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PAPER

A Dynamically Reconfigurable FPGA-Based Pattern Matching
Hardware for Subclasses of Regular Expressions

Yusaku KANETA†∗a), Student Member, Shingo YOSHIZAWA††b), Shin-ichi MINATO†,†††c),
Hiroki ARIMURA†d), Members, and Yoshikazu MIYANAGA†e), Fellow

SUMMARY In this paper, we propose a novel architecture for large-
scale regular expression matching, called dynamically reconfigurable bit-
parallel NFA architecture (Dynamic BP-NFA), which allows dynamic
loading of regular expressions on-the-fly as well as efficient pattern match-
ing for fast data streams. This is the first dynamically reconfigurable hard-
ware with guaranteed performance for the class of extended patterns, which
is a subclass of regular expressions consisting of union of characters and its
repeat. This class allows operators such as character classes, gaps, optional
characters, and bounded and unbounded repeats of character classes. The
key to our architecture is the use of bit-parallel pattern matching approach,
in which the information of an input non-deterministic finite automaton
(NFA) is first compactly encoded in bit-masks stored in a collection of reg-
isters and block RAMs. Then, the NFA is efficiently simulated by a fixed
circuitry using bitwise Boolean and arithmetic operations consuming one
input character per clock regardless of the actual contents of an input text.
Experimental results showed that our hardwares for both string and ex-
tended patterns were comparable to previous dynamically reconfigurable
hardwares in their performances.
key words: FPGA, string matching, regular expression matching, bit-
parallel algorithm, event stream processing

1. Introduction

1.1 Background

By rapid growth of sensor and network technologies, mas-
sive data of new types, called data streams, and related ap-
plications have emerged in various fields including data en-
gineering and networks. Event stream processing (ESP) [1]
and network intrusion detection system (NIDS) [3] are ex-
ample applications of data stream processing. Conse-
quently, efficient data stream processing technologies have
been extensively studied in theory and practice.
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The large-scale pattern matching problem [3], [5],
[13], [15], [20], [24], [26] is one of the most important prob-
lems in data stream processing, where a pattern matching
system has to work with a large number (e.g., from thou-
sands to several tens thousands) of complex patterns (e.g.,
regular expressions) against high-speed data streams (e.g.,
of several giga bps). For example, large-scale regular ex-
pression matching is such a problem that appears in real-
world applications such as ESP and NIDS, where regular
expressions are defined by characters, concatenation, union,
and Kleene-star. From the view of current CPU technolo-
gies, large-scale pattern matching problems are quite CPU-
intensive tasks, and thus it is difficult for software on CPU to
efficiently process massive data streams in real time. There-
fore, research on large-scale regular expression matching on
reconfigurable hardwares such as field programmable gate
arrays (FPGAs) have recently attracted much attention.

1.2 Dynamic Reconfiguration vs. Static Compilation Ap-
proaches

A recent research trend in large-scale regular expression
matching hardwares is to simulate finite state automata for a
class of regular expressions on a specially designed hard-
ware [3], [4], [8], [13], [19], [20], [24]–[26]. This approach
is further classified into the static compilation approach and
the dynamic reconfiguration approach.

In the static compilation approach [19], [20], [24]–[26],
a set of input regular expressions are transformed into either
deterministic finite automata (DFAs) or non-deterministic fi-
nite automata (NFAs) [16], and then statically compiled into
wired logic on FPGA. However, the static compilation ap-
proach has a drawback in that modification of regular ex-
pressions is too expensive to be done frequently.

In the dynamic reconfiguration approach [3], [4], [8],
[13], a universal control logic is statically compiled into
FPGA beforehand as well, but a description of regular ex-
pressions is dynamically loaded to the FPGA as data in pre-
processing, and then simulated in run-time. This approach is
attractive in real-world applications such as ESP and NIDS,
where input patterns frequently change. However, it is a
challenging task to design dynamically reconfigurable hard-
wares that efficiently run for wider classes of regular expres-
sions since the classes of patterns that can be dealt with are
still limited.

Overall, our research goal is to design dynamically re-
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Fig. 1 The top-level view of our pattern matching architecture.

configurable hardwares for complex classes of regular ex-
pressions and to achieve gigabit throughput as the hardwares
by [3], [4], [6], [8], [14], [21].

1.3 Main Result of This Paper

As a main result, we propose a novel architecture for large-
scale regular expression matching, called dynamically re-
configurable bit-parallel NFA architecture (Dynamic BP-
NFA), where quick on-the-fly loading of complex pattern
is possible. The key to our architecture is the use of
bit-parallel pattern matching approach developed in string
matching communities since 1990s [2], [16], [23]. In Fig. 1,
we show the top-level view of our architecture, which will
be explained in detail.

Our target pattern class is the class EXT of extended
patterns [16], [17], which is a subclass of regular expres-
sions allowing union of characters and its Kleene-star. The
class EXT is a natural generalization of the class STR of
exact string patterns consisting characters and concatena-
tion, which supports character classes β = [ab · · · ], gaps
‘.’, optional characters β?, bounded and unbounded repeats
β{x, y} and β∗ of character classes. For example, R =

[AB]+B.{1, 3}[AC]?.∗C represents a substring of an input text
that starts with one or more repetitions of character A or B,
followed by a character B, one to three repetitions of any
character in Σ, an optional A or C, any characters in Σ, and C.

Our Dynamic BP-NFA consists of a collection of pat-
tern matching modules. In each module, an input extended
pattern is first translated into an input NFA, and the infor-
mation of the NFA is compactly encoded in a set of bit-
masks stored in 32-bit registers and block RAMs, when the
underlying register length is 32 bits. Then, the NFA is ef-
ficiently simulated by a fixed circuitry using a set of 32-bit
Boolean operations and a 32-bit integer addition on the reg-
isters and RAMs. We apply the same procedure to a set
of input patterns in multiple pattern matching. Based on
theoretical analysis, we show that this hardware correctly
matches a given set of extended patterns against an input
text consuming one input character per clock regardless of
the actrual contents of the input texts.

