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Speeding Up the Orthogonal Iteration Pose Estimation

Junying XIA†, Xiaoquan XU†, Qi ZHANG†, Nonmembers, and Jiulong XIONG†a), Student Member

SUMMARY Existing pose estimation algorithms suffer from either low
performance or heavy computation cost. In this letter, we present an ap-
proach to improve the attractive algorithm called Orthogonal Iteration. A
new form of fundamental equations is derived which reduces the computa-
tion cost significantly. And paraperspective camera model is used instead
of weak perspective camera model during initialization which improves the
stability. Experiment results validate the accuracy and stability of the pro-
posed algorithm and show that its computational complexity is favorably
compare to the O(n) non-iterative algorithm.
key words: pose estimation, orthogonal iteration, paraperspective camera
model

1. Introduction

Pose estimation of a calibrated camera with respect to a ref-
erence frame is a basic and important problem in computer
vision, which is widely used in visual navigation, robot lo-
calization, photogrammetry and other areas. Usually, it is
also known as Perspective-n-Point (PnP) problem, where
the objective is to estimate the position and orientation of
the camera based on a set of correspondences between 3D
reference points and their images.

Many solutions for this problem have been developed
during the past decades, which can be divided into two cat-
egories: non-iterative and iterative algorithms. The tradi-
tional non-iterative algorithms adopt various methods that
yield algebraic solutions, with the complexity varies be-
tween O(n2) [1] and O(n8) [2]. They are sensitive to addi-
tive noise and possible outliers. The classical iterative al-
gorithms use nonlinear optimization algorithms to improve
the accuracy of pose estimation. However, they rely on a
good initial guess to converge to the correct solution and are
time consuming. To overcome the problem of traditional
algorithms, linear iterative algorithms have been presented
which are both faster and more robust.

The Orthogonal Iteration (OI) algorithm proposed by
Lu [3] is one of the fastest and most accurate among these
iterative algorithms. But it is still not fast enough in real-
time applications with larger number of points, besides,
it sometimes converges to local minima as pointed out in
[4]. Recently, Noguer [4] introduced the non-iterative Ef-
ficient Perspective-n-Point algorithm (EPnP) to compute
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the camera pose in O(n) time. However, the pose estima-
tion accuracy remains lower than linear iterative algorithms.
Hatem [5] present a convex relaxation method that globally
solves for the camera pose in O(n) time. But their experi-
ments show that the computing cost is lower than OI only
when the number of points is larger than about 100.

In this letter, we propose an approach that improves
both the speed and stability of OI. First, by reforming the
equation for computing the optimal translation vector and
other equations, the speed of the proposed approach is fa-
vorable compare to EPnP. Second, by introduce an initial
approach based on paraperspective camera model, it is more
stable than OI with a higher converging speed.

2. Orthogonal Iteration Pose Estimation

For making this letter more self-contained, we briefly ex-
plain OI algorithm in this section.

Assume the camera is calibrated, given a set of cor-
respondences between reference points pi (i = 1, . . . , n)
in 3D space and their associated images, the image point
vi = (xi, yi, 1)T which is the projection of pi on the normal-
ized image plane can be computed [3]. Then the objective
of pose estimation can be achieved through minimizing the
object space error as follows

min
R,t

E(R, t) =
n∑

i=1

‖ei‖2 =
n∑

i=1

‖(I − Vi)(Rpi + t)‖2 (1)

where R is a rotation matrix, t represents a 3D translation
vector, and Vi = (vivT

i )/(vT
i vi) is the line-of-sight projection

matrix of vi.
Since Eq. (1) is quadratic in t, given a fixed R, the op-

timal value for t can be computed in closed form as

t(R) = −
⎛⎜⎜⎜⎜⎜⎝

n∑
i=1

(I − Vi)

⎞⎟⎟⎟⎟⎟⎠
−1 n∑

i=1

(I − Vi)Rpi

de f
= F

n∑
i=1

(I − Vi)Rpi (2)

