
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.7 JULY 2012
1839

PAPER

DISWOP: A Novel Scheduling Algorithm for Data-Intensive
Workflow Optimizations

Yuyu YUAN†,††, Nonmember, Chuanyi LIU†,††a), Member, Jie CHENG†††, and Xiaoliang WANG†, Nonmembers

SUMMARY Execution performance is critical for large-scale and data-
intensive workflows. This paper proposes DISWOP, a novel scheduling
algorithm for data-intensive workflow optimizations; it consists of three
main steps: workflow process generation, task & resource mapping, and
task clustering. To evaluate the effectiveness and efficiency of DISWOP,
a comparison evaluation of different workflows is conducted a prototype
workflow platform. The results show that DISWOP can speed up execution
performance by about 1.6-2.3 times depending on the task scale.
key words: workflow optimization, task clustering, process expression,
Differential Evolution algorithm

1. Introduction

In a data-intensive workflow, a process is large-scale, I/O
intensive and fine-grained, which leads to several execution
challenges. For example, the complexity of the workflow
execution is directly dependent on the task scale, so the
large-scale workflows have to face the constraints of exe-
cution performance. Moreover, a data-intensive workflow
is usually described with XML and stored as a Directed
Acyclic Graph (DAG), thus the storage alone will be very
costly, as well as the communication cost consumed for in-
termediate data I/O from one computing site to another. Fur-
thermore, since the computation resources are shared and
distributed and often managed using queue-based manage-
ment systems, tasks are usually processed with queuing in a
resource site, which leads to a great deal of extra time con-
sumed by queue waiting [2]. Sometimes the queuing wait-
ing time is much more than the execution time. To address
these issues, we propose DISWOP: a novel scheduling al-
gorithm for data-intensive workflow optimization.

Up to now, workflow structure transformation has been
researched to satisfy three kinds of motivations. Firstly,
for the flexibility and parallelism in distributed execution
environment [3]–[6]; secondly, for the execution feasibil-
ity in resource-constrained execution environments [7], [8];
thirdly, for the workflow structure simplification that is con-
venient for the process understanding and analysis [9], [10].

Manuscript received September 16, 2011.
Manuscript revised March 13, 2012.
†The authors are with Software School, Beijing University of

Posts and Telecommunications, Beijing, China.
††The authors are with the Key Laboratory of Trustworthy Dis-

tributed Computing and Service (BUPT), Ministry of Education,
Beijing, China.
†††The author is with the School of Computer Science and Tech-

nology, ShanDong University, Jinan, China.
a) E-mail: cy-liu04@mails.tsinghua.edu.cn (Corresponding au-

thor)
DOI: 10.1587/transinf.E95.D.1839

Yet these methods are not suitable for data-intensive work-
flows where large number of tasks have a strong impact on
the execution performance. To this end, structure optimiza-
tion in data-intensive workflow is a new topic. In this field,
Pegasus [2], [11] first presented the concept of performance
optimization, where tasks are grouped into clusters by level-
based or label-based approaches so as to be executed as a
single task. But in their approaches, tasks to be clustered
need be statically specified in advance, which is not reason-
able in most workflow applications, thus they can not auto-
matically determine the clustering granularity.

This paper focuses on workflow optimization for data-
intensive structured workflow. The objective is to minimize
the whole completion time that comprises not only the ex-
ecution time but also the queue waiting time as well. The
contribution of this paper is that: (1) we propose the con-
cept of workflow process expression in term of the charac-
teristics of structured workflows, which can greatly reduce
the storage cost and computing complexity. We also present
an algorithm to transform a DAG into a process expression.
(2) Based on the workflow process expression, we put for-
ward an approach to process structure optimization. The
proposed approach includes two steps: first, map the tasks
into available resources based on Differential Evolution al-
gorithm; and simplify the workflow structure by task clus-
tering.

The rest of this paper is organized as follows. In Sect. 2,
the problem to be solved is formulated. The concept of pro-
cess expression and the problem model are introduced here.
In Sect. 3, the workflow optimization approach is described
in details. Section 4 contains the experiments and the anal-
ysis of experimental results. Section 5 concludes the paper
and gives some research perspectives.