In experiments, we first implemented our Dynamic BP-

NFA and measured its performance and resourse usage for
STR and EXT. As results, for STR, we could install 256
patterns and achieve the throughput of 2.6 Gbps on Xilinx
Virtex-5 LX330, and for EXT, we could install 128 patterns
and achieve the throughput of 1.4 Gbps on the same de-
vice. Next, we compared the performances of our hardwares
for both STR and EXT to those of the previous dynami-
cally reconfigurable hardwares in the literatures [3], [4], [8]
after a calibration of throughputs using process scaling in
CMOS technologies that FPGA devices were built on. Con-
sequently, our hardwares for both classes were comparable
to those of the above dynamically reconfigurable hardwares
in their performances.

Main contributions of this paper are summarized as fol-
lows:

• Dynamic loading of extended patterns: Our Dynamic
BP-NFA is the first dynamically reconfigurable hard-
ware that can deal with the class EXT of extended pat-
terns, which is a non-trivial and useful subclass of reg-
ular expressions widely studied in real-world applica-
tions such as event stream processing [1] and bioinfor-
mation processing [16], [17]. On the other hand, Baker
et al.’s KMP-based hardware [4] and Jung et al.’s
Bitsplit-based hardware [8] are also dynamically re-
configurable. However, they allow only dynamic load-
ing of the class STR of exact string patterns, which
is a small subclass of EXT. While Sidhu et al.’s hard-
ware [20] can deal with the whole class REG of regular
expressions, it can not change input regular expressions
on-the-fly since it is a static compilation approach.

• Worst-case performance guarantee: Our Dynamic BP-
NFA has theoretical performance guarantee in the
worst-case from Theorem 1 in Sect. 4.3 for both STR
and EXT. On the other hand, Baker et al.’s RegExp
Controller hardware [3] is only a dynamically reconfig-
urable hardware before ours that can deal with a non-
trivial subclass of regular expressions. Since it is a
hybrid of DFA-simulation and microcontroller, its pro-
cessing time related to microcontroller becomes a per-
formance bottleneck and it has no performance guar-
antee in the worst-case when a regular expression has



KANETA et al.: AN FPGA-BASED PATTERN MATCHING HARDWARE FOR SUBCLASSES OF REGULAR EXPRESSIONS
1849

many occurrences of its subpatterns in an input text as
indicated in [3].

• Potential extensibility of target pattern classes: Our
Dynamic BP-NFA has the potential extensibility to
more general patterns by changing the construction of
bit-masks and the control logic for NFA-simulation.
For example, Kaneta et al. [10] proposed a generaliza-
tion of the Extended SHIFT-AND method, used in this
paper, for the classes of network and regular expres-
sions allowing union and Kleene-star. Such method
can be incorporated into our architecture by extending
the construction of bit-masks and a circuitry described
later.

Overall, our Dynamic BP-NFA is the first architecture
that fulfills the above three requirements for dynamic load-
ing of patterns, worst-case performance guarantee, and ex-
tensibility to more general patterns.

1.4 An Example of Large-Scale Pattern Matching

Deep packet inspection (DPI) [6], [14], [21] is a new tech-
nology in NIDS that scans the payloads deep inside pack-
ets using a set of regular expressions as detection rules for
detecting network intrusion, while traditional NIDS makes
shallow analysis only in the headers of input packets. DPI
requires efficient solutions for large-scale pattern matching
problems. Among present DPI systems in NIDS, Snort sys-
tem [22] is one of the most widely used deep packet in-
spection systems. The current version of Snort system, at
the time of May 2011, handles more than twenty thousands
of detection rules in Perl-Compatible Regular Expressions
(PCRE) [18].

Although the present Snort system is a software-based
DPI system running on CPU and its performance seems ad-
equate for the current applications, it is recognized that fur-
ther progress of high-speed network technology will require
order of magnitude faster hardware implementation [3], [6],
[14], [21]. Such hardwares are desired to have the capabil-
ity of on-the-fly reconfiguration of patterns as well as high-
performance guarantee for a wide class of regular expres-
sions. However, most of the currently available dynamically
reconfigurable hardwares [4], [8] can deal with only exact
string patterns. Interestingly enough, we can observe that
most of detection rules are either extended patterns in EXT,
which will be considered in this paper, or disjunctions of a
few extended patterns. Hence, from the view point in DPI,
our architecture will be a candidate of the base technologies
for such high-performance hardware-based DPI systems.

1.5 Related Work

There have been a number of research on dynamically re-
configurable hardwares for large-scale pattern matching.
Baker et al.’s KMP-based hardware [4] and Jung et al.’s
Bitsplit-based hardware [8] are DFA-based dynamic re-
configuration approaches for exact string patterns, which
achieved the throughputs of 1.8 Gbps and 1.6 Gbps, respec-

tively. Baker et al. developed RegExp Controller hard-
ware for regular expressions [3], which is a hybrid of DFA-
simulation and microcontroller. The throughput of this hard-
ware was 1.4 Gbps.

There is also a line of research [14], [21] that study
heuristics for converting a given NFA into a compact DFA
without the state explosion of DFAs. Kumar et al. [14] de-
veloped a regular expression matching hardware based on
delayed input deterministic finite automata (D2 FAs) and
Smith et al. [21] presented a chip design based on extended
finite automata (XFAs), where both of them achieved the
high throughputs by parallel computation. Dharmapurikar
et al. [6] studied a hardware-based Bloom filter, which
achieved 2.5 Gbps for exact string patterns with the assump-
tion that a match occurs with a small probability.

1.6 Organization of This Paper

This paper is organized as follows. In Sect. 2, we give basic
definitions. In Sect. 3, we propose our Dynamic BP-NFA
architecture, and in Sect. 4, we give the detailed description
of each pattern matching module. In Sect. 5, we give exper-
imental results, and in Sect. 6, we conclude. This paper was
built on the previous publications [11], [12].

