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Error-Correcting Output Codes Guided Quantization for Biometric
Hashing
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SUMMARY In this paper, we present a new biometric verification sys-
tem. The proposed system employs a novel biometric hashing scheme that
uses our proposed quantization method. The proposed quantization method
is based on error-correcting output codes which are used for classification
problems in the literature. We improve the performance of the random
projection based biometric hashing scheme proposed by Ngo et al. in the
literature [5]. We evaluate the performance of the novel biometric hashing
scheme with two use case scenarios including the case where an attacker
steals the secret key of a legitimate user. Simulation results demonstrate
the superior performance of the proposed scheme.
key words: biometric hashing, biometric security, privacy

1. Introduction

Recent years have seen increased usage of biometric verifi-
cation systems in many applications. In these systems, an
input biometric template is compared to the reference bio-
metric template either stored in a database server or a smart
card for verification. The reference biometric template is
stored as plaintext in a database or a smart card in most such
systems. These systems are deemed insecure and raise about
security and privacy concerns [1], [2]. A proposed solution
to handle aforementioned threats is to encrypt the reference
biometric template stored in a smart card or a database by
using cryptographic algorithms [3], [4]. The main problem
of such solutions is that the encrypted reference biometric
template must be decrypted to compare it with the claimer’s
input biometric template. This makes the systems weak
against possible attacks at the verification stage. Cancellable
biometrics that combine the biometric with a secret key to
enable randomized biometric hashing is a promising solu-
tion to cope with such problems [5], [8].

In this paper, we propose a novel biometric hashing
scheme which depends on Error-Correcting Output Codes
(ECOC). We improve the performance of the random pro-
jection based biometric hashing scheme by introducing a
new quantization method that attempts to optimize biomet-
ric hash vectors by using the ideas from ECOC classifiers.
The proposed scheme shows superior performance in com-
parison with Ngo et al.’s scheme [5] on four databases.
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Fig. 1 The basic steps of the proposed biometric hashing scheme.

2. The Proposed Biometric Verification System

In this section, we introduce our new biometric verifica-
tion system based on the proposed ECOC guided biometric
hash generation method as illustrated in Fig. 1.

2.1 Enrollment Stage

Here, we explain the enrollment stage which consists of two
main phases: 1) Feature extraction and dimension reduction,
2) ECOC guided biometric hash generation.

2.1.1 Feature Extraction and Dimension Reduction

At this phase, we use face images in the training set. The
training set has training face images belonging to registered
users, Ii, j ∈ �m×n where i = 1, 2, . . . ,K and K denotes the
number of users, j = 1, 2, . . . , L and L denotes the number of
training images per user. We lexicographically re-order the
face images and obtain training face vectors, xi, j ∈ �(mn)×1.
Then, we employ Principle Component Analysis (PCA) to
the face images in the training set for feature extraction as
follows:

yi, j = A(xi, j − µ), (1)

where A ∈ �k×(mn) is the PCA matrix trained by the face
images in the training set, µ is the mean face vector and
yi, j ∈ �k×1 is a vector containing PCA coefficients belong-
ing to the jth training image of the ith user.
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We generate a Random Projection (RP) matrix, Ri ∈
��×k ∀i, for each user to reduce the dimension of the face
images in the training set. The RP matrix elements are iden-
tically and independently (i.i.d) generated from a Gauss dis-
tribution with zero mean and unit variance by using a Ran-
dom Number Generator (RNG) with a seed derived from the
user’s secret key. We apply Gram-Schmidt (GS) procedure
to obtain an orthonormal projection matrix RGS ,i ∈ ��×k

from Ri to have more distinct projections. We project the
PCA coefficient vectors onto a lower �-dimensional sub-
space as follows:

zi, j = RGS ,iyi, j, (2)

where zi, j ∈ ��×1 is an intermediate biometric hash vector
belonging to the jth training image of the ith user.

