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Thresholding Based on Maximum Weighted Object Correlation for
Rail Defect Detection
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SUMMARY Automatic thresholding is an important technique for rail
defect detection, but traditional methods are not competent enough to fit
the characteristics of this application. This paper proposes the Maxi-
mum Weighted Object Correlation (MWOC) thresholding method, fitting
the features that rail images are unimodal and defect proportion is small.
MWOC selects a threshold by optimizing the product of object correla-
tion and the weight term that expresses the proportion of thresholded de-
fects. Our experimental results demonstrate that MWOC achieves mis-
classification error of 0.85%, and outperforms the other well-established
thresholding methods, including Otsu, maximum correlation thresholding,
maximum entropy thresholding and valley-emphasis method, for the appli-
cation of rail defect detection.
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1. Introduction

Defect inspection for rail head surface is one of the most
important tasks for railway maintenance. To efficiently de-
tect such defects, inspection systems based on computer vi-
sion have been attracting more and more attention [1], [2].
These systems capture rail surface images with a high-speed
line-scan digital camera and automatically inspect the im-
ages using a customized image processing software. For the
captured images, intensity is the most distinguishing fea-
ture that can be relied on to detect defects, and thresholding
techniques are potential tools for segmenting defects from
background.

Thresholding algorithms automatically select an opti-
mal gray-level value according to certain criterion to sep-
arate objects of concerned from background in an image.
It is a fundamental technique for image segmentation, and
many methods have been proposed in literature [3]. Many
universal thresholding methods can be applied in defect de-
tection. Nacereddine et al. [4] compared four traditional
thresholding methods for weld defect detection, includ-
ing Otsu method [5], Maximum Entropy thresholding (ME)
approach [6], minimum error thresholding [7] and moment
preserving method [8], and found that ME approach was
the best. Yen et al. [9] put forward the Maximum Correla-
tion (MC) criterion to substitute for maximum entropy. MC
thresholding can achieve comparable performance to ME
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method, but it is faster than the latter.
Most universal thresholding approaches, however, are

not perfect for defect detection, and some revisions were
made to fit the characteristics of this application. Ng [10]
put forward the Valley-Emphasis Method (VEM). VEM se-
lects a threshold that has a small probability of occurrence,
and meanwhile maximizes the between-class variance as in
Otsu [5] method. VEM is verified to be an effective revision
of Otsu method for applications of defect detection.

Though there are many thresholding methodologies
can be adopted for rail defect detection, they face challenges
for this application because of the following factors.

1. The rail images are unimodal distribution as shown in
Fig. 1 (a). As we known, Otsu and many other methods
are weak for unimodal images [3].

2. The proportion of defects is always small for a railway
in service, even zero for most rail images. VEM [10]
restricts a threshold to locate at a valley with a low oc-
currence frequency, but it cannot guarantee the defect
proportion to be small.

Taking these factors into account, this paper puts for-
ward the Maximum Weighted Object Correlation (MWOC)
thresholding method. The basic idea of MWOC is to
maximize the product of object correlation and exponen-

Fig. 1 (a) The PMF of the normalized image in the middle of Fig. 2. (b)
The object correlation CO(t). (c) The background correlation CB(t). (d)
The sum of object and background correlation. (e) The weight curve W(t).
(f) The weighted object correlation WOC(t). The red points denote the gray
level of the curve peak.
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Fig. 2 Examples of thresholding result with the five methods. (a) Original rail images. (b) Normalized
images. (c) Otsu. (d) VEM. (e) MC. (f) ME. (g) MWOC. For the left image, the thresholds of Otsu,
VEM, MC, ME and MWOC are 134, 140, 105, 99 and 98 respectively; they are 128, 104, 97, 102 and
61 for the middle image; and they are 155, 158, 151, 146 and 61 for the right image.

tially tuned proportion of thresholded background. MWOC
can achieve a threshold that maximizes the correlation
and meanwhile keeps the proportion of defects in a low
level. Our experimental results validate the advantages of
MWOC for rail defect detection, compared with other well-
established thresholding methods.