2. Preliminary

2.1 Regular Expression Matching

Let N = {0, 1, 2, . . .} be the set of all non-negative integers,
and Σ = {a, b, . . .} be a finite alphabet of characters (or let-
ters). A string on Σ is a sequence S = s1 · · · sn of characters,
where S [i] = si ∈ Σ for every 1 ≤ i ≤ n. We denote by
S [i.. j] the substring si · · · s j for every i ≤ j, and by ε the
empty string. If i > j, we define S [i.. j] = ε. We denote by
Σ∗ the set of all strings on Σ. For a set S ⊆ Σ∗ of strings, we
denote by |S | the cardinality and ||S || = Σs∈S |s| the total size
of S . For a character c ∈ Σ and an integer i ∈ N, we define
by ci the string consisting of i consecutive c.

Let REG be the class of regular expressions on Σ. More
precisely, a regular expression R is either a character c ∈ Σ,
concatenation R = R1 · R2, union R = (R1|R2), and Kleene-
star R = (R1)∗, where R1 and R2 are regular expressions [16].
For a regular expression R, we denote by L(R) ⊆ Σ∗ its lan-
guage. Let T = t1 · · · tn ∈ Σ∗ be an input text of length n ≥ 0,
where ti ∈ Σ (1 ≤ i ≤ n)†. A pattern is a regular expression
on Σ. We say a regular expression R occurs at the end posi-
tion j in T , if T [i.. j] = ti · · · t j ∈ L(R). Our problem is stated
as follows.

Definition 1. The multiple pattern matching problem for a
subclass C ⊆ REG of regular expressions is defined as fol-
lows. An input is an input pattern set P = { (i,Ri) | i =
1, . . . ,N } (N ≥ 1), where for every i = 1, . . . ,N, i is an in-

†In the case that n < 1, a text T = t1 · · · tn represents the empty
string ε. Similarly, a set S = {s1, . . . , sm} and a regular expression
R = r1 · · · rm represent the empty set ∅ and the empty string ε if
m < 1, respectively.
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teger, called an index, and Ri ∈ C is a pattern. Then, the task
is, given a stream T = t1t2 · · · tp · · · (p ≥ 1) of input char-
acters, to output the pairs (i, p) such that i = 1, . . . ,N is the
index and p is an end position of Ri in T for all p = 1, 2, . . ..

2.2 Target Pattern Class: Extended Patterns

The target subclass of regular expressions that our archi-
tecture deals with is the class of extended patterns de-
fined as follows. In what follows, we directly write a set
{a1, . . . , am} ⊆ Σ of characters instead of union (a1| · · · |am)
of characters representing the set, where ai ∈ Σ (1 ≤ i ≤ m).

Definition 2. The class of extended patterns, denoted by
EXT, is a subclass of regular expressions defined as follows:
an extended pattern R on Σ is a sequence of some compo-
nents R = r1 · · · rm (m ≥ 0), where for each 1 ≤ i ≤ m, ri is
an expression, called a component, with one of the following
forms, where ≡ means the notational equivalence:

(1) A character (or a letter) ri = c ∈ Σ is a component with
the language L(c) = {c}.

(2) A gap (or a don’t care) ri = . is a component with the
language L(.) = Σ. This matches any character in Σ.

(3) A character class ri = β is a component with the lan-
guage L(β) = β, where β ⊆ Σ. As notation, we write
[ab · · · ] for β = {a, b, . . .}. This is equivalent to union
of characters. Note that a character a ∈ Σ and a gap ‘.’
are character classes.

(4) An optional character ri = β? is a component, where
β ⊆ Σ and β? ≡ (β|ε).

(5) Bounded repeats ri = β{x, y}, ri = β{, y}, and ri = β{x}
are components with equivalence β{x, y} ≡ (β?)y−xβx,
β{, y} ≡ (β?)y, and β{x} ≡ βx, respectively, where β ⊆ Σ
and x ≤ y (x, y ∈ N). If β is a gap ‘.’, ri is called a
bounded gap.

(6) Unbounded repeats ri = β
∗ and ri = β

+ are compo-
nents, where β ⊆ Σ and β+ ≡ ββ∗. If β is a gap ‘.’, ri

is called an unbounded gap (or a variable length don’t
care).

For R = r1 · · · rm, we define its language by L(R) =
L(r1) · · · L(rm). If ri is one of the forms β?, β{x, y}, β∗, and
β+, then β is called the matrix of ri.

Example 1. We show examples of extended patterns, where
character class is equivalent to union of characters, e.g.,
[AB] ≡ (A|B).
• R1 = ABABBC.
• R2 = [AB]+B.{1, 3}[AC]?.∗C.
• R3 = (A[BC]∗).{, 4}([DE]+).

We say that R = r1 · · · rm is in the class STR of exact
string patterns (or string patterns) if every component ri is
a character in Σ such as R1.

3. Proposed Architecture

In this section, we present our dynamically reconfigurable
bit-parallel NFA architecture, Dynamic BP-NFA, based on

Fig. 2 The formats of the general I/O packets, the preprocessing input,
run-time input, and run-time output packets from the top to the bottom.

NFA-simulation using bit-parallel pattern matching.

3.1 Top-Level Architecture

In Fig. 1, we show the top-level architecture of our pattern
matching hardware on FPGA. The hardware consists of the
following submodules: an input decoder, an output encoder,
and a collection of pattern matching modules (PMM). It re-
ceives and sends a sequence of I/O packets from and to a
host PC through a fast bus such as PCI Express. In the
present implementation, I/O packets have 64-bit length and
are classified into four types according to their Opcode field:
no-operation, preprocessing input, run-time input, and run-
time output packets. In Fig. 2, we show the preprocessing
input, run-time input, and run-time output packet. The no-
operation packet has only Opcode field and does nothing.
The hardware runs in two different modes: preprocessing
and run-time modes.

