage field holds the value
ResponseEncryptedMessage.

174

a. The value stored in the S ymmetricKey field is ex-
tracted (FinalS ymmetricKey). The RandomData
field is ignored.

b. ResponseEncryptedMessage is decrypted us-
ing FinalS ymmetricKey, obtaining the original
JXTAResponseMessage.

c. The PendingQueries local table is searched for
the record which uses FinalSymmetricKey as its
primary key.

d. Using the PipeListener structure, the message
is provided to the original EndClient. As far
as the end client is concerned, JXTA has acted
just like during any standard service access. The
anonymity layer is invisible.

e. The record is deleted from the PendingQueries ta-
ble.

4. Experimental Result Evaluation

As a proof-of-concept, we have implemented our proposal
and deployed it on a private PlanetLab-based network. We
report the key features of our implementation and its perfor-
mance in order to assess the feasibility of deploying anony-
mous messaging in a JXTA network.

The testbed deployed a JXTA peer group consisting in
a single node operating as a Rendezvous Peer and 32 nodes
as a Edge Peers. This is considered a typical group[16].
This peer group was based on the PSE Membership Ser-
vice and all Edge Peers deployed the JXTAnonym service,
as well as an additional test end service called EchoService,
which was anonymized. This service basically replies with
the same content as the query.

At this point, some tests were conducted in order to
test the performance of using JXTA services with and with-
out anonymity. The goal of these tests is not finding a per-
formance improvement when using JXTAnonym, since ap-
plying security is expected to always result in a performance
overhead. The goal is to determine if whether an onion rout-
ing approach is feasible in a JXTA network, a peer-to-peer
framework developed without considering anonymity in its
design and architecture. With feasible we refer that the pro-
duced overhead is acceptable compared with the benefits it
provides.

Our set of tests measures the average time it takes to
consume a service, from the moment the query is sent until
the response is received, and the percentage of lost queries
during transit. This test was executed in three different sce-
narios and with two different messages loads. The two dif-
ferent message loads consist in sending messages at max-
imum speed from just one peer or from all peers at once,
evaluating the network behavior when it is very saturated.
In both tests up to 250 messages are sent.

The first scenario consists in directly consuming the
EchoService through a JXTABiDiPipe, as it is usually done
in JXTA. This measure is the expected time during JXTA’s
normal operation. The second scenario sends the queries

IEICE TRANS. INF. & SYST., VOL.E95-D, NO.1 JANUARY 2012

20

15
W 1 Peer
10 Sends
I All Peers
5 send
o - RN

BiDiPipe Bhops JXTAnonym

Average time (s)

Fig.5 Average time it takes to use EchoService.

and the responses to the EchoServices through three inter-
mediate nodes, as JXTAnonym would do, but without using
any kind of security. This scenario is called 8 hops. Using
this test, we can discern which part of the overhead pro-
duced by anonymity is due to multiple hops and which is
produced by additional computing and transmission costs
at each onion peer. The third one evaluates the cost of
anonymizing EchoService using JXTAnonym, also using
three intermediates nodes.

The average time it took to consume the EchoService in
the previously mentioned scenarios is shown in Fig. 5. It can
be seen that when only one peer consumes the EchoService,
the performance is better in all cases, as expected. Consum-
ing the service directly through a BiDiPipe took 1.6 seconds,
while consuming it after 8 hops took around 6 seconds. This
is a good result, since the difference (4.4 s) is less than 6.4
seconds, the better time one can expect considering using 4
extra BiDiPipes to perform 8 hops. This is because instead
of using 4 BiDiPipes, 8 simple unidirectional pipes were
used. Also, the usage of encryption and the higher message
length in JXTAnonym compared with 8 hops produces a re-
ally low overhead, just 200 ms.

However, when all peers consume the EchoService at
the same time, the time required to use it increases signifi-
cantly when extra hops are performed. This is because when
the 32 nodes send messages at the same time, each connec-
tion to the EchoService produces 8 extra messages, which is
256 extra messages for each of the 250 messages sent. Con-
suming the service directly through a BiDiPipe, 8 hops and
JXTAnonym took 1.8, 12 and 16.9 seconds respectively. Al-
though there is an important overhead in this scenario when
using extra hops, it has to be pointed out that this is the worst
case, where each peer sends messages at maximum speed.
A real scenario will be between this scenario and the previ-
ous one. The difference between 8 hops and JXTAnonym
(4.95) is produced due to the use of encryption and higher
message length in a saturated network.