2.1.2 ECOC Guided Biometric Hash Generation

At this phase, we first calculate a representative raw biomet-
ric hash vector, Ei, for each user:

Ei (m) =
1
L

L∑
j=1

zi, j (m) , (3)

where m ∈ {1, 2, . . . , �} and � is the length of the raw bio-
metric hash vector. Next, we map the elements of Ei to the
interval [0, 1] by employing min-max normalization [9] and
obtain a representative intermediate biometric hash vector,
Vi ∈ ��×1, for each user as follows:

Vi (m) =
Ei (m) −min (Ei)

max (Ei) −min (Ei)
, (4)

where Vi denotes a representative intermediate biometric
hash vector of the ith user, min(.) function computes mini-
mum value of its input vector and max(.) function computes
maximum value of its input vector.

Conventionally, the Vi vector is binary-quantized by
thresholding to obtain the final biometric hash vector for
each user. In Ngo et al.’s scheme [5], a different quan-
tization threshold (tg) for each user is obtained by com-
puting the average value of each associated vector, that is
tg = 1/�

∑�
m=1 Vi(m). Note that the threshold is the same for

each bit position, therefore we can call it a global threshold.
In contrast, we employ bit-adaptive quantization to im-

prove the performance of the biometric hashing scheme by
generating a more diverse set of biometric hashes for autho-
rized users. We define C as the codeword matrix which is
formed by stacking biometric hashes of all users in its rows.
As shown in Fig. 2, the ith row of C is obtained by quantiz-
ing Vi using a set of thresholds (one for each bit) which we
aim to optimize.

C (i,m) =

{
1 if Vi (m) ≥ t (m)
0 Otherwise.

(5)

In the literature, ECOC is proposed to cope with multi-
class classification problems using multiple binary classi-
fiers [10], [11]. Here, our aim is to reduce verification errors

Fig. 2 The illustration of the ECOC guided quantization step in the pro-
posed biometric hashing scheme.

by employing separation criteria used in ECOC classifiers
to optimize the biometric hash codeword matrix C by mod-
ifying the threshold vector t.

The ECOC matrices are optimized on two main crite-
ria [12]: 1) Row separation, 2) Column separation. In the
proposed method, we use row and column separation crite-
ria described below to optimize the biometric hash vectors.
Row Separation: The Hamming distance between the bio-
metric hash vectors, which belong to different users, should
be maximized to reduce errors. The minimum Hamming
distance between any pair of biometric hash vectors is called
the row separation:

Hr(t) = min
i, j,i� j

�∑
m=1

|C(i,m) −C( j,m)|. (6)

Hr is dependent on t since the thresholds determine and
change the codeword matrix C. An ECOC matrix with min-
imum Hamming distance, Hr, between any pair of biometric
hash vectors will correct up to

⌊
Hr−1

2

⌋
bit errors [10]. Thus,

it is beneficial to maximize this minimum distance to obtain
better biometric hash vectors.
Column Separation: Column separation is defined as the
minimum Hamming distance between all the columns of the
codeword matrix C. The aim in ECOC matrix design is to
maximize the column separation. In calculating the column
separation we should also consider the distance to the com-
plement of a column as well since it gives the same split of
the set of biometric hash bits.

Hc(t)

= min
m,n,m�n

⎧⎪⎪⎨⎪⎪⎩
K∑

i=1

|C(i,m) −C(i, n)| ,
K∑

i=1

|1 −C(i,m) −C(i, n)|
⎫⎪⎪⎬⎪⎪⎭
(7)

where m, n ∈ {1, . . . , �} and K denotes the number of users.



LETTER
1709

Maximizing the column separation will increase the verifi-
cation accuracy of the system by decreasing correlation be-
tween classification errors [11], [12] and makes the system
more robust against attacks. We define H(t) = Hr(t)+Hc(t)
as the optimization criterion to maximize. Hence, we have
to solve t̂ = arg max

t
H(t).

Since the user cannot give exactly the same biometric
template for each attempt to enter the system due to sensor
imperfections and/or user dependent mistakes errors occur
in biometric hashes. To decrease such errors, Hamming dis-
tance between the biometric hash vectors belonging to dif-
ferent users should be maximized. Besides, Hamming dis-
tance between each bit position of the biometric hash vectors
should be maximized to reduce redundancy and to increase
security against attacks.