Preprocessing mode. In this mode, the hardware loads
the description of input patterns with a preprocessing
packet. A preprocessing packet has Opcode field for the
packet type, Mask Data field for the data, and also has the
three fields below to specify the location of a bit-mask to
deliver: Module Id to specify the target PMM, Mask Id to
specify a register or a block RAM, and Mask Address to
specify the line (in the case of a block RAM only).

Run-time mode. In this mode, the hardware receives
an input character, makes a state transition for the target
NFA by a fixed circuitry, detects matches, and emits a
matching information by receiving and sending run-time
packets. A run-time input packet has Opcode field for its
type and a sequence of Input Character fields for input
characters. At each clock, one input character is fed to all
PMMs. A run-time output packet has Opcode field for its
type, a sequence of pairs of Module Id and Time Stamp
fields for matching information. If a PMM detects the
matching, then it sends matching information to the out-
put encoder. Then, the output encoder packs a collection
of matching information into a run-time output packet and
send it to a host PC.

4. Pattern Matching Module

A pattern matching module, PMM, is a core of our pattern
matching hardware and is responsible for NFA-simulation
of a specified input pattern with fixed length w ≥ 1. In what
follows, we assume that w = 32, where w is actually the
bit-length of registers in an underlying hardware.
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Fig. 3 The circuit of a pattern matching module for exact string patterns with bit-length w = 32.

4.1 Components of a Module

In the middle of Fig. 1, we show a single unit of a pattern
matching module, PMM. A pattern matching module con-
sists of three subunits: the control block for loading of bit-
masks and input characters, the bit-mask block for storing
NFA information, and the matching block as a control logic
for NFA-simulation. We give assumptions on the FPGA
device for describing PMMs. An input alphabet is the set
Σ = {0, . . . , 255} of 8 bit characters. Each PMM has a num-
ber of registers and block RAMs of the same bit-length
w = 32, which typically varies from 32 to 128 (bits). For
each bit-mask, LSB (MSB, resp.) comes at the left end (at
the right end, resp.).

A basic idea of bit-parallel pattern matching approach
is to firstly transform a given extended pattern into a spe-
cial NFA having linear shape, secondly to build a set of bit-
masks from the transition relation of the NFA, and finally
to make NFA-simulation on the bit-masks using by a fixed
control logic designed to the target class of patterns. In the
followings, we give the detailed description of our archi-
tecture step by step starting from simpler to more complex
patterns.

4.2 NFA-Simulation: Exact String Pattern

First, we start with the construction of PMM for the class
STR of exact string patterns based on the SHIFT-AND
method [2], [16], [23]. We show in Fig. 3 the circuit of a
PMM for STR. It consists of the definition of a set of bit-
masks and a control logic for NFA-simulation. An exact
string pattern is just a string R = r1 · · · rm of m charac-
ters, where m ≤ w and ri = ai ∈ Σ is a character for every
i = 1, . . . ,m.

Construction of NFA. First, we build the exact string
pattern NFA NR = N(R) for an exact string pattern R as
follows. First, we start with the state 0, and add the initial
self-loop labeled with Σ to the state. Then, for every i =
1, . . . ,m, we add to the NFA NR the new state i and the edge
ei = (i − 1, ri, i) directed from the previous state i − 1 to
the current state i labeled with ri = ai ∈ Σ. The resulting
NFA NR consists only of the backbone of m edges labeled
with characters and the initial self-loop. For example, we

Fig. 4 The exact string pattern NFA of R1 = ABABBC.

show in Fig. 4 the exact string pattern NFA N1 = N(R1)
corresponding to the exact string pattern R1 = ABABBC.

Precisely speaking, the NFA is given by the tuple NR =

(Σ,Q, δ, q0, q f ), which has the state set Q = {0, 1, . . . ,m},
the initial state q0 = 0, the final state q f = m. The transition
relation δ ⊆ Q× (Σ ∪ {ε})×Q is the set of directed edges,
{(i−1, ai, i) | i = 1, . . . ,m}, called the backbone of NR, where
ε is the empty string. The state 0 has the self-loop with
labeled with Σ. In what follows, we call by α-transitions and
ε-transitions state transitions by edges labeled with c ∈ Σ
and ε, respectively.

Construction of bit-masks. To simulate the exact
string pattern NFA NR = N(R), we use w-bit masks INIT ,
ACCEPT and an array MOVE[c] ∈ {0, 1}w (c ∈ Σ) of bit-
masks defined as follows, where a mask stores all states
{1, . . . ,m} but state 0:

• INIT is the w-bit mask that sets 1 at the bit-position for
the state 1. That is, INIT [i] = 1 if and only if i = 1.

• ACCEPT is the w-bit mask that sets 1 at the bit-
position for the final state m. That is, ACCEPT [i] = 1
if and only if i = m.

• MOVE[c] is the w-bit mask that indicates all bit-
positions of backbones labeled with a character c in R.
That is, MOVE[c][i] = 1 if and only if the state i has
an incoming edge labeled with c ∈ Σ, i.e., ri = c.

Note that we can easily extend the array (MOVE[c])c∈Σ
to deal with character classes β ⊆ Σ, i.e., union of characters
as follows: MOVE[c] is the w-bit mask that indicates all bit-
positions of backbones labeled with a character class β ⊆ Σ
with c ∈ β in R.

We store the bit-masks INIT and ACCEPT in w-bit
registers, and the array (MOVE[c])c∈Σ in a block RAM with
a single read/write ports of |Σ| entries with w bit-length.

Control logic for NFA-simulation. Based on the
SHIFT-AND method [2], [16], [23], we finally give the con-
trol logic for NFA-simulation in the matching block as fol-
lows. First, the next code simulates the α-transitions, where
t ∈ Σ is the current character in an input text:
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Fig. 5 The circuit of a pattern matching module for extended patterns with bit-length w = 32.