2. Problem Formulations

2.1 Related Concepts

A task t in a workflow is a logical computing unit with
atomic execution semantic, which is formally defined as
tid = (ca, input, output, type), where,

• id is the globally unique identifier for the task;
• ca denotes the computing scale, which represents the

computation cost or complex degree;
• input and output denote the input and output parame-

ters respectively;

Copyright c© 2012 The Institute of Electronics, Information and Communication Engineers

1840
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.7 JULY 2012

• type is the task type, which can be a split, a join or a
simple task. A split or a join task describes the kind
of tasks which have more than one successor or more
than one prior tasks respectively; whereas a simple task
only has one prior and one successor.

For the simplicity of description, we use notation a.b
to express the attribute b of concept a throughout the rest of
the paper. For example, t.input denotes the input parameters
of task t.

A workflow process is defined as P = (T, E), where,

• T = {ti|i = 1, 2, . . . , n} is a set of tasks, where n is the
number of tasks. It is assumed that a workflow always
has one unique starting task t1, and one unique end task
tn;
• E = {ei, j|ti, t j ∈ T }, where ei, j = ti.output ∩ t j.input,

denotes the relations between task ti and t j, which is
calculated by the data amount that task ti transfers to
t j. ti is called the prior task of t j, and t j is the successor
task of ti. Normally, the data amount between two tasks
is given when a workflow process is defined.

In this paper, a workflow process is defined according
to the following rules:

1: A single task is a process.
2: If P1 and P2 are processes, then P1 → P2 is a pro-

cess, where connector→ denotes sequential relationship.
3: If P1 and P2 are processes, then P1 ∗ P2 is a process,

where connector ∗ expresses parallel relationship.
According to this recursive definition, a process can be

refined by replacing a task with sequential or parallel struc-
ture level by level. We call a workflow process generated by
this way a structured workflow.

A workflow process is normally represented as a Di-
rected Acyclic Graph (DAG), where vertexes and directed
arcs express the tasks and the dependence relations respec-
tively. Figure 1 shows an instance of structured workflows
and non-structured workflows.

Fig. 1 Workflow instances.

Process Expression (PE) of a workflow process P, de-
noted as PE(P), is the abstract representation of the work-
flow structure in term of the process definition. For exam-
ple, the process expression of process P shown as Fig. 1 (a)
can be expressed as: PE(P) = t1 → t2 → (t3 → (t4 ∗ t5) →
t6 ∗ t7 → t8)→ t9. It is assumed that connector→ has higher
precedence than ∗. For simplicity, a process expression can
be simplified by omitting the sequence connector →, then
PE(P) can be simplified as: PE(P) = t1t2(t3(t4∗t5)t6∗t7t8)t9.

As we can see, by means of process expression, a work-
flow can be described with a one-dimensional link list or
array instead of adjacency matrix or adjacent table, which
will greatly reduce the time complexity and space complex-
ity. This is especially meaningful in data-intensive workflow
applications.

A resource r is a computation resource defined as rid =

(ab, S), where,

• id is the globally unique identifier for the resource;
• ab is the execution capability of r;
• S is the set of tasks can be executed by r.

Let R = {ri|i = 1, 2, . . . ,m} be the set of available re-
sources, where m is the number of resources, thus the pre-
condition that a process P = (T, E) can be executed by re-
source R is that

⋃m
i=1 ri.S = T .

Let D = (di j)m×m express the communication distance
matrix among the execution resources, in which di j denotes
the communication distance between ri and r j. It is assumed
that di j = d ji and di j = ∞ if ri and r j are unreachable.

A task block v is a sub-graph of the original workflow
DAG, denoted as vid = {t1, t2, . . . , tk}, where k is the number
of tasks contained in v. Let V denote the set of blocks. It is
assumed that the task blocks satisfy the following polities:

• ∀t ∈ T , ∃v ∈ V , such that t ∈ v
• ⋃v∈V v = T
• ∀vi, v j ∈ V and i � j, then vi ∩ v j = φ

Additionally, a task block must be of the structure de-
fined as a structured workflow, and all tasks contained in a
block must be executed in a same resource.