2. The MWOC Thresholding Method

Consider a 256 gray-level image and its histogram or Prob-
ability Mass Function (PMF) PG ≡ {pi|i ∈ [0, 255]}, where
pi denotes the normalized frequency of gray level i. For a
given gray level t, its cumulative probability is given by

P(t) =
∑t−1

i=0
pi. (1)

If P(t) is greater than zero and less than one, t refers to a
threshold dividing pixels into two classes O = {0, 1, · · · , t −
1} and B = {t, t + 1, · · · , 255}. O and B often denote objects
of interested and background, respectively. The PMFs of O
and B can be derived from PG as follows:

PO(t) ≡
{

p0

P(t)
,

p1

P(t)
, · · · , pt−1

P(t)

}
,

PB(t) ≡
{

pt

1 − P(t)
,

pt+1

1 − P(t)
, · · · , p255

1 − P(t)

}
.

The correlations of PO and PB are defined as

CO(t) = − ln
t−1∑
i=0

(
pi

P(t)

)2

, (2)

CB(t) = − ln
255∑
i=t

(
pi

1 − P(t)

)2

. (3)

According to MC criterion [9], an optimal threshold t∗

should maximize the sum correlation of CO and CB, and is
computed by

t∗ = arg max
t∈[0,255]

(CO(t) +CB(t)). (4)

As discussed in Sect. 1, rail images have two charac-
teristics: 1) unimodal histogram; 2) small defect proportion.
Fitting these characteristics, MWOC obtains a threshold that
maximizes the object correlation CO(t) and keeps the defect
proportion in a low level meanwhile.

On one hand, the unimodal PG greatly impacts the fea-
ture of PO(t) and CO(t). We obtain the following observation
from our dataset.

• PO(t) is likely to approximate a uniform distribution for
small t, since most pixels with gray level i < t are noise
or defects. It derives small CO(t).
• PO(t) becomes a non-Gaussian distribution with a high

tail for t near the peak of PG, and generates large CO(t).
• PO(t) approximates a normal distribution for large t and

gets a little changed CO(t).

Figure 1 (b) shows the curve of CO(t) for the image in the
middle of Fig. 2. We can observe that the value of CO(t)
increases with the rise of t for t < 103, whereas it become
somewhat flat for t > 103. On the contrary, CB(t) is flat for
low t and decreases with large t, as illustrated in Fig. 1 (c).
As a result, the change of the sum correlation in (4) is dom-
inated by that of CO(t) when t falls in a low range. Fig-
ure 1 (d) illustrates the curve of the sum correlation. So we
take CO(t) as the criterion instead of the sum. This substitu-
tion has two advantages: 1) CO(t) restricts the threshold in a
low gray-level range implicitly, because its maximum often
locates at the left side of a histogram peak; 2) it is simpler
and need less computation than the sum correlation.

On the other hand, a weight is assigned to CO(t) to keep
the thresholded defect proportion be small. The defect pro-
portion equals to the cumulative probability P(t) in (1) since
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pixels with gray level i < t are divided into defects. Gener-
ally, a preferred threshold t derives a low P(t), or equiva-
lently a large (1− P(t)) that denotes the background propor-
tion. In addition, we add an exponential parameter α to the
background proportion in order to tune its significance. So
the weight function W(t) is defined as

W(t) = (1 − P(t))α. (5)

Figure 1 (e) illustrates the curve of W(t) with α = 15. W(t)
is a monotonically decreasing function. Especially, the de-
creasing slope is high when t takes a low value, though it is
very flat for great t. Note that this slope can be tuned by α
and more discussion about α is seen in Sect. 3.

Multiplying these two terms, the Weighted Object Cor-
relation (WOC) is defined as

WOC(t) = CO(t)(1 − P(t))α. (6)

Further, the formulation for the MWOC thresholding is
given by

t∗ = arg max
t∈[0,255]

(WOC(t)). (7)

Figure 1 (f) presents the curve of WOC, which shows no-
tably different shape compared with Fig. 1 (b) and Fig. 1 (d).
The obtained threshold is lower than those of CO and MC
thresholding, and achieves better segmentation results as
shown in the middle of Fig. 2.

3. Experiments and Analysis

In the experiments, we first compare the proposed MWOC
with Otsu [5], ME [6], MC [9] and VEM [10], and then ana-
lyze the influence of the parameter α.

The dataset comprises 100 rail images that are captured
by a Dalsa Spyder-2 line-scan camera in actual railways.
There are 80 images with defects and 20 images without
defect. The images with defects were manually labeled and
converted to binary images as ground-truth. Note that all
images are cropped with size 140 × 1120 and preprocessed
by a local normalization procedure [11] as following:

L(x,y) =
F(x,y) − μy

σy
, (8)

where L(x,y) and F(x,y) are the normalized value and gray-
level value at position (x, y) respectively, and μy and σy de-
note the mean and standard variance of gray values in the
line Y = y.

