
1858
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.7 JULY 2012

PAPER

Reconfiguration Process Optimization of Dynamically Coarse
Grain Reconfigurable Architecture for Multimedia Applications

Bo LIU†, Peng CAO†a), Members, Min ZHU††, Jun YANG†, Leibo LIU††, Shaojun WEI††,
and Longxing SHI†, Nonmembers

SUMMARY This paper presents a novel architecture design to opti-
mize the reconfiguration process of a coarse-grained reconfigurable archi-
tecture (CGRA) called Reconfigurable Multimedia System II (REMUS-II).
In REMUS-II, the tasks in multi-media applications are divided into two
parts: computing-intensive tasks and control-intensive tasks. Two Re-
configurable Processor Units (RPUs) for accelerating computing-intensive
tasks and a Micro-Processor Unit (µPU) for accelerating control-intensive
tasks are contained in REMUS-II. As a large-scale CGRA, REMUS-II
can provide satisfying solutions in terms of both efficiency and flexibil-
ity. This feature makes REMUS-II well-suited for video processing, where
higher flexibility requirements are posed and a lot of computation tasks are
involved. To meet the high requirement of the dynamic reconfiguration
performance for multimedia applications, the reconfiguration architecture
of REMUS-II should be well designed. To optimize the reconfiguration
architecture of REMUS-II, a hierarchical configuration storage structure
and a 3-stage reconfiguration processing structure are proposed. Further-
more, several optimization methods for configuration reusing are also in-
troduced, to further improve the performance of reconfiguration process.
The optimization methods include two aspects: the multi-target reconfig-
uration method and the configuration caching strategies. Experimental re-
sults showed that, with the reconfiguration architecture proposed, the per-
formance of reconfiguration process will be improved by 4 times. Based
on RTL simulation, REMUS-II can support the 1080p@32 fps of H.264
HiP@Level4 and 1080p@40 fps High-level MPEG-2 stream decoding at
the clock frequency of 200 MHz. The proposed REMUS-II system has
been implemented on a TSMC 65 nm process. The die size is 23.7 mm2

and the estimated on-chip dynamic power is 620 mW.
key words: REMUS-II, coarse grain reconfigurable architecture, reconfig-
uration process, multimedia application

1. Introduction

The existing computing architectures for multimedia appli-
cations can be generally classified into three types: general
purpose processors (GPPs), application specific integrated
circuits (ASICs) and reconfigurable architectures (RAs).
Although solutions with GPPs, such as the ARM-like pro-
cessors and the digital signal processors (DSPs), provide the
most flexibility, they cannot fulfill the ever increasing re-
quirements on performance, cost and power consumption
for multimedia applications because of their sequential soft-
ware execution. ASICs can provide best performance for
specific applications, but it is not desirable for multimedia

Manuscript received December 22, 2011.
Manuscript revised March 15, 2012.
†The authors are with National ASIC system Engineering Re-

search Center, Southeast University, Nanjing, China.
††The authors are with Institute of Microelectronics, Tsinghua

University, Beijing, China.
a) E-mail: caopeng@seu.edu.cn

DOI: 10.1587/transinf.E95.D.1858

processing designs. The diversification and continuous evo-
lution of multimedia standards and the seamless transition
between various media processing algorithms pose higher
flexibility requirements. However, ASICs always have fixed
and limited functions performed by predefined modules,
and that makes them infeasible to suit new design require-
ments or changes in standards. Besides, the long time-to-
market delay and the rapidly growing non-recursive engi-
neering (NRE) cost also make ASICs inflexible for multi-
media processing solutions. Yet reconfigurable processors
can provide satisfying solutions in terms of both efficiency
and flexibility [1].

According to the granularity of the processing ele-
ments, RAs are divided into two groups: fine-grained RAs
and coarse-grained RAs. In fine-grained RAs, such as
FPGAs, the functionalities of the hardware are specified
at bit-level. Therefore, fine-grained RAs are not dynami-
cally reconfigurable because of the intractable and costly re-
configuration process, and that makes the fine-grained RAs
not useful for implementing real-time multimedia applica-
tions. In contrast to fine-grained RAs, coarse-grained RAs
(CGRAs) use word-length function units such as multipli-
ers and arithmetic logic units. Because coarse granularity
can benefit from a considerable reduction of reconfiguration
time and configuration memory, the energy efficiency and
area efficiency of CGRAs are much greater than those of the
fine-grained ones. Therefore, CGRAs are more suitable for
multimedia processing algorithms where data computation
and transmission are always performed in word-level.