Given a workflow process P(T, E), the dependence re-
lationship L between two task blocks vi and v j is defined as:
L = {〈vi, v j〉|(∃tp ∈ vi) ∧ (∃tq ∈ v j) ∧ (〈tp, tq〉 ∈ P.E)}. The
process P can be simplified as P = (V, L).

To sum up, the relationship among process, task
blocks, tasks and resource can be shown as Fig. 2, from
which we can see, there is a many-to-many mapping be-
tween T and R, as well as V and R.

2.2 Problem Model Description

Based on the concepts mentioned above, we describe the
problem model of workflow optimization as follows.
Input: The given process P(T, E), resource set R and com-
munication distance matrix D.
Output: The process P(V, L) and the mapping relation be-
tween V and R: Ψ(V)→ R.

YUAN et al.: DISWOP: A NOVEL SCHEDULING ALGORITHM FOR DATA-INTENSIVE WORKFLOW OPTIMIZATIONS
1841

Fig. 2 Relationships among process, blocks, tasks and execution resource. (The directed broken line
from resource ri to task t j expresses that t j ∈ ri.S)

Objective: The minimal completion time of the whole
workflow, which comprises queue waiting time, execution
time and communication time. In general, as a user of ser-
vice resources, the overall queue waiting time is mainly re-
lated to the number of blocks and the average queue waiting
time of a computing unit. Whereas, the execution time and
communication time depend on the task planning strategy.

3. DISWOP Algorithm

In this section, we will detail DISWOP algorithm for struc-
tured workflow process optimizations, which includes the
following steps:

Step1: Generate the process expression for the original
workflow, as PE(P);

Step2: Map the tasks into available resources;
Step3: Schedule the process expression and regenerate

an optimized workflow process.

3.1 PE Generation

Generation of the process expression is a key step of the
whole problem. It is closely related to the follow-up steps.
Here, we set a stack and a two-way queue to save the ver-
texes (tasks) of the DAG of the given process P and the
PE(P) respectively. We transforming a DAG into its pro-
cess expression by such a way that, from the start task to
the end one, push a vertex into the stack; if the stack is not
empty, pop a vertex ti from the stack and enter ti into the
queue according to ti.type, and then, push all of the succes-
sors of ti into the stack. In this procedure, if ti is a join-node
(indegree(ti) > 1), its visit frequency visits(ti) will be recal-
culated. If visits(ti) = indegree(ti), ti will be pushed into
the stack; otherwise, the connector ∗ will be entered into the
queue. This procedure will continue until the stack is empty,
then PE(P) can be output from the queue. The description
of the algorithm mentioned is as Fig. 3.

Fig. 3 Process expression generating algorithm.

1842
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.7 JULY 2012

3.2 Tasks and Resources Mapping

Task planning here is to search an optimal mapping between
tasks and the execution resources, with the objective of min-
imizing the execution and communication time. In this pa-
per, we employ discrete Differential Evolution (DE) algo-
rithm to address the problem.
(1) Solution Representation
For the resource allocation, we denote the target popula-
tion, which is a potential solution of the problem, with an
n-dimensional vector Xi = (xi,1, xi,2, . . . , xi,n), where, xi, j, the
jth dimension of the vector, represents a service resource in
which task t j can be executed. Thus the vector represents
a sequence of resources. The order of xi, j in Xi should be
set as the order of t j in the process expression PE(P). For
each task ti, its corresponding resource will be chosen in
a resource set in which each execution resource r satisfies
ti ∈ r.S .
(2) Fitness Calculation
According to the problem model, the fitness function should
take into account the execution and communication cost,
which is defined as formula (1):

Fitness(Xi) = α ·
n∑

j=1

t j.ca

xi, j.ab
+ (1 − α) ·

∑

ei, j∈E

ei, j

dxi,i,xi, j

(1)

where, α(0 ≤ α ≤ 1) is the weight of execution cost. The
first term of the formula means the execution time which
tasks are executed on resources. The second term means the
communication time between two tasks. So the fitness func-
tion expresses the total time which includes the execution
time and the communication time of the workflow.
(3) Mutation and Crossover Operations
Assumed that Xk