We proceed as follows to optimize this complex objec-
tive. Initially, we find an optimum system level quantization
threshold t̂s ∈ [0, 1] that maximizes H(ts) = Hr(ts) + Hc(ts)
by using the Golden section search (GSS) algorithm [13]
in the range [0, 1]. The optimum system level threshold,
t̂s = arg max

ts

(H(ts)), is a quantization threshold which can

be used for all bit positions of the biometric hash vectors.
Next, using the optimal system level threshold as an

initial value, we find an optimum threshold for each bit
position (m) of the biometric hash vectors that maximizes
H(t) = Hr(t) + Hc(t) by using the Golden section search
algorithm [13] within the range [0, 1]. We perform this by
using the coordinate descent method where we update one
coordinate at a time while keeping the rest of the thresh-
old vector constant. So, at each iteration, we solve opti-
mization problem t̂(m) = arg max

t(m)

(
H( t̃)
)

for m = 1, . . . , �

where t̃ ∈ �1×� is the latest threshold vector which contains
the latest values of the thresholds for all bit positions and
t̂(m) ∈ [0, 1] is the optimum threshold value for mth bit po-
sition of the biometric hash vector. We go through all the
coordinates multiple times until the iterations stop changing
the objective value H(t). The vector obtained in the end is
the optimal bit-adaptive threshold vector t̂.

The pseudo-code of the optimization algorithm per-
formed in the enrollment phase is given as Algorithm 1.

2.1.3 Relation with ECOC Classification

In our scheme, we employ the column and row separation
criteria used in ECOC matrix design to optimize the code-
word matrix obtained from the biometric hash vectors. So,
we do not pre-specify the codeword matrix and design clas-
sifiers afterwards as regularly done in ECOC classification.
Random projection followed by binary quantization that is
used in biometric hashing can be seen as using a set of ran-
dom linear classifiers wT x − b ≷ 0 where w corresponds
to a single row of the random projection matrix and the
bias term b corresponds to the bit-specific threshold t. Our
method can be seen as using a number of random linear clas-
sifiers and modifying their bias value (the threshold) to opti-

Algorithm 1 Pseudo Code of the Enrollment Phase
1: K : number of users and L : number of face images per user
2: � : Length of biometric hash vector
3: Inputs: Training face images, Ii, j, and secret keys of the users
4: Outputs: The binary codeword matrix, C, and threshold vector t

5: Compute PCA matrix A by using all the training images Ii, j

6: for i← 1 to K do
6: Generate RP matrix RGS ,i by using the secret key of the ith user
7: for j← 1 to L do
7: Compute PCA coefficient vectors xi, j

7: Compute yi, j = A(xi, j − µ)
7: Compute zi, j = RGS ,iyi, j
8: end for
9: end for

10: for i← 1 to K do
11: for m← 1 to � do
11: Compute Ei (m) = 1

L

∑L
j=1 zi, j (m)

12: end for
13: end for
14: for i← 1 to K do
15: for m← 1 to � do
15: Compute Vi (m) = Ei(m)−min(Ei)

max(Ei)−min(Ei)
16: end for
17: end for
18: t0s ← 0.5 (set initial value of quantization threshold)
19: Solve t̂s = arg max

ts
Hr(ts) + Hc(ts) using GSS algorithm

20: t0(m) = t̂s,m = 1, . . . , � (set initial value of the threshold vector to the
system level threshold)

21: Solve t̂ = arg max
t

Hr(t) + Hc(t) using coordinate descent and GSS

algorithm for each coordinate
21: Compute codeword matrix C by using the optimal threshold vector t̂
21: Store binary codeword matrix C and the threshold vector t̂

mize the row and column separation obtained by them. So,
our method is not a direct application of ECOC multi-class
classification, rather an innovative idea where random lin-
ear classifiers are optimized in their bias terms to obtain a
better codeword matrix that will result in better verification
performance.

2.2 Test Stage

At this stage, a claimer sends his face image Ĩ ∈ �m×n and
his secret key to the system. Then, the system computes the
claimer’s test biometric hash vector by using the same pro-
cedures in the enrollment phase with the optimum threshold
for each bit position, t(m). Finally, the system computes the
Hamming distance [14] between the test biometric hash vec-
tor and the claimed user’s reference biometric hash vector
stored in the database. If the Hamming distance is below the
pre-determined distance threshold, the claimer is accepted;
otherwise, the claimer is rejected.