Among all video processing algorithms, MPEG-2 and
H.264/AVC, which is also known as MPEG-4 Part 10, are
two of the most commonly used video decoding standards.
Especially, the new generation of the video coding standard
H.264/AVC, which represents the latest evolution of video
codecs, provides a much more efficient way in compressing
the video with ratio about 50% data size as it used to be
in older standard [2]. However, accompanied by the higher
compression ratio and much better video quality, the com-
putational complexity is significantly increased, which be-
comes even intractable for the High Definition (HD) res-
olution video decoding [3], [4]. Because of the colossal
amounts of computing resources required for processing
these multimedia applications, the scale of the reconfig-
urable units contained in CGRAs is always extremely large.
Consequently, the reconfiguration process implementation
for dynamically feeding such numerous reconfigurable units

Copyright c© 2012 The Institute of Electronics, Information and Communication Engineers



LIU et al.: RECONFIGURATION PROCESS OPTIMIZATION OF DYNAMICALLY COARSE GRAIN RECONFIGURABLE ARCHITECTURE
1859

with configuration data in time becomes critical, and there-
fore poses essential requirements for high-efficient reconfig-
uration process.

In this paper, we present a novel reconfiguration archi-
tecture implementation approach for improving the recon-
figuring performance of a large-scale CGRA called Recon-
figurable Multimedia System II (REMUS-II). In compari-
son with the original version REMUS-I [5], [6], REMUS-II
primarily focuses on improving the performance of the re-
configuration process as well as the data access process.
The major work of REMUS-I focuses on the reconfig-
urable array design. However, the performance evalua-
tion of REMUS-I is based on a high-level simulator called
SimREMUS [5], without considering the actual characteris-
tics of reconfiguration process and data access process. If
the performance degradation due to the effects of reconfig-
uration process is not taken into account, the performance
evaluation of the entire system is unable to be given pre-
cisely. Although the reconfigurable arrays of REMUS-I are
able to process the H.264 HiP decoding application in eval-
uation, the reconfiguration architecture design of REMUS-I
cannot meet the high requirement of the dynamic recon-
figuration performance for multimedia applications. This
paper mainly focuses on the reconfiguration process opti-
mization of REMUS-II. Firstly, we propose a hierarchi-
cal configuration storage sub-system as well as a 3-stage
pipelined reconfiguration processing structure, to provide
well organized reconfiguration structure and guarantee the
required reconfiguration performance for multimedia al-
gorithm processing. Besides, we also introduce a multi-
target reconfiguration method and several caching strate-
gies to dynamically detect and exploit the temporal local-
ity of the configuration data for reusing purpose. Experi-
mental results show that, with the proposed optimization ap-
proach, the performance of reconfiguration process will be
improved by 4 times. Based on RTL simulation, REMUS-II
can support the 1080p@32 fps of H.264 HiP@Level4 and
1080p@40 fps High-level MPEG-2 stream decoding at the
clock frequency of 200 MHz. The results also show that
REMUS-II achieves higher processing performance and
consumes less power in comparison with ADRES [7], [8]
and XPP-III [9]–[12], which are the two most famous state-
of-the-art CGRAs. The proposed REMUS-II system has
been implemented on a TSMC 65 nm process. The die size
is 23.7 mm2 and the estimated dynamic power is 620 mW.

This paper is organized as follows. Section 2 presents
related works in this field. Next, we describe the REMUS-II
and its reconfiguration architecture in Sect. 3. In Sect. 4,
we present the implementation details of the optimization
for improving the reconfiguration process, including the
hierarchical configuration storage architecture, the 3-stage
pipelined reconfiguration processing structure, and the
prefetching and caching strategy for configuration reusing.
Finally, implementation results are reported in Sect. 5 and
conclusions are presented in Sect. 6.