i = (xk
i,1, x

k
i,2, . . . , x

k
i.n) represents an indi-

vidual of the kth generation, in which the best solution is
denoted as Gk = (gk

1, g
k
2, . . . , g

k
n). The main idea of DE algo-

rithm is that each individual Xk
i will compete with a trial one

Uk
i = (uk

i,1, u
k
i,2, . . . , u

k
i.n) by comparing their fitness function

value to determine who can survive for the next generation.
According to the DE/rand/1/bin schemes of Storn [12], the
trial vector Uk

i is generated as follows:

uk−1
i, j

=

⎧⎪⎪⎨⎪⎪⎩
xk−1

a, j + F · (xk−1
b, j − xk−1

c, j), if r < CR or j = D(j)

xk−1
i, j , otherwise

(2)

where Xk−1
a , Xk−1

b and Xk−1
c are three different individuals

which are randomly chosen from the (k − 1)th generation
population; F is the mutation factor which will affect the dif-
ferential variation between the two individuals; r is an uni-
form random number between 0 to 1, CR is a user-specified
crossover constant in the range [0, 1), and D(j) is a randomly
chosen integer in range {1, 2, . . . , n} to ensure that the trial
vector Uk−1

i differs from Xk−1
i by at least one parameter [13].

Fig. 4 Resource allocation algorithm.

Finally, Xk
j will be determined as formula (3).

Xk
j =

⎧⎪⎪⎨⎪⎪⎩
Uk−1

j , If Fitness(Uk−1
j) < Fitness(Xk−1

j)

Xk−1
j , otherwise

(3)

Obviously, the scheme above can not be directly ap-
plied in the discrete optimization problems. Instead, ref-
erencing [14], we propose a discrete DE algorithm for the
resource allocation. The mutation and crossover operation
of the algorithm are defined as follows.

Uk
i = F1(c1, X

k−1
i , F2(c2,G

k−1, F3(t, Xk−1
a , X

k−1
b))) (4)

Equation (4) consists of three components. The first
one is Pk = F3(t, Xk−1

a , X
k−1
b), in which, Xk−1

a , Xk−1
b are two

different individuals (a � b � i) randomly chosen from the
(k − 1)th generation population; t is the mutation strength;
and F3 is the crossover operator which is conducted in such
way that, generate a uniform random start number e between
1 and n, and then determine the Pk = (pk

1, p
k
2, . . . , p

k
n) as

follows.

pk
i =

⎧⎪⎪⎨⎪⎪⎩
xk

a,i, if e ≤ i < e + t

xk
b,i, otherwise

(5)

The second component is Rk = F2(c2,Gk−1, Pk), where
Gk−1 is the best individual of the (k − 1)th generation pop-
ulation; c2 is the mutation probability, and F2 is the muta-
tion operator which is employed to accept information from

YUAN et al.: DISWOP: A NOVEL SCHEDULING ALGORITHM FOR DATA-INTENSIVE WORKFLOW OPTIMIZATIONS
1843

Fig. 5 Process clustering. (Circles denote tasks, and squares with differ-
ent colors denote the blocks of different resources)

the global best to the temporary member Pk. That is, if a
uniform random number r generated between (0, 1) is less
than c2, a start number f (1 ≤ f ≤ n) and a length num-
ber e(1 ≤ e ≤ differ(Gk−1, Pk), differ(Gk−1, Pk) represents
the difference between Gk−1 and Pk) will be randomly se-
lected, and then pk

e, p
k
e+1, . . . , p

k
e+ f−1 will be replaced with

gk−1
e , g

k−1
e+1, . . . , g

k−1
e+ f−1.

The third component is Uk
i = F1(c1, Xk−1

i ,R
k), where

c1 is the choice probability, and F1 is the selection operator
which is applied to determine the generation of the trial in-
dividual. If a uniform random number r generated between
(0, 1) is less than c1, there will be Uk

i = Rk, else Uk
i = Xk−1

i .
Finally, the selection is based on the comparison of the

fitness between Uk
i and Xk−1

i such that:

Xk
i =

⎧⎪⎪⎨⎪⎪⎩
Uk

i , if Fitness(Uk
i) < Fitness(Xk−1

i)

Xk−1
i , otherwise

(6)

(4) Algorithm Description
To sum up, the pseudo code of the task planning algorithm
is described as Fig. 4.

Fig. 6 Task clustering.

Table 1 Task blocks and their corresponding resources.