S T AT E ← ((S T AT E � 1) | INIT ) & MOVE[t];

Then, the following code checks for a match:

if (S T AT E & ACCEPT ) then EmitMatch← 1;

By the above construction, we can implement the con-
trol logic for NFA-simulation by a circuit shown in Fig. 3 by
using five w-bit Boolean operations, three w-bit registers,
and one block RAM with |Σ| entries of w bit-length.

4.3 NFA-Simulation: Extended Pattern

Next, we show the construction of PMM for the class EXT
of extended patterns based on the Extended SHIFT-AND
method [16], [17]. We show in Fig. 5 the circuit of a PMM
for EXT.

Expanded form and bit-assignment. Let R be an ex-
tended pattern. Then, recall that every component ri of R
has one of the following types: (i) ri = β, (ii) ri = β?, and
(iii) ri = β

∗, (iv) ri = β
+, and (v) ri = β{x, y}, where β ⊆ Σ.

We expand all occurrences of bounded repeats ri = β{x, y}
of type (v) in R by using the equivalence β{x, y} ≡ (β?)y−xβx,
where x ≤ y. Let Expand(R) = r1 · · · rm be the resulting ex-
tended pattern of m components, called the expanded form
of R, where |R| ≤ m ≤ w. By construction, Expand(R)
contains no occurrences of components of type (v). Let
I = {1, . . . ,m} be the set of all component indexes of
Expand(R). Then, we assign the unique numbers 1, . . . ,m,
called the bit-positions, to indexes in I.

For example, we show in Fig. 6 the bit-position as-
signment for R2 = [AB]+B.{1, 3}[AC]?.∗C consisting of six
components. By replacing the bounded gap .{1, 3} with
(.?)(.?)(.), we obtain its expanded form Expand(R2) =
([AB]+)(B)(.?)(.?)(.)([AC]?)(.∗)(C) consisting eight compo-
nents with assigned bit-positions from 1 to 8.

Construction of NFA. Then, we build the extended
pattern NFA NR = N(R) for R from the expanded form
Expand(R) as follows. Let Expand(R) = r1 · · · rm for some
m ≥ 1 and w be an positive integer larger than or equal to
m. By construction, we can assume that Expand(R) contains
components of only type (i)–(iv). First, we start with the

Bit-position i 1 2 3 4 5 6 7 8
R2 [AB]+ B .{1, 3} [AC]? .∗ C

Expand(R2) [AB]+ B .? .? . [AC]? .∗ C

Fig. 6 The bit-position assignment for R2 = [AB]+B.{1, 3}[AC]?.∗C and
its expanded form Expand(R2).

Fig. 7 The extended pattern NFA of R2 = [AB]+B.{1, 3}[AC]?.∗C.

state 0, and add the initial self-loop labeled with Σ to the
state similarly to the construction of an exact string pattern
NFA. Then, for every i = 1, . . . ,m, we add to the NFA NR

the new state i and the α-transitions and ε-transitions related
to the state i according to the type of the i-th component ri

with matrix β ⊆ Σ as follows:

• For all types (i) – (iv) of ri, we add the backbone ei =

(i − 1, β, i) directed from the previous state i − 1 to the
current state i labeled with matrix β.

• Furthermore, if ri is either (ii) β? or (iii) β∗, then we add
an ε-transition directed from the previous state i − 1 to
the current state i.

• Furthermore, if ri is either (iii) β∗ or (iv) β+, then we
add a self-loop labeled with matrix β from the current
state i to itself.

We define an ε-block of the expanded form Expand(R)=
r1 · · · rm by the set B = {i, . . . , j} ⊆ I of the component in-
dexes for a maximal consecutive subsequence ri · · · r j (1 ≤
i ≤ j ≤ m) in Expand(R), where rk is either rk = βk?
or rk = β

∗
k for every i ≤ k ≤ j. We can easily ob-

tain all ε-blocks by scanning the components of Expand(R)
and finding such maximal consecutive subsequences. Let
{B1, . . . , Bh} (h ≥ 0) be the set of all ε-blocks of Expand(R).

For example, we show in Fig. 7 the extended pattern
NFA N2 = N(R2) corresponding to Expand(R2). Then,
Expand(R2) has two ε-blocks B1 = {3, 4} and B2 = {6, 7}
corresponding to r3r4 = (.?)(.?) and r6r7 = ([AC]?)(.∗), re-
spectively.
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Construction of bit-masks. To simulate an extended
pattern NFA NR = N(R), we use w-bit masks EpsBEG,
EpsEND, EpsBLK, and the array REPPOS [c] ∈ {0, 1}w
of bit-masks in addition to the bit-masks INIT , ACCEPT ,
and MOVE[c] ∈ {0, 1}w (c ∈ Σ) defined in the previous
subsection.

• EpsBEG is the w-bit mask that sets 1 at the previous
bit-position of the lowest bit-position of every ε-block.
That is, EpsBEG[i] = 1 if and only if i = min(Bk) − 1
for some ε-block Bk.

• EpsEND is the w-bit mask that sets 1 at the highest
bit-position of every ε-block. That is, EpsEND[i] = 1
if and only if i = max(Bk) for some ε-block Bk.

• EpsBLK is the w-bit mask that sets 1s at all bit-
positions of every ε-block. That is, EpsBLK[i] = 1
if and only if i is contained by some ε-block Bk.

• REPPOS [c] is the w-bit mask that indicates all bit-
positions of self-loops labeled with a character class
β ⊆ Σ with c ∈ β in Expand(R). That is,
REPPOS [c][i] = 1 if and only if the state i has a self-
loop labeled with c ∈ β, or equivalently, either ri = β

∗
or ri = β

+ with c ∈ β.
For example, we show in Fig. 8 the bit-masks for R2.