Since the biometric hash vectors can only be computed
by the system, a user typically does not know her biometric
hash vector. Whenever a new user wants to enroll in the
proposed system, the threshold vector, t, and the codeword
matrix, C, which contains reference biometric hash vectors,
stored in the database need to be updated. Initially, for new
users, the system can use the existing threshold vector to
determine their biometric hash vectors. When the number
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of new users reach a pre-defined specific number, the system
will update itself (e.g. at night time when the system is idle)
and generate a new threshold vector and a new codeword
matrix which are optimal for the new population.

In the proposed system, only the threshold vector, t,
is stored additionally in comparison with the Ngo et. al.’s
system [5]. It is used for computing biometric hash vectors
at the test stage. Even if an attacker obtains it, he cannot
get any more information since the security of the system
depends on the RP matrix and secret key of the users as in
Ngo et. al. ’s system [5]. The attacker can obtain neither
the feature vector nor the biometric template of the user by
using the threshold vector, t, and the codeword matrix, C,
since there are infinitely many choices when getting back
from binary biometric hash to the face image.

3. Simulation Results

In this section, we test and discuss the performance of the
proposed scheme on Carnegie Mellon University (CMU)
face database [15], Cambridge university AT&T face
database [16], Multi Modal Verification for Teleservices and
Security applications (M2VTS) face database [17], [18], and

Table 1 EER performance comparison between the proposed biometric hashing scheme and Ngo
et al.’s scheme [5].

Length of Face
Hash Vector

EER (%) of Ngo et al.’s
Scheme [5] (PCA+RP)

EER (%) of The Proposed
Scheme

Scenario Database

64 bit % 2.05 % 0.15 Key Unknown CMU
128 bit % 0.98 % 0.00 Key Unknown CMU
256 bit % 0.60 % 0.00 Key Unknown CMU
512 bit % 0.22 % 0.00 Key Unknown CMU

64 bit % 4.10 % 2.50 Key Stolen CMU
128 bit % 2.46 % 0.74 Key Stolen CMU
256 bit % 1.72 % 0.08 Key Stolen CMU
512 bit % 1.18 % 0.07 Key Stolen CMU

64 bit % 12.19 % 6.44 Key Unknown AT&T
128 bit % 7.36 % 4.25 Key Unknown AT&T
256 bit % 5.81 % 1.13 Key Unknown AT&T
512 bit % 3.79 % 0.04 Key Unknown AT&T

64 bit % 16.93 % 13.07 Key Stolen AT&T
128 bit % 13.97 % 9.71 Key Stolen AT&T
256 bit % 12.76 % 7.64 Key Stolen AT&T
512 bit % 12.34 % 8.01 Key Stolen AT&T

64 bit % 18.10 % 10.01 Key Unknown M2VTS
128 bit % 14.56 % 7.55 Key Unknown M2VTS
256 bit % 11.15 % 6.38 Key Unknown M2VTS
512 bit % 9.23 % 5.81 Key Unknown M2VTS

64 bit % 21.36 % 14.17 Key Stolen M2VTS
128 bit % 18.08 % 13.01 Key Stolen M2VTS
256 bit % 16.72 % 10.50 Key Stolen M2VTS
512 bit % 16.09 % 10.00 Key Stolen M2VTS

64 bit % 17.09 % 12.30 Key Unknown Sheffield (UMIST)
128 bit % 16.38 % 7.87 Key Unknown Sheffield (UMIST)
256 bit % 15.05 % 6.25 Key Unknown Sheffield (UMIST)
512 bit % 14.97 % 2.93 Key Unknown Sheffield (UMIST)

64 bit % 21.40 % 17.74 Key Stolen Sheffield (UMIST)
128 bit % 21.92 % 16.91 Key Stolen Sheffield (UMIST)
256 bit % 22.53 % 15.25 Key Stolen Sheffield (UMIST)
512 bit % 23.47 % 14.21 Key Stolen Sheffield (UMIST)

the Sheffield (previously UMIST) face databases [19]. Pre-
processing methods such as eye marking, alignment and
head region masking are not applied to the face images. Ta-
ble 2 shows the number of face images used in the enroll-
ment and test phases.

Table 3 shows the total number of genuine and im-
poster pairs. Note that all enrollment images for a person
are used to generate a single reference biometric hash vec-
tor for a person. Each test image indicated in Table 2 is used
once in a genuine test and as an impostor for all other users.

Table 2 Databases and experimental set-up.