Figure 6 shows the amount of lost messages in pre-
vious scenarios. Only when BiDiPipe was used no packet
loss was produced. This is because BiDiPipes are a higher
level implementation of communication than unidirectional
pipes, and performs extra communications to set up connec-
tions. BiDiPipe was set as no reliable but with a timeout of
1 minute. This decreases the lost packets but increases the
communication time, as has been previously seen. When
extra hops are performed using unidirectional pipes, some

DOMINGO-PRIETO and ARNEDO-MORENO: JXTANONYM: AN ANONYMITY LAYER FOR JXTA SERVICES MESSAGING

*

25%
£ 20%
8 150 B 1 Peer
5 Sends
a 10% W All Peers
o send
B
=]
-

o
&

BiDiPipe 8hops JXTAnonym

Fig.6 Percentage of lost petitions when using the EchoService.

packets are lost. In the 8 hops scenario the percentage of
lost messages ranges from 6 to 20% while in JXTAnonym
it ranges from 10 to 21%, depending the congestion of the
network. These results show that the increase of lost mes-
sages in JXTAnonym compared with 8 hops is very low. In
conclusion, using unidirectional pipes produces better ex-
change time but increases message loss. Furthermore, mod-
ify the expiration time of Advertisements can change these
results. A high expiration time (as default) increases the lost
messages. In contrast, a lower expiration time minimizes
the number of lost messages but increases the congestion of
the network, since advertisements should be updated more
often.

5. Security Discussion

JXTAnonym achieves anonymity by using Onion Routing,
whose security has been analyzed in deep [17]. Its main vul-
nerable is due to traffic analysis attacks, such as packet size
analysis. For this reason, as mentioned in Sect.3.2.2, the
ResponseCore structure contains some random data. This
is used to protect the scheme against packet size analysis
and make it difficult for an attacker to predict, just for its
size, whether a message is the last hop, an intermediate
hop, a query message or a response message. The size of
each OnionCore is around 208 bytes whereas creating a new
OnionLayer adds 399 bytes. From this data extra hops and
extra paths are calculated, obtaining that the size of the ran-
dom data has to be between 2411 and 4614 bytes.

6. Conclusions

In this paper, we have presented JXTAnonym, an anonymity
layer that uses the onion routing approach to allow bidi-
rectional message exchanges when accessing services us-
ing the JXTA protocols. JXTAnonym provides consumer
and provider anonymity in any JXTA service access. The
anonymity service has been implemented as a standard
JXTA service, and any JXTA Peer which belongs to a PSE
Peer Group can use it. This restriction is necessary because
a valid pair of public-private keys are necessary for imple-
menting onion routing, and with this assumption is guaran-
teed.

Apart from the fact that JXTA currently does not pro-
vide anonymous messaging by itself, the main contributions
of the chosen approach are twofold. First, the tests per-

175

formed over JXTAnonym support that anonymity is feasi-
ble in JXTA. Although the time used to consume a service
increases when using JXTAnonym, this amount is not so
high if we take into consideration the amount of connec-
tions which are performed and the fact that encryption is em-
ployed. Second, JXTAnonym is completely invisible to end
services and clients in terms of processing the received data.
Their internal operation stays the same whether anonymity
is used or not.

These contributions are mainly founded in the fact that
JXTAnonym is built over simple JXTA elements, such as
Pipe Service, Discovery Service or Advertisements. This al-
lows using JXTAnonym without modifying the JXTA binary
release, since no new JXTA protocols are defined. More-
over, Peer Group members can freely choose whether they
want to belong or not to the anonymity set within the peer
group. Obviously, the higher the number of peers who de-
cide to use JXTAnonym, the higher the anonymity degree
obtained.

Further research goes toward extending the anonymity
layer to the publication and retrieval of Advertisements, as
well as providing anonymous multicast communications.
Finally, it is also worth studying how to apply mechanisms
that thwart global attackers.

References

[1] B. Cohen, “Incentives build robustness in bittorrent,” 1st Workshop
on the Economics of Peer-2-Peer Systems, 2003.