We evaluate the thresholding performance with the
widely used misclassification error (Err) [10], [12], which is
defined as

Err = 1 − |BG ∩ BT | + |FG ∩ FT |
|BG | + |FG | ,

where BG and FG denote the background and foreground of
the ground-truth image, BT and FT denote the background
and foreground in the thresholded image, and | · | is the car-
dinality of the set.

3.1 Comparison of Performance

Figure 2 shows three examples of thresholding result for
the five methods. MWOC achieves the smallest thresh-
olds, which bring out the best segmentation results. Espe-
cially, all methods except MWOC get too high thresholds
and wrongly separate most of background into defect for the
right image in Fig. 2. We have to note that most rail images
are defect-free for a rail system in service and WMOC can
avoid wrong alarm compared with MC and ME from a view-
point of practical use. VEM gets larger thresholds than Otsu
for the left and right images. This is because the weight term
(1 − p(t)) of VEM is based on occurrence probability p(t).
This weight just makes threshold t prefer to a valley value
in a histogram, but the defect proportion may be large. On
the contrary, the weight (1−P(t)) of MWOC is a cumulative
probability and it is able to restrict the defect proprotion in
a low level.

We further compare the thresholding performance of
these methods by misclassification error. Table 1 presents
the average misclassification error for the five methods on
the dataset. From this table, we can observe that MWOC
overwhelms the other methods and gets a very small mis-
classification error. VEM is better than ME, MC and Otsu,
because it benefits from the weight (1 − p(t)) for most im-
ages whereas it may get worser thresholds occasionally. ME
and MC are better than Otsu, since they are more suitable to
unimodal images than Otsu as discussed in [3].

3.2 Influence of Parameter α

The parameter α of the weight function in (5) is an impor-
tant factor impacting the performance of MWOC, because
it tunes the significance of the background proportion in (6).
Figure 3 (a) illustrates the curve of average Err on the im-

Table 1 Average misclassification error for the five methods.

Otsu VEM MC ME MWOC
Err 0.1361 0.0502 0.0538 0.0513 0.0085

Fig. 3 (a) The curve of misclassification error for parameter α. (b) Ob-
ject correlation function CO(t). (c) Weight function W(t). (d) Weighted
object correlation function WOC(t).
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age set for different α. From this figure, we can find that
Err decreases with the rise of α for α < 15, and then it in-
creases for somewhat greater α. Lastly, it gets close to the
constant that is the average defect proportion of the dataset.
This result can be explained from two aspects.

First, the object correlation is regarded as a criterion,
and background proportion is a dynamic weight, which is
tuned by α. A large α generates a W(t) that decreases very
fast in the low range of t. Such deep W(t) pushes the peak
of WOC(t) towards the low range of gray level, and a small
t∗ is obtained. A small α derives a W(t) that changes little
in the low range of t, and the WOC(t) is dominated by CO.
So a large t∗ is gotten. An appropriate α can bring out a
good trade-off between background proportion and object
correlation, and achieve the best threshold. Figure 3 (c) and
Fig. 3 (d) show the curves of W(t) and WOC(t) with different
parameter α for the middle image in Fig. 2.

Second, taking the logarithm of (6), we can get

LWOC(t) = ln CO + α ln (1 − P(t)). (9)

There are two terms: ln CO and ln (1 − P(t)). The former
expresses the object correlation, and the latter represents the
background (or defect) proportion. The weight α tunes the
significance of the latter. There should be a trade-off be-
tween these two terms, for example, α = 15 in our experi-
ments.

4. Conclusion

This paper has put forward the maximum weighted ob-
ject correlation thresholding method, fitting the character-
istics of rail defect detection, such as unimodal histogram
and small defect proportion. MWOC selects a threshold
that maximizes the thresholded object correlation and also
keeps the defect proportion in a low level. Our experi-
mental results validate that WMOC is an attractive thresh-
olding method for rail defect detection with misclassifica-
tion error of 0.85%, and it outperforms Otsu [5], maximum
entropy [6], maximum correlation [9] and valley-emphasis
method [10].
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