As in the previous case, we store the bit-masks INIT ,
ACCEPT , EpsBEG, EpsEND, and EpsBLK in w-bit reg-
isters, and the arrays (MOVE[c])c∈Σ and (REPPOS [c])c∈Σ
in block RAMs.

Control logic for NFA-simulation. Based on the Ex-
tended SHIFT-AND method [16], we finally give the control
logic for NFA-simulation in the matching block according to
the codes in [16] as follows. First, the next code initializes
the state mask at line (1), simulates the α-transitions at line
(2), and simulates the α-transitions by self-loops at line (3),
where t ∈ Σ is the current character in an input text:

S T AT E ←(((S T AT E � 1) | INIT ) (1)

& MOVE[t]) (2)

| (S T AT E & REPPOS [t]); (3)

Bit-position i 1 2 3 4 5 6 7 8
INIT 1 0 0 0 0 0 0 0

ACCEPT 0 0 0 0 0 0 0 1
MOVE[A] 1 0 1 1 1 1 1 0
MOVE[B] 1 1 1 1 1 0 1 0
MOVE[C] 0 0 1 1 1 1 1 1
MOVE[%] 0 0 1 1 1 0 1 0

REPPOS [A] 1 0 0 0 0 0 1 0
REPPOS [B] 1 0 0 0 0 0 1 0
REPPOS [C] 0 0 0 0 0 0 1 0
REPPOS [%] 0 0 0 0 0 0 1 0

EpsBEG 0 1 0 0 1 0 0 0
EpsEND 0 0 0 1 0 0 1 0
EpsBLK 0 0 1 1 0 1 1 0

Fig. 8 The set of bit-masks for R2 = [AB]+B.{1, 3}[AC]?.∗C on alphabet
Σ = {A, B, C}, where the symbol ‘%’ denotes any character not in Σ.

Then, the sequence of the following codes simulate the ε-
transitions with the state mask:

HIGH ← S T AT E | EpsEND; (4)

LOW ← HIGH − EpsBEG; (5)

S T AT E ← (EpsBLK & ((∼ LOW) ⊕ HIGH)) (6)

| S T AT E; (7)

The meaning of the above codes is explained as fol-
lows. At line (4), we turn on the highest bit (the end bit) of
each ε-block in S T AT E, and set it to HIGH. At line (5),
we invert all bits lower than or equal to the lowest 1 bit of
all and the previous bits of each ε-block in HIGH and set
it to LOW. At line (6), the mask (EpsBLK & ((∼ LOW) ⊕
HIGH)) has 1s at all bit-positions properly higher than the
lowest 1 bit of all and the previous bits of each ε-block in
S T AT E. Finally, we add the change to S T AT E at line
(7). The code S T AT E & ACCEPT that checks for a
match is same as exact pattern matching. In Fig. 9, we show
an example of NFA-simulation by the set of bit-masks for
R2 = [AB]+B.{1, 3}[AC]?.∗C on an input text T = ABAABC.
In Fig. 9, we show the status of the mask S T AT E after the
update in each cycle i (1 ≤ i ≤ 6). The output EmitMatch
of PMM is the value at the bit-position 8 of S T AT E.

By the above construction, we can implement the con-
trol logic for NFA-simulation by a circuit shown in Fig. 5
by using twelve w-bit Boolean operations, one w-bit sub-
traction, six w-bit registers, and two block RAMs with |Σ|
entries of w bit-length.

Theorem 1. For the class EXT of extended patterns, our
hardware consumes one input character per clock regard-
less of the content of the input text T . Furthermore, its com-
binatorial circuit for state update in Fig. 5, excluding regis-
ters and RAMs, has O(log w) depth and O(w3) gates, where
w is the length of a register.

Proof. The circuit in Fig. 5 contains one w-bit adder and
constant number of w-bit bitwise Boolean gates, an w-bit
multiplexer and an w-bit comparator. It is well known
that an w-bit carry look-ahead adder can be implemented
in O(log w) depth using O(w3) gates. Since the other w-bit
gates can be implemented in constant depth and O(w) 1-bit
gates, we have the claimed complexities. Since any cycle
on the data paths contains at most one register or RAM, the
result is prove. �

Cycle Input S T AT E after update in cycle i
i character ti 1 2 3 4 5 6 7 8
1 A 1 0 0 0 0 0 0 0
2 B 1 1 1 1 0 0 0 0
3 A 1 0 1 1 1 1 1 0
4 A 1 0 0 1 1 1 1 0
5 B 1 1 1 1 1 1 1 0
6 C 0 0 1 1 1 1 1 1

Fig. 9 An example of extended pattern matching, given an extended pat-
tern R2 = [AB]+B.{1, 3}[AC]?.∗C and an input text T = ABAABC.



1854
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.7 JULY 2012

5. Experimental Results

To evaluate the time and area complexities, we implemented
our hardwares in Verilog HDL for both classes of exact
string patterns STR (Sect. 4.2) and extended patterns EXT
(Sect. 4.3), where the register length w is set to w = 32 and
the arrays MOVE and REPPOS are implemented in block
RAMs. We targeted the Virtex-5 LX330 with −2 speed
grade, which has 51,840 slices and 288 block RAMs with
36 Kbits. We used the Xilinx ISE Design Suite 10.1 and
Synopsys VCS development tools. All experiments were
run in a PC (Intel Core2 Duo CPU, 2.40 GHz, 4.00 GB
memory, Windows Vista).

5.1 Results on Our Dynamically Reconfigurable Hard-
wares

We give the experimental results for our pattern matching
modules, PMM, in our Dynamic BP-NFA. In Table 1 and
Table 2, we show the summaries of parameters for single
and multiple PMMs, respectively.