3.3 Task Clustering

Given a process P, according to the algorithm mentioned
above, the optimal solution G = (g1, g2, . . . , gn) gives the
mapping relationship between tasks and resources, that is,
Ψ(ti) = gi. Then the set of blocks can be determined by
following way:

Step1: Substitute ti with Ψ(ti) in PE(P)
Step2: Scan PE(P) from left to right, if there exists such

kinds of characteristic strings: “riri”, “(ri ∗ ri)”, then
cluster it into ri and record the position of the cluster-
ing. This procedure continues until no characteristic
string appears.

Step3: Substitute the ri with a cluster and generate the set
of blocks.

For example, in Fig. 5, the process can be partitioned
into 7 task blocks denoted as v1, v2, v3, v4, v5, v6 and v7. The
clustering procedure is shown as Fig. 6. The structure of the
task blocks and their corresponding resources are illustrated
as Table 1. After the task clustering, the structure of the
process is simplified.

1844
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.7 JULY 2012

4. Experiments

To evaluate the performance of the approach proposed
above, we developed a tool to generate random structured
DAG and the experimental environments. After generating
workflow cases, we brought them into our workflow plat-
form [15]. As to the values of DE parameters, the popula-
tion size M was 30, the mutation strength t is set to 3. c1 and
c2 are taken as 0.75. The maximum generation number K is
set to 50 and the DE algorithm is terminated when the best
solution is not improved in 10 consecutive generations.

4.1 Experimental Environment

(1) Structured Workflow Simulation
According to the process definition mentioned in

Sect. 2, we generate the structured workflows with different
scale by such a way that, start from a single-task structure
process, randomly select the nesting order and nesting depth
of sequence and parallel structures. Two parameters are re-
lated to the subsequent experiments.

• Process scale n, that is, the number of tasks in a pro-
cess.
• The calculation amount difference factor ε. For each

task t, t.ca will be selected from [a, εa], where ε ≥ 1,
and a is the minimum value of t.ca.

(2) Computation Resources Simulation
The execution environment is mainly based on the fol-

lowing parameters:

• The number of available resources m.
• The executing capability difference factor ρ. For each

resource r, r.ab will be randomly selected from [b, ρb],
where ρ ≥ 1, and b is the minimum value of r.ab. Be-
sides, r.S is randomly selected and must be assured that
(r.S � φ) ∧

(⋃m
i=1 ri.S = P.T

)
.

• The communication capability difference factor τ,
which is applied to reflect the communication capa-
bility among different execution resources. All the
communication distance will be selected from [c, τc],
among which τ ≥ 1, and c is the minimum value.

In the experiments, we simulated different execution
environments by changing the value of the parameters
above.
(3) For the convenience of analysis, we also introduce other
two parameters:

• Number of task blocks w, which can be used to reflect
the average granularity of task clustering.
• Resource distribution standard deviation s, which is ap-

plied to reflect the distribution of the tasks among the
resources.

s =
(∑w

i
(π(vi) − π̄)

)1/2
(7)

where π(vi) denotes the number tasks in block vi and

Table 2 Experimental results with different communication capability
among the resources.

Table 3 Experimental results with different executing capability of re-
sources.

π̄ is the average number of tasks contained in the re-
sources.

4.2 Experimental Results and Analysis

In the first experiment, we test the impact of the execution
environment on the structure optimization, which includes
three phases as follows.
(1) Testing the impact of different communication capability
between the resources

The workflow case was generated with the task scale
n = 300. Other environmental parameters were set as: m =
10, ε = 3, ρ = 4 and τ = 1, 2, 4, 8, 16. With the same
workflow case, the experiments have been done 8 times for
each value of τ, and the average experimental results are
shown as Table 2.
(2) Testing the influence of resource computation capabili-
ties

The task scale n is set to 300, and the other parameters
are set as: m = 10; ε = 3; τ = 5; and ρ = 1, 2, 4, 8, 16. The
experiments have been done with the same process case, and
the average experimental results are shown as Table 3.
(3) Testing the influence of different task calculation amount

The process scale n is set to 300, the other parameters
are set as: m = 10; τ = 3; ρ = 5; and ε = 2, 4, 6, 8, 10. The
experiments have been done with the same process case, and
the average experimental results are shown as Table 4.