The initial value R0 is obtained uses a weak perspec-
tive approximation [3]. Then R is computed iteratively as
follows: First, assume the kth estimate of R is Rk, tk = t(Rk)
and qi = Vi(Rkpi+tk). The next estimate Rk+1 is determined
by solving the following absolute orientation problem

Rk+1 = arg minR

n∑
i=1

‖(Rpi + t) − qi‖2 (3)
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Define

M =
n∑

i=1

q′ip
′T
i =

n∑
i=1

(qi − q̄)(pi − p̄)T (4)

where p̄ and q̄ are the centroid of {pi} and {qi} respectively.
Let UT MV = S be a SVD of M, the solution to Eq. (3)

is Rk+1 = VUT . When the data is severely corrupted, this
may give a reflection with det(Rk+1) = −1, which can be
corrected use the method in [6]. Then the next estimate of
translation is computed using Eq. (2), as tk+1 = t(Rk+1), and
the process is repeated.

3. Improvements of Orthogonal Iteration Algorithm

The mainly redundancy of OI is in the computer process to
obtain tk,which need n matrix multiplications. By introduc-
ing Kronecker product (⊗) and the vec operator [7], Eq. (2)
is reformed as

t(R) = F
n∑

i=1

(I − Vi)(pT
i ⊗ I)vec(R)

de f
= Gvec(R) (5)

The value of G can be precomputed before the iterations,
thus the computation of tk is simplified to only one multipli-
cation between a matrix and a vector.

Besides, there are another two equations can be re-
formed, which slightly cut down the overall computing cost:
First, qi can be effectively computed as

qi =
vivT

i

vT
i vi

(Rkpi + tk) = (vT
i (Rkpi + tk))

vi

vT
i vi

(6)

Second, computation time cost by the calculation of q′i can
be totally omitted by using Eq. (7) instead of Eq. (4).

M =

n∑
i=1

qi(pi − p̄)T −
n∑

i=1

q̄(pi − p̄)T

=

n∑
i=1

qi(pi − p̄)T =

n∑
i=1

qip
′T
i (7)

Whenever the 3D reference points are projected onto a
small region on the side of the image, the weak perspective
approximation used in the initial stage of OI is poor and may
lead to instability [4] or a slowly converging process. How-
ever, in this situation, the paraperspective camera model can
provide a good approximation given a proper choice of the
origin [8]. So we use paraperspective instead of weak per-
spective to calculate the initial value of R.

Select the closest image point to the centroid of {vi} as
the origin v0 = (x0, y0, 1)T , and the corresponding reference
point as the origin p0. The initial value of R, R0 = [i j k]T ,
can be computed as follows [8]: First, solve the two over-
constrained linear system of Eq. (8) to get an estimation of
intermediate variables Ip and Jp{

xi − x0 = Ip · (pi − p0)
yi − y0 = Jp · (pi − p0)

(8)

Then, the rows of R0 can be calculated as⎧⎪⎪⎪⎨⎪⎪⎪⎩
k = (I − tzy0S (Ip) + tzx0S (Jp))−1t2

z (Ip × Jp)
i = tzIp + x0k
j = tzJp + y0k

(9)

where

tz =
1
2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
1 + x2

0

‖Ip‖ +

√
1 + y2

0

‖Jp‖

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (10)

4. Experimental Results

In this letter we consider a comparative performance analy-
sis of: the OI algorithm of [3], denoted as LHM, the EPnP
algorithm of [4] denoted as EPnP, and the proposed algo-
rithm denoted as SUOI. All algorithms are carried out on
PC with Pentium 2.4 GHz CPU, Matlab2010b environment.
Programs for the LHM and EPnP are obtained from their
respective web sources. The LHM algorithm is enhanced
with the method in [6], and the EPnP algorithm is always
executed with the Gauss-Newton fine-tuning enabled. As
our algorithm is coded in a vectorizing form, it is inherently
more efficient than LHM and EPnP which use loops. To
make the comparison fair, the loops of these two algorithms
are vectorized.