Performance evaluation. The maximum frequencies
of one PMM were 331 MHz and 184 MHz after place-
and-route (418 MHz and 235 MHz after synthesis, resp.)
for STR and EXT, respectively. For the time complex-
ity in run-time, we estimated the throughput of matching
by Throughput = Frequency× 8 (bit/sec) since our hard-
wares consume one character (8 bits) per clock. Thus, the
throughputs were 2.6 Gbps and 1.5 Gbps after place-and-
route (3.3 Gbps and 1.9 Gbps after synthesis, resp.) for STR
and EXT, respectively. In what follows, the frequencies and
throughputs of our Dynamic BP-NFA are those after place-
and-route. The maximum frequencies and throughputs of
PMMs for both STR and EXT is almost constant regardless
of the number N of PMMs since our PMMs are independent
of each other in our architecture. However, as indicated in
[4], the overall performance of our system, including I/O,
decreased as the N number of PMMs increased because of
fanout delays of the control block feeding input characters

Table 1 Summary of parameters of a single pattern matching module, where we assume |Σ| = 256.
Class is the target class, #Op, #Add, #Reg, #BL, and #Slice are the numbers of 32-bit Boolean opera-
tions, 32-bit integer additions, registers, block RAM lines, and slices per pattern matching module, and
Load Time is the loading time of an input pattern, respectively.

Class #Op #Add #Reg #BL #Slice Frequency Throughput Load Time
STR 5 0 3 256 52 331 MHz 2.6 Gbps 0.782 μsec
EXT 12 1 6 512 140 184 MHz 1.5 Gbps 2.82 μsec

Table 2 Summary of parameters of multiple pattern matching modules, where we assume |Σ| = 256.
Class is the target class, #Modules and #BRAMs are the numbers of modules and block RAMs, #Chars
Total is the total size of input patterns, and Load Time Total is the total loading time of input patterns,
respectively.

Class #Modules #BRAMs #Chars Total Frequency Throughput Load Time Total
STR 256 256 8,192 319 MHz 2.6 Gbps 0.208 msec
EXT 128 256 4,096 176 MHz 1.4 Gbps 0.377 msec

to PMMs.
Resource usage. As shown in Table 1, for STR, one

PMM used 52 slices and 1 block RAM (256 = 1×256 lines),
and for EXT, one PMM used 140 slices and 2 block RAMs
(512 = 2×256 lines). As shown in Table 2, we could imple-
ment up to 256 PMMs for STR (8,192 total characters) and
up to 128 PMMs for EXT (4,096 total characters), where
each PMM deals with a single pattern. For EXT, we used
12,124 slices total and 256 block RAMs. Consequently, the
usage of block RAMs was 89%, while the usage of slices
was only 23%. This means that the size of a hardware in our
architecture is constrained mainly by the amount of block
RAMs and not by one of slices. The number #Slice of slices
was proportional to the number N of PMMs as expected.

Reconfiguration time. We evaluate the reconfigura-
tion time of a pattern matching hardware, which is the time
required by the hardware to load a description of input pat-
terns. Therefore, the reconfiguration time of one PMM was
estimated by Load Time = (#Reg + #BL)/Frequency (sec)
to load a set of bit-masks. From the result of Table 1, one
PMM took 0.782 μsec for STR and 2.82 μsec for EXT. to
load an input pattern. Consequently, PMMs took 0.208 msec
for STR and 0.377 msec for EXT to load all 256 and 128
patterns, respectively.

5.2 Comparison against Our Static Compilation Hardware

We compared our Dynamic BP-NFA for the class STR of
exact string patterns against a static compilation hardware
for STR, called the Static BP-NFA [11], which was im-
plemented and evaluated on Virtex-5 LX50 with -1 speed
grade, which has 7,200 slices. Below, we compare our Dy-
namic BP-NFA for STR against the Static BP-NFA in terms
of performance evaluation, resource usage, and reconfigura-
tion time.

Performance evaluation. As shown in Table 1, our
Dynamic BP-NFA for STR achieved the frequency of
319 MHz and the throughput of 2.6 Gbps for 256 PMMs.
On the other hand, the Static BP-NFA achieved the fre-
quency of 216 MHz and the throughput of 1.7 Gbps for
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Table 3 Results on comparisons of regular expression matching hardwares based on various dynam-
ically reconfigurable architectures, where Class is the target class, Throughput is the calibrated and
original throughputs (the original one is in parentheses), bRAM/char is the number of bytes used in
block RAMs per character, LC/char is the number of logic cells used per character, and #Chars Total is
the total size of input patterns.

Design Class Device Throughput bRAM/char LC/char #Chars Total

Dynamic BP-NFA for STR STR Virtex-5 LX330 2.6 (2.6) Gbps 32 bytes/char 3.2 LC/char 8192
Dynamic BP-NFA for EXT EXT Virtex-5 LX330 1.4 (1.4) Gbps 64 bytes/char 11.9 LC/char 4096
KMP-based hardware [4] STR Virtex-II Pro 3.6 (1.8) Gbps 4 bytes/char 3.2 LC/char 3200
Bitsplit-based hardware [8] STR Virtex-4 FX100 2.2 (1.6) Gbps 46 bytes/char 1.4 LC/char 16715
RegExp Controller hardware [3] REG Virtex-4 FX100 1.9 (1.4) Gbps 46 bytes/char 2.56 LC/char 16715

300 PMMs [11]. For a fair comparison of performance,
we also implemented our Dynamic BP-NFA for STR with
the same speed grade as the Static BP-NFA, i.e., −1, and
achieved the throughput of 2.2 Gbps. Therefore, our Dy-
namic BP-NFA seems to be comparable to the Static BP-
NFA in their performances though our dynamic hardware
allows quick on-the-fly loading of input patterns.

Resource usage. Our Dynamic BP-NFA for STR to-
tally used 6,500 slices for 256 PMMs. On the other hand,
the Static BP-NFA used much less resources than our Dy-
namic BP-NFA. We could implement up to 1,500 PMMs
(around 20 K total characters) using 7,200 slices and no
block RAM, where the slice usage seems linear in the num-
ber N of PMMs for N = 1 to 500 and seems almost constant
for N = 500 to 1,500 [11].