2. Related Works

From the architectural view, CGRAs can be classified into
two groups: 1D-linear-array based architectures and 2D-
mesh-array based architectures [13]. The 1D-linear-array
based CGRAs, such as RaPiD [14] and Piperench [15],
are only efficient for computations that can be organized
as a linear flow. Compared with 1D-linear-array based
CGRAs, 2D-mesh-array based CGRAs are more suit-
able for dealing with block-based applications which are
very common in multimedia processing. Among pub-
lished 2D-mesh-array based CGRAs which can realize the
H.264 decoding application, ADRES [7], [8], XPP-III [9]–
[12], ReMAP [16], MORA [17] and MorphoSys [18] are the
typical representatives. However, ReMAP, MORA and
MorphoSys mainly focused on the acceleration of some
critical tasks of H.264, such as IDCT and deblocking, but
no information were given about the performance of the
whole H.264 decoding process. Besides, neither ADRES
nor XPP-III can support the 1920 × 1080@30 fps real-time
decoding of H.264 High-Profile (HiP) streams. ADRES
could only realize H.264 1280×720@30 fps video decoding
at a working frequency of 300 MHz [8]. XPP-III, which is
a popular commercial reconfigurable media processor, can
support H.264 Baseline-Profile (BP) 1920 × 1080@24 fps
videos at a working frequency of 450 MHz [10], [11]. Fur-
thermore, as a result of the great working frequency of
450 MHz, the dynamic power of XPP-III is as high as
3,420 mW [12]. In order to support the 1920×1080@30 fps
real-time decoding of H.264 HiP streams at a low working
frequency, the scale of the CGRAs should be large enough
to contain more reconfigurable units for processing more
operations in parallel [19]. Therefore, the reconfiguration
architecture becomes a crucial part of the large-scale CGRA
design for applications where high performance is required.

The reconfiguration architecture plays a very important
role in CGRAs, especially in large-scale CGRAs, since the
numerous reconfigurable units contained require being dy-
namically fed with configuration data in time. The reconfig-
uration architecture design usually includes two aspects: the
reconfiguring organization structure and the prefetching and
reusing mechanism adopted for improving reconfiguration
process.

Basically, hierarchical memory structures for configu-
ration storage are very widely used in CGRAs. MorphoSys
uses a simple three-level configuration storage hierar-
chy [18]: the external SDRAM is the global shared memory;
an on-chip memory called the context memory (CM) stores
all the configuration data; a group of registers, which are
placed inside the reconfigurable array and called the con-
text registers, hold the current active configuration data. Be-
sides, the architecture of CM is customized for optimiz-
ing the transmission between CM and the context regis-
ters. However, all configuration data should be stored in
CM, and the content of CM is organized by a static method.
The flexibility and applicability of such a system will be



1860
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.7 JULY 2012

limited by the specified CM, due to its fixed memory size.
It is inappropriate to place all of the configuration data in
an on-chip memory. The reconfiguration architecture de-
signs of MORA and ReMAP are very similar to MorphoSys.
The major difference is that the configuration data could
be dynamically transferred from external memory to re-
configurable array [16], [17]. However, the prefetching and
reusing strategies are not mentioned in their reconfiguration
architecture designs. Since the scale of the reconfigurable
array contained in the CGRAs mentioned above is very fixed
and small (not more than 8 × 8), the reconfiguration perfor-
mance required can be easily solved. However, the system
performance will also be limited by the small and fixed array
scale. For the multimedia applications, the much more com-
putations involved, the much high processing performance
is required. Therefore, the CGRAs with small array scale
could never be used to solve the multimedia applications
with high requirements of system performance.

Unlike the CGRAs with a small array scale, both
ADRES and XPP-III provide a flexible architecture design,
where the reconfigurable arrays can be easily scaled up.
Therefore, in ADRES and XPP-III, many considerations
have been spent on the optimization of the reconfiguration
process, besides the hierarchical structure design for con-
figuration storage. In ADRES, a specified VLIW processor
is placed between the reconfigurable array and the external
memory. This VLIW processor is responsible for supervis-
ing and scheduling the reconfiguration process of the recon-
figurable arrays. Besides, there is also a register file called
the Conf. RAM placed inside the reconfigurable array. With
this Conf. RAM, configuration data transferred from the
VLIW processor can be buffered and reused. In XPP-III,
there are three kinds of arrays: the array of ALU-PAEs, the
array of RAM-PAEs and the array of FNC-PAEs [20]. The
ALU-PAEs are responsible for computing-intensive opera-
tions, and the RAM-PAEs are responsible for the on-chip
data buffering and reusing. The array of FNC-PAEs, which
is tightly coupled with the array of ALU-PAEs, is responsi-
ble for control-intensive operations, including the supervi-
sion of the reconfiguration process of all ALU-PAEs.