The experimental results show that:
A. The communication capability difference has little

influence on the process optimization. In general, the re-
source site, which has better communication capability be-
tween its prior, will has more possibility to be selected. For
example, if the current resource is able to support the next
task, then the most suitable successor should be itself. But,
since an execution resource may not support all the tasks,

YUAN et al.: DISWOP: A NOVEL SCHEDULING ALGORITHM FOR DATA-INTENSIVE WORKFLOW OPTIMIZATIONS
1845

Table 4 The influence of different task calculation amount on the exper-
imental results.

Fig. 7 Comparison of the execution performance with different number
of resources.

the resource which has the best communication capability
may not be selected because it can not support the next task,
and that is the reason that difference of communication ca-
pability shows unobvious effect on the task clustering.

B. With the increasing of execution capability differ-
ence, the resource with more capability will have more
chance to be selected. So when the execution overhead is
reduced, the number of block increases, thus the clustering
granularity decreases. We can also find that the recourse
standard deviation is increasing, which reveals that the dis-
tribution of executers is more unbalanced.

C. The computing scale difference has little influence
on the process simplifying. This is because, for a given
workflow process, the task planning mainly depends on the
attributes of resources such as r.S or r.ab. It is little depen-
dent of the attribute of the workflow itself.

In the second experiment, we test the performance of
the proposed approach by comparing the workflow execu-
tion of two situations: with optimization (using DISWOP)
and without optimization. In the method without optimiza-
tion, the mapping between tasks and resources was ran-
domly selected as long as it satisfied the condition that the
task can be executed at the corresponding resource.

First, we evaluate the performance of DISWOP by
comparing the workflow execution with different number of
resources. The workflow case was generated with the pro-
cess scale n = 40. The number of resources m was setting
from 3 to 10. The queue waiting time of each computing
unit (a task or a block) was simulated as 10 ms per interval.
Other parameters are set randomly. Each experiment was
run 8 times. The average result obtained is shown as Fig. 7,

Fig. 8 Comparison of the execution performance with different process
scale.

from which it is evident that there is an obvious advantage
with structure optimization compared to without optimiza-
tion.

Second, we test the execution performance with differ-
ent process scale. The workflow cases were generated with
the process scale n = 30 to 80. The number of resource
was set to m = 5. Same to the first experiment, we simulate
the queue waiting time of each computing unit as 10 ms per
interval. The test result is shown as Fig. 8, from which we
also find that the performance with structure optimization is
much superior to that without optimization.

5. Conclusions and Future Works

Due to the increasing scale of data-intensive workflows,
structure optimization is deemed as an effective step before
execution. In this paper, we present a structure optimization
approach, with the objective of minimizing the overall com-
pletion time which comprises not only the execution time
and communication time but also the queue wait time. This
paper also provides a simple method to store workflow def-
initions, instead of using DAG, we present the concept of
process expression which will describe a workflow with a
linear complexity. This is quiet meaningful in data-intensive
workflows.

The proposed approach in this paper is based on struc-
tured workflows, which have been required in the applica-
tions that a process is defined from a simple structure to a
complicated one with the function refinement dynamically.
Addition to the structure of the process expression, con-
vexity of task clustering is another advantage of structured
workflow, which ensures that there will be no dependence
cycle among the task blocks.

As we can see, a non-structured workflow can not be
described as a process expression. So in the near future, we
will introduce a non-structured workflow optimization ap-
proach and study the convexity of the structure optimization.
Furthermore, we will apply the workflows optimization into
scientific workflow applications to verify the effectiveness
of our approaches.

1846
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.7 JULY 2012

Acknowledgements

This work is supported by the China NSFC Program under
Grant No.91118002 and No.60273006. This work is also
supported by the China 863 High Technology Program un-
der Grant No.2011AA01A204.

References

[1] Y. Feng, W. Cai, and J. Cao, “Dynamic partner identification in mo-
bile agent-based distributed job workflow execution,” J. Parallel and
Distribute Computing, vol.67, no.11, pp.1137–1154, Nov. 2007.