We produced synthetic 2D image points in a 640× 480
image acquired using a virtual calibrated camera with an ef-
fective focal length of fu = fv = 750 and a principal point
at (uc, vc) = (320, 240). The 3D reference points are se-
lected using a uniform distribution within a cubic box and
then transformed to a randomly generated pose. The images
points must also lie within the field of view, therefore any
pose that makes any points project outside the image plane
is discarded. Each projected image point is then subjected
to Gaussian noise of varying standard deviations and then
quantized by rounding its coordinate to the nearest integer.

Given the true camera rotation Rtrue and translation
ttrue, the error metric of the estimated rotation R is defined

by Erot = 2 arccos(q0), where q0 = 0.5
√

1 + tr(RRT
true) [5],

and the relative error of the estimated translation t is deter-
mined by Etrans = ‖ttrue − t‖/|t‖.

We first analyze the speed of the three algorithms by
recording the average computation time of 1000 runs. In
fact, the speed comparison in [4] may be unfair to LHM, be-
cause the original LHM codes suffer greatly from the poor
coding form, while the original EPnP codes do not have so
much trouble due to its simplicity. However, as shown in the
left side of Fig. 1, the computational cost of LHM remains
much higher than EPnP after vectorization. The proposed
method is even a little more fast than EPnP, which is known
to be fast, when the number of reference points is small
than about 200. When the number of reference points be-
comes even larger, EPnP gradually shows better efficiency.
For further comparison with LHM, we plot the average iter-
ation numbers of LHM and our method in the right side of



LETTER
1829

Fig. 1 Average computation times and number of iterations for experi-
ments with different number of points under a fixed noise level of 5 pixels.

Fig. 2 Mean and median rotation and translation errors for experiments
of a fixed six-point configuration under different noise levels.

Fig. 1. Thanks to the paraperspective based initial method, it
is clearly that our method needs fewer iterations to converge
to the optimal pose than LHM.

To compare the accuracy and stability of the three al-
gorithms, experiments were performed under 11 different
noise levels from 0 to 5 pixels, and all the plots discussed
here were created by running 300 independent simulations.
Figure 2 displays the pose estimation accuracy for a fixed
six-point configuration. From Fig. 2 the EPnP performance
accuracy is clearly poor even for pixel errors as small as
0.5, while LHM and our method give a favorably similar
accuracy. Actually, the trouble that LHM may produce neg-
ative det(R) has been corrected well by the method in [6],
while EPnP sometimes gives wrong result with negative tz,
especially when the point number is small. This may be
the main reason that the mean errors of EPnP are so glaring
compared to LHM. The mean rotation errors of our method
is small than LHM with almost equivalent median rotation
errors, which validates the instability of LHM. Figure 3 dis-
plays the pose estimation accuracy for configurations with
different point numbers under a fixed noise level of 5 pixels.
As point number grows, the performances of all the three
methods become better, especially EPnP. One thing should
be noticed is that, the advantage of our method compare to
LHM exhibits only when point number is very small.

Fig. 3 Mean rotation and translation errors for experiments with different
number of points under a fixed noise level of 5 pixels.

5. Conclusion

In this letter, we proposed to improve the performance of the
Orthogonal Iteration method by reforming its equations and
adopting a different initialization method. Through the ex-
perimental results with synthetic camera images, we verified
that the proposed method gives as accuracy but more stable
results than OI method, and its computation cost is even less
than the most recent O(n) non-iterative EPnP method with a
moderate point set. This approach is well-suited for vision
applications where both efficiency and accuracy are desired.

This algorithm can also be easily extended to line-
based Orthogonal Iteration pose estimation problems [9].
Currently, we are trying to extend the proposed method to
the planar case and analyze the performance of it in more
detail.
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