As the array scale of REMUS-II is much greater than
all the other CGRAs mentioned above, REMUS-II can ob-
tain higher processing parallelisms, and thus a higher pro-
cessing performance, too. To ensure the higher parallelisms
and system performance, the reconfiguration architecture
design of REMUS-II should be carefully considered. In
this paper, the reconfiguration process of REMUS-II is op-
timized to meet the high requirement of the dynamic recon-
figuration performance for multimedia applications.

3. Architecture of REMUS-II

3.1 Top-Level Architecture of REMUS-II

In comparison with the original version [5], [6], REMUS-II
primarily focuses on improving the performance of the re-
configuration process as well as the data access process.

Fig. 1 Top level architecture of REMUS-II.

The top level architecture of REMUS-II is shown in
Fig. 1. It consists of a system controller implemented with
ARM7TDMI, a scratch-pad memory (SPM) with a size
of 32 K × 32 bits, two Reconfigurable Processor Units
(RPUs) for speeding up computing-intensive tasks, a Micro-
Processor Unit (µPU) for speeding up control-intensive
tasks, and several assistant modules, including an Inter-
rupt Controller (IntCtl), a Direct Memory Access Con-
troller (DMAC), and an External Memory Interface (EMI)
with a data I/O width of 64 bits. All of the modules are
AMBA2.0-AHB-compatible and connected to the 32-bit
AHB Bus module used as the system bus. The two RPUs
can exchange data through a specific bus with a size of
256 bits. Besides, there is also a specific 512-bit FIFO Write
Channel implemented to provide a super-high bandwidth
simplex communication path between the µPU and the two
RPUs. In this proposed SoC design, the entire configura-
tion data for all target multimedia applications and the mas-
sive computation data such as the reference frames is stored
in the external main memory, which is a double data rate
(DDR) SDRAM chip.

The reconfiguration and scheduling process of the two
RPUs are supervised by the µPU. There are three pipelined
operations performed on µPU for the reconfiguration and
scheduling process: 1© the configuration flow is parsed and
the corresponding configuration data is located; 2© if the
configuration data is cached in µPU, then they are directly
sent to RPUs; 3© if not, an extra pre-fetching operation
which is responsible for pre-loading corresponding config-
uration data from external memory, will be carried out be-
tween the former two operations.

The decoding algorithm including both H.264 and
MPEG-2 on the slice layer can be divided into two



LIU et al.: RECONFIGURATION PROCESS OPTIMIZATION OF DYNAMICALLY COARSE GRAIN RECONFIGURABLE ARCHITECTURE
1861

parts: entropy decoding tasks and MB (macro-block) de-
coding tasks [6]. The entropy decoding tasks, includ-
ing the Context-Adaptive Binary Arithmetic Decoding
(CABAD) and the Context-Adaptive Variable Length De-
coding (CAVLD), are control-intensive tasks and thus are
mapped on to the µPU. For H.264, MB decoding is
composed of three kernel sub-algorithms: IDCT, Intra
Prediction/MC and deblocking. MB decoding tasks are
computing-intensive tasks, and therefore are mapped on to
the two RPUs.

With the supervision of µPU, the two RPUs can work in
either ping-pong mode or parallel mode, which are adopted
for H.264 decoding and MPEG-2 decoding, respectively.
The details will be described in Sect. 4.

3.2 Reconfigurable Processor Unit

Figure 1 depicts that each RPU contains four fundamental
Reconfigurable Arrays (RCAs), a Configuration Interface
(CI), a Block Buffer, and a Data Exchange Buffer (DEB).
RCA is a powerful dynamic reconfigurable system con-
sisting of an 8 × 8 Processing Element Array (PEA) and

Fig. 2 Structure of the configuration package.