[2] E. Deelman, “Grids and clouds: Making workflow applications
work in heterogeneous distributed environments,” International
Journal of High Performance Computing Applications, vol.24, no.3,
pp.284–298, Aug. 2010.

[3] W. Tan and Y.S. Fan, “Dynamic workflow model fragmentation for
distributed execution,” Computers in Industry, vol.58, no.5, pp.381–
391, June 2007.

[4] M.G. Nanda, S. Chandra, and V. Sarkar, “Decentralizing execution
of composite Web services,” Proc. 19th annual ACM SIGPLAN
Conf. on Object Oriented Programming, Systems, Languages, and
Applications, vol.39, no.10, pp.170–187, Oct. 2004.

[5] B.X. Liu, Y.F. Wang, Y. Jia, and Q.Y. Wu, “A role-based approach
for decentralized dynamic service composition,” J. Software, vol.16,
no.11, pp.1859–1867, Nov. 2005.

[6] S.H. Bokhari, “Partitioning problems in parallel, pipelined, and dis-
tributed computing,” IEEE Trans. Comput., vol.37, no.1, pp.48–57,
Jan. 1988.

[7] M. Andrea and M. Stefano, “Partitioning rules for orchestrating
mobile information systems,” Personal and Ubiquitous Computing,
UK: Springer-Verlag London, vol.9, no.5, pp.291–300, Aug. 2005.

[8] A. Neyem, D. Franco, S.F. Ochoa, and J.A. Pino, “Supporting mo-
bile workflow with active entities,” Proc. 11th International Conf.
on Computer Supported Cooperative Work in Design, pp.795–800,
April 2007.

[9] Y. Choi and J.L. Zhao, “Decomposition-based verification of cyclic
workflow,” Lect. Notes Comput. Sci., vol.3707, pp.84–98, 2005.

[10] J.Q. Li and Y.S. Fan, “Timing boundedness verification and analysis
of workflow model,” Computer Integrated Manufacturing Systems,
vol.8, no.10, pp.770–775, Oct. 2002.

[11] G. Singh, C. Kesselman, and E. Deelman, “Optimizing grid-based
workflow execution,” J. Grid Computing, vol.3, no.3-4, pp.201–219,
March 2006.

[12] R. Storn and K. Price, “Differential evolution – a simple and efficient
adaptive scheme for global optimization over continuous spaces,”
Technical Report TR-95-012, ICSI, March 1995.

[13] O. Beaumont, V. Boudet, and Y. Robert, “The iso-level schedul-
ing heuristic for heterogeneous processors,” Proc. 10th Euromicro
Workshop on Parallel, Distributed and Network-based Processing,
pp.335–342, Aug. 2002.

[14] M.F. Tasgetiren, Q.K. Pan, Y.C. Liang, and P.N. Suganthan, “A
discrete differential evolution algorithm for the total earliness and
tardiness penalties with a common due date on a single-machine,”
Proc. IEEE Symposium on Computational Intelligence in Schedul-
ing, pp.271–278, April 2007.

[15] X.G. Wu and G.Z. Zeng, “Goals description and application in
migrating workflow system,” Expert Systems with Applications,
vol.37, no.12, pp.8027–8035, Dec. 2010.

Yuyu Yuan is a professor of computer
science & engineering at Beijing University of
Posts and Telecommunications. She has re-
search interests in computer science, software
testing & evaluation, cloud computing. Prof.
Yuan is now the deputy director of Key Labora-
tory of Trusted Distributed Computing and Ser-
vice, Ministry of Education.

Chuanyi Liu received his Ph.D. (2009)
in computer science and technology from
Tsinghua University, China. He is now an assis-
tant professor of computer science & engineer-
ing at Beijing University of Posts and Telecom-
munications. He has broad research interests
in computer systems, including architecture, file
and storage systems, information security and
data protection, he is now focus on cloud com-
puting and cloud security. Dr. Liu spent one year
as a visiting scholar at the Digital Technology

Center of the University of Minnesota.

Jie Cheng is an associate professor of com-
puter science & technology at Shandong Univer-
sity. Her research field includes scientific com-
puting, data-intensive computing and data work-
flows.

Xiaoliang Wang is a master candidate
in computer science and technology school of
Beijing University of Posts and Telecommuni-
cations. He is now working in the field of cloud
security.