Reconfiguration time. As shown in Table 1, our Dy-
namic BP-NFA for STR required the reconfiguration time
of 0.208 msec for 256 PMMs. On the other hand, the Static
BP-NFA has no such estimation formula. Therefore, we es-
timated the reconfiguration time of the Static BP-NFA by
the compilation time including place-and-route. By experi-
ments, it required 4.27×105 msec for 300 PMMs, approxi-
mately seven minutes [11]. Hence, our dynamic hardware is
106 times faster than the static one in reconfiguration time.

5.3 Comparison against Other Dynamically Reconfig-
urable Hardwares for Regular Expression Matching

In Table 3, we compare our NFA-based hardware against
the previous DFA-based dynamically reconfigurable hard-
wares [3], [4], [8].

For a fair comparison of performance, we should be
careful to interpret the throughputs of the previous hard-
wares in the original papers [3], [4], [8] since five dynami-
cally reconfigurable hardwares including ours were evalu-
ated in different settings. In this paper, we calibrated each
original throughput by a factor α determined from process
scaling on CMOS technology that the target FPGA device
was built on, where α = 130/65 = 2.00 for the hardware by
[4] and α = 90/65 = 1.38 for the hardwares by [3], [8] since
the hardware by [4] targeted 130-nm Virtex-II Pro device,
the hardwares by [3], [8] 90-nm Virtex-4 FX100 device, and
our hardwares 65-nm Virtex-5 LX330. In what follows, we
compare the throughputs of our Dynamic BP-NFA to the
calibrated ones of the previous hardwares [3], [4], [8].

Performance evaluation. For the class STR of exact
string patterns, our Dynamic BP-NFA achieved the through-
put of 2.6 Gbps that is slower than Baker et al.’s KMP-
based hardware [4] and higher than Jung et al.’s Bitsplit-
based hardware [8]. For more general classes, Baker et al.’s
RegExp Controller hardware [3], which is a hybrid of DFA-
simulation and microcontroller, has been the only dynam-
ically reconfigurable hardware for a non-trivial subclass of
the whole class REG of regular expressions so far. Our Dy-
namic BP-NFA achieved the throughput of 1.4 Gbps for the
class EXT of extended patterns, while the hardware by [3]
achieved the higher throughput for REG. An advantage of
our Dynamic BP-NFA is that it has theoretical performance
guarantee in the worst-case from Theorem 1 in Sect. 4.3 for
EXT as well as STR regardless of the actual contents of an
input text, while the hardware by [3] has no performance
guarantee in the worst-case when a regular expression has
many occurrences of its subpatterns in an input text as indi-
cated in [3].

Resource usage. First, we evaluate the block RAM us-
ages of the hardwares by the parameter bRAM/char, which
is the number of bytes used in block RAMs per character.
As indicated in [3], [8], the effective utilization of block
RAMs becomes important to dynamically reconfigurable
hardwares because of modern FPGA devices equipped with
large number of block RAMs. From the result of Ta-
ble 1, our Dynamic BP-NFA used 256× 4 = 1024 bytes
per PMM for STR and 512× 4 = 2048 bytes per PMM
for EXT, and hence the block RAM usages of our hard-
wares are 1024/32 = 32 bytes/char for STR and 2048/32 =
64 bytes/char for EXT. Therefore, the block RAM usages
of our hardwares for both STR and EXT are comparable to
those of the hardwares by [3], [8]. We note that the actual
block RAM usage of our hardware depends on a given pat-
tern. For example, in the case that a given patten includes
no character class, our hardwares for STR and EXT have at
most 32 and 64 entries in block RAMs. In this case, our
hardwares use 32×4 = 128 bytes per PMM for STR and
64×4 = 256 bytes per PMM for EXT, and hence the block
RAM usages of our hardwares are 128/32 = 4 bytes/char
for STR and 256/32 = 8 bytes/char for EXT, where we re-
quire an encoder from input characters to addresses of block
RAMs. Therefore, the actual block RAM usages of our
hardwares for both STR and EXT are less than those of the
hardwares by [3], [8].
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Then, we evaluate the logic cell usage of the hard-
wares by the parameter LC/char, which is the number of
logic cells used per character and estimated by LC/char =
4×#Slices Total/#Chars Total since Virtex-5 contains four
look-up tables and flip-flops per slice. To implement the cir-
cuitry for NFA-simulation as shown in Fig. 5, our Dynamic
BP-NFA for EXT required five times more logic cells than
the hardware by [3].

6. Conclusion

In this paper, we presented a novel architecture, called the
dynamically reconfigurable bit-parallel NFA architecture,
Dynamic BP-NFA, for large-scale regular expression match-
ing. For the class STR of exact string patterns and the class
EXT of extended patterns, which are subclasses of regu-
lar expressions, this architecture allows dynamic loading as
well as fast pattern matching of its input patterns based on
NFA-simulation by bit-parallel pattern matching. Our Dy-
namic BP-NFA is the first dynamically reconfigurable archi-
tecture for string and regular expression matching that ful-
fills the three requirements of dynamic loading of patterns,
worst-case performance guarantee, and extensibility to more
general patterns. Experimental results showed that our Dy-
namic BP-NFA for both STR and EXT had comparable per-
formance to the existing dynamically reconfigurable archi-
tectures. Hence, our architecture presents an efficient alter-
native to existing dynamically reconfigurable hardwares for
regular expression matching.

As future work, it is an interesting problem to extend
our architecture to more general classes of patterns such as
XPath queries [9] and network and regular expressions [10].
There are some hardwares that achieve speed-up by multi-
character state transitions [19], [24], [26]. It is a future re-
search to improve such techniques by using bit-parallel tech-
nique in, e.g., [7]. Finally, implementation of our architec-
ture on GPGPU will also be an interesting problem.
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