(a) (b)

Fig. 3 (a) Architecture of the µP unit, (b) Structure of the mail communication.

several related modules including the register file and the
local memory. CI is responsible for receiving and buffer-
ing configuration data sent from the µPU. DEB is designed
to exchange data between RPUs, while the Block Buffer is
responsible for the data transfers between RPUs and other
modules. REMUS-II provides a convenient way for the
bidirectional data transfer between different RPUs. When
some data are required to be transferred from one RPU to
the other, the previous RPU firstly writes these data into its
DEB, and then informs the other RPU to read them out.

The configuration data sent to RPU is always regarded
as a configuration package with a fixed data size. When
a certain configuration package is sent to RPU, the CI will
firstly parse the identification head (Id head) of the con-
figuration package. The Id head is made up of the first
64 bits of configuration package. In the Id head, there
are a 16-bit synchronization code (Sync code) and a 10-bit
source-identification code (Src code), as shown in Fig. 2.
The Src code is used to indicate a new configuration pack-
age. Besides, there is also a 6-bit target-identification code
(Tar code) for specifying the target RCAs to which the con-
figuration package will be sent, as shown in Fig. 2. After be-
ing parsed by the CI, the rest bits of the configuration pack-
age except the Id head (also defined as the Conf context)
will be sent to the corresponding RCAs.

3.3 Micro (µ) Processor Unit

The µPU contains a 1 × 8 micro-processor element array
(µPEA), a 1×2 bit-stream processor array (SPA), and a spe-
cific cache called Context Group Control Unit (CGCU),
as shown in Fig. 3 (a). The SPA, is a reconfigurable bit-
stream decoder, and consists of two bit-stream processor el-
ements (SPEs) in order to process data fields efficiently. The
µPEA is responsible for carrying out control-intensive tasks
including the supervision of the reconfiguration process.



1862
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.7 JULY 2012

The CGCU is responsible for the configuration data pre-
loading and distributing, including three kinds of sub-
operations: pre-loading configuration data from external
memory, caching configuration data in µPU, and sending
configuration data to RPUs.

The RSIC processor ARM7TDMI, which is well-
known for its outstanding power efficiency [21], is chosen
to implement these micro-processors (µPs). Each micro-
processor element consists of a µP, a register file for setting
parameters and checking status, an 8 K bytes local memory,
and a tiny instruction cache. In order to improve memory
utilization, all µPEs share a 32 K-byte instruction memory
called Ins RAM. Furthermore, a tiny but high-efficiency
cache with the 256-bit I/O data width is implemented be-
tween each µPE and the shared Ins RAM to improve the
performance of instruction loading process, as shown in
Fig. 3 (a). The instruction loading process is also regarded as
the self-reconfiguration process of µPEA, which is different
from the reconfiguration process of the RPUs. In addition,
the communication between one µPE and another µPE, and
the communication between the system controller and the
µPEs, are both implemented by the Mail Box Array which
is composed of nine mail boxes, as shown in Fig. 3 (b). Each
of the system main controller and the eight µPEs has an as-
sociated mail box. Communication messages are sent and
received through these mail boxes. Each mail box provides
an output interrupt signal which is connected to its associ-
ated µPE or system controller. These interrupt signals are
finally connected to the ARM7TDMIs as the ARM fast in-
terrupt request (FIQ) input signal [21]. By monitoring these
FIQ signals, the µPEs and the system controller can observe
whether the associated mail boxes are empty or not.

4. Reconfiguration Process Optimization

The maximum number of system clock-cycles for process-
ing each MB is defined as Tmb and calculated in Eq. (1),
where Fsys is the system working frequency, Nmb is the num-
ber of MBs per frame, and fps is the frames per second. Be-
sides, the calculating result should be rounded down to the
nearest integer. According to Eq. (1), Tmb should be limited
to 816 clock-cycles to support the 1080p@30 fps stream de-
coding at the clock frequency of 200 MHz.