[2] K. Matsuo, L. Barolli, F. Xhafa, A. Koyama, and A. Durresi, “Im-
plementation of a JXTA-based P2P e-learning system and its perfor-
mance evaluation,” International Journal of Web Information Sys-
tems, vol.4, no.3, pp.352-371, 2008.

[3] A. Pfitzmann and M. Hansen, “Anonymity, unlinkability, unde-
tectability, unobservability, pseudonymity, and identity manage-
ment — a consolidated proposal for terminology,”
http://dud.inf.tu-dresden.de/Anon_Terminology.shtml, Feb. 2008.
v0.31.

[4] M. Iguchi and S. Goto, “Anonymous P2P Web Browse History Shar-
ing for Web Page Recommendation,” IEICE Trans. Inf. & Syst.,
vol.E90-D, no.9, pp.1343-1353, Sept. 2007.

[5] J. Gu, J. Nah, H. Kwon, J. Jang, and S. Park, “Random Visitor:
Defense against Identity Attacks in P2P Networks,” IEICE Trans.
Inf. & Syst., vol.LE91-D, no.4, pp.1058-1073, April 2008.

[6] L. Gong, “JXTA: A network programming environment,” IEEE, In-
ternet Computing, vol.5, no.3, pp.88-95, 2008.

[7] J. Arnedo-Moreno and J. Herrera-Joancomart, “A survey on secu-
rity in JXTA applications,” J. Systems and Software, vol.82, no.9,
pp.1513-1525, 2009.

[8] J. Arnedo-Moreno and M. Domingo-Prieto, “An anonymity layer
for JXTA services,” 2011 Workshops of International Conference on
Advanced Information Networking and Applications, pp.102-107,
2011.

[9] P. Syverson, D. Goldsclag, and M. Reed, “Anonymous connections
and onion routing,” Proc. IEEE 18th Annual Symposium on Security
and Privacy, pp.44-54, 1997.

[10] X. Ren-Yi, “Survey on anonymity in unstructured peer-to-peer sys-
tems,” J. Computer Science and Technology, vol.23, no.4, pp.660—
671, July 2008.

[11] V. Scarlata, B. Levine, and C. Shields, “Responder anonymity and
anonymous peer-to-peer file sharing,” Proc. ACM CCS, pp.17-26,
2001.

176

[12]

[13]
[14]
[15]

[16]

[17]

R. Dingledine, N. Mathewson, and P. Syverson, “Tor: The second
generation onion router,” Proc. 13th USENIX Security Symposium,
pp-303-320, 1998.

Sun Microsystems, “JXTA v2.0 protocols specification,” 2007.
http://java.net/projects/jxta-spec

CCITT, “The directory authentication framework. recommenda-
tion,” 1988.

B. Kaliski and J. Staddon, “PKCS1: RSA Cryptography Specifica-
tions. Version 2.0,” 1998. http://www.ietf.org/rfc/rfc2437.txt

E. Halepovic and R. Deters, “The JXTA performance model and
evaluation,” Future Generation Computer Systems, vol.21, no.3,
pp-377-390, 2005.

P. Syverson, G. Tsudik, M. Reed, and C. Landwehr, “Towards an
analysis of onion routing security,” Designing Privacy Enhancing
Technologies, Lect. Notes Comput. Sci., vol.2009, pp.96—114, 2001.

Marc Domingo-Prieto holds the degree
of Computer Systems and the master in Com-
puter Architecture, Networks and Systems from
Universitat Politecnica de Catalunya (UPC). He
is a research assistant in the K-ryptography
and Information Security for Open Networks
(KISON) research group in the Open University
of Catalonia (UOC). His research interests in-
clude scalable distributed energy efficient algo-
rithms and applications, and security in mobile
and peer-to-peer applications.

Joan Arnedo-Moreno is a lecturer at
Estudis d’Informatica, Multimimedia i Teleco-
muncicacié in the Open University of Catalonia
(UOC) and works as a part-time assistant at
the Universitat Politeécnica de Catalunya (UPC).
From the latter, he earned his degree in Com-
puter Science in 2002 and his PhD. degree in
2009. He has published several papers in inter-
national conferences and journals and has been
invited as keynote speaker at several confer-
ences. Both his teaching and research interests

are related to the fields of networking and security, more specifically in
peer-to-peer systems.

IEICE TRANS. INF. & SYST., VOL.E95-D, NO.1 JANUARY 2012