Database Number of Face
Images

Enrollment Phase Test Phase

CMU 975 images from
13 people

The first 15 im-
ages of each user

The following 30
images of each user

AT&T 400 images from
40 people

The first 5 images
of each user

The rest 5 images
of each user

M2VTS 1480 images from
37 people

The first 20 im-
ages of each user

The rest 20 images
of each user

Sheffield 564 images from
20 people

The first 8 images
of each user

The following 8
images of each user
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Table 3 Genuine and imposter pairs in each database.

Database Number of Genuine Pairs Number of Imposter Pairs
CMU 1 × 30 × 13 = 390 1 × 30 × ((12 × 13) ÷ 2) = 2340
AT&T 1 × 5 × 40 = 200 1 × 5 × ((39 × 40) ÷ 2) = 3900
M2VTS 1 × 20 × 37 = 740 1 × 20 × ((36 × 37) ÷ 2) = 13320
Sheffield 1 × 8 × 20 = 160 1 × 8 × ((19 × 20) ÷ 2) = 1520

Fig. 3 DET plots of the proposed method for key stolen scenario - AT&T
database.

3.1 Equal Error Rate (EER) Performances

In this part, we test the performance of the proposed scheme.
Kong et al. state that if unauthorized people steal the secret
key and the RNG, the performances of biometric hashing
schemes get worse [8]. Therefore, we simulate two scenar-
ios, in our experiments as shown in Table 1.
1. Key Unknown Scenario: An imposter user wants to im-
personate a genuine user. However, she neither has biomet-
ric template nor secret key of a genuine user. She sends her
own biometric template and a secret key to the system to be
authenticated as a genuine user. In tests, we have used each
impostor’s own key for their impostor attempts as well.
2. Key Stolen Scenario: An imposter user obtains secret key
of a genuine user. She sends her own biometric template
and the secret key of the genuine user to the system to be
authencated as a genuine user.

As shown in Table 1, the proposed scheme has lower
EER in comparison with [5]. Moreover, we show the de-
tection error trade-off (DET) curves [20] of the proposed
method for key stolen scenario in Figs. 3-6. Besides, we
show genuine-imposter distance histograms and false accept
rate (FAR) - false reject rate (FRR) plots in key stolen sce-
nario for the proposed method in Figs. 7-10. We attribute
the performance improvements to the better scattering of
biometric hash vectors due to the maximization of row and
column separation in the codeword matrix in our method.

The proposed method more dramatically reduces the
errors as the length of the biometric hash vector increases
as shown in Table 1. The proposed scheme approximately
reduces the EER by half in most of the cases. Furthermore,
even in some cases, the proposed scheme perfectly separates
the genuine and imposter users with no errors.

The proposed method maximizes the Hamming dis-

Fig. 4 DET plots of the proposed method for key stolen scenario - CMU
database.

Fig. 5 DET plots of the proposed method for key stolen scenario -
M2VTS database.

Fig. 6 DET plots of the proposed method for key stolen scenario -
Sheffield database.

Fig. 7 Genuine-Imposter distance histograms of the proposed method
for key stolen scenario in the CMU database - 512 bit.
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Fig. 8 FAR-FRR plots of the proposed method for key stolen scenario in
the CMU database - 512 bit.

Fig. 9 Genuine-Imposter distance histograms of the proposed method
for key stolen scenario in the M2VTS database - 128 bit.

Fig. 10 FAR-FRR plots of the proposed method for key stolen scenario
in the M2VTS database - 128 bit.

tance between the biometric hashes belonging to the differ-
ent users at the enrollment stage. Thus, we achieve lower
EERs in comparison with [5]. Even in the key stolen sce-
nario, we see improvements in performance which is pos-
sibly due to better placement of reference biometric hash
vectors in the space of all possible hashes.

4. Conclusion

In this paper, we propose a novel biometric hashing scheme
based on the proposed quantization method that maximizes
the row and the column separation of the code matrix as in
ECOC classifiers. We maximize the distance between the
genuine-impostor pairs as well as decrease the correlation

between the bit positions in biometric hash vectors belong-
ing to different users. The proposed method has superior
performance in comparison with [5]. The proposed quanti-
zation method can be applied to the other biometric hashing
schemes that employs various feature extraction techniques.
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