Tmb =
⌊
Fsys/(Nmb × fps)

⌋
(1)

The mapping sketch of the parallel working mode
(e.g. for MPEG-2 decoding) and the ping-pong working
mode (e.g. for H.264 decoding) are shown in Fig. 4 (a) and
Fig. 4 (b), respectively. The total system overhead for H.264
and MPEG-2 decoding mainly consist of three parts: the en-
tropy decoding tasks, the MB decoding tasks and the recon-
figuration processing tasks. These three tasks are performed
as three pipelined steps as follows.

Step1. The entropy decoding tasks are processed by
SPA. The processing results of this step consist of two parts:
the residual entropy and the input options of the system con-
trol flow (also called configuration parameters in this paper).

The configuration parameters are then sent to the µPEA to
drive the reconfiguration processing step. In addition, the
residual entropy will be finally loaded into RPU0 as the
source input data of IDCT.

Step2. The reconfiguration processing tasks are per-
formed by µPEA. The reconfiguration tasks processed in
this step are driven by the continuously input configuration
parameters produced in the former step. In REMUS-II, there
are eight µP elements comprised in µPEA, and each µP el-
ement can process one reconfiguration task once per time.
Each reconfiguration task is responsible for the reconfigura-
tion process of one MB. The reconfiguration task includes
two parts: firstly, µPEA parses the control flow and locates
the configuration data; and then, CGCU prepares the config-
uration data and sends them to RPUs. In µPEA, eight recon-
figuration tasks for eight sequential MBs can be processed
in a parallel way, as shown in Fig. 4. However, the con-
figuration data transferring tasks performed in CGCU can
only be scheduled in a sequential way. Therefore, there are
timing gaps (equal to Tmb) between the neighboring recon-
figuration tasks, as shown in Fig. 4. Since the timing gaps
have an enormous impact on reconfiguration performance,
further optimization methods for this problem will be intro-
duced afterwards.

Step3. The MB decoding tasks are processed by the
two RPUs. This step is driven by the incoming configura-
tion data generated in the Step2. Once a RPU is reconfig-
ured, then corresponding source input data will be loaded
and computed by the RPU. The final output results of each
MB will be stored into external memory by the RPU, after
the completion of a computation. In addition, the temporal
calculation variables only effective within the current MB
decoding tasks usually are buffered in RPUs for efficient
memory access purpose.

For MPEG-2 decoding, the parallel mode is chosen and
the two RPUs work in a complete parallel way, since the MB
decoding task can be processed within Tmb by each RPU. As
shown in Fig. 4 (a), the two RPUs perform two MB decod-
ing tasks concurrently and are mapped with same configura-
tions in this mode. Therefore, the reconfiguration overhead
can be reduced with a technology called multi-target recon-
figuration. With the proposed technology, a configuration
package can be sent to more than one RPU at once, so the
transmission of configuration data can be reduced, and this
will result in performance promotion of the reconfiguration
process. The details of the multi-target reconfiguration tech-
nology will be illustrated in Sect. 4.1.

For H.264 decoding, the ping-pong mode is chosen and
the two RPUs work in pipelined way, because the MB de-
coding task is too complicated to be processed within Tmb

by one RPU. In this mode, the task which requires high
processing performance will be divided into two data-
dependent sub-tasks, and each sub-task will be then allo-
cated into one RPU. Therefore, this task can be processed
in pipeline by the two RPUs. As shown in Fig. 4 (b), the
two RPUs are scheduled as follows: RPU0 performs MC
and IDCT (the sub-task1), and RPU1 performs deblocking



LIU et al.: RECONFIGURATION PROCESS OPTIMIZATION OF DYNAMICALLY COARSE GRAIN RECONFIGURABLE ARCHITECTURE
1863

Fig. 4 Mapping sketch of video decoding on REMUS-II.

(the sub-task2). As a result, each sub-task can be easily pro-
cessed in one time-slot (the time-slot is equal to Tmb). Be-
sides, the calculation results of sub-task1 are generated by
RPU0 and sent to RPU1 as the input of sub-task2 through
the DEB.

Because of this pipelined scheduling approach, totally
three MBs can be processed in the pipeline, and therefore
one MB can be then decoded in three time-slots. In order
to fulfill the performance requirements, each step should be
restricted in one time-slot. Among the three steps, to restrict
the reconfiguration processing step in one time-slot is the
major bottleneck problem.

The requirements of the optimization can be denoted
by the performance gain of the reconfiguration process. The
required performance gain of the reconfiguration process is
defined as G and calculated in Eq. (2), where Ncluster rep-
resents the average bits of the configuration data required
by the two RPUs for processing one MB (also defined as
a configuration cluster), BDDR represents the bandwidth of
external memory and Tmb represents the maximum number
of system clock-cycles for each MB.

G =
Ncluster/BDDR

Tmb
(2)

Supposing BDDR is about 64 bits/cycle, the required
performance gain of reconfiguration process for H.264 and
MPEG-2 1080p@30 fps stream decoding are shown respec-
tively in Table 1. For H.264, the two RPUs totally require

Table 1 Requirements of the reconfiguration process optimization.

200 K bits configuration data for processing the MB decod-
ing. As a result, almost 3200 clock-cycles will be required
for loading a reconfiguration cluster. Therefore, the perfor-
mance of reconfiguration process should be improved about
four times. For MPEG-2, the two RPUs are usually mapped
with a same configuration setting, so the size of a configu-
ration cluster is only about 120 K bits. The performance of
reconfiguration process for MPEG-2 is required to be im-
proved over two times.

The reconfiguration process is going to be optimized
from the following aspects: Firstly, a hierarchical memory
structure for configuration storage is implemented to miti-
gate the performance gap between on-chip processors and
off-chip memory. Secondly, the reconfiguration process is
further scheduled in a 3-stage pipeline mode to loosen the
restricted time requirement, and corresponding optimiza-
tion methods are introduced in each stage. Finally, a su-
pervising strategy is proposed for the configuration cache
to achieve a high performance on configuration pre-fetching
and distributing. Additionally, in the following Sect. 4.1, the
multi-mapping feature of the reconfiguration process is il-
lustrated, and the multi-target reconfiguration technology is



1864
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.7 JULY 2012

then introduced to improve the performance of reconfigura-
tion process.

4.1 The Hierarchical Configuration Storage Sub-System

Taking the power and area consideration into account, the
memory size of integrated SRAMs should be limited to
a tolerably small amount, since the silicon area occupancy
and power consumption increases significantly when the
memory capacity rises. As mentioned in Sect. 2, the small
and fixed memory capacity will restrict the probable size
of configuration data, and this will seriously hamper the
flexibility and applicability of target CGRAs. As a result,
the whole configuration data is located in external memory
rather than in integrated SRAMs.

In our proposed REMUS-II, the configuration data for
all target applications are located in an external memory
which is implemented by a DDR SDRAM chip. DDR
SDRAM chips have been commonly used as the external
main memory in video processing systems, since they pro-
vide high capacity data storage at commodity prices. Since
DDR SDRAMs are organized in linear rows, data reading
from a different row will cause extra SDRAM operations
(i.e. row pre-charge, and row active), and thus requires much
more time than reading from a same row as the previous ac-
cess [22]. Therefore, the technique of data pre-fetching with
consecutive memory access and the technique of data buffer-
ing should be introduced to reduce external memory access
latency.

In order to mitigate the performance gap between on-
chip processors (RPUs and µPU) and off-chip memory,
a configuration storage hierarchy is implemented to deal
with the issues posed by moving configuration data from
external memory to computational processors. There are
three storage levels presented in REMUS-II. The first level
is DDR SDRAM which provides a global shared storage
of configuration data needed for the complete configuration
flow of target applications. The second level is the on-chip
configuration data cache, which is used as a temporal repos-
itory of the configuration data which will be used recently.
The third level is the register files in each RCA where con-
figuration data is set to be active. The working process of
this storage hierarchy is shown as follows.

Firstly, the configuration data is automatically pre-
fetched from external DDR memory, and then cached by
a specific cache structure called CGCU implemented in
µPU. In order to improve memory access efficiency, the
DDR access is always implemented in a long-burst-length
pattern by EMI.

Afterwards, the µPU dynamically sends the configura-
tion data to the appropriate RPU. The configuration data is
then received and buffered by CI, which is shared by four
RCAs in the present RPU.

Finally, the configuration data is parsed by CI and then
mapped to the appropriate RCA when previous task is ac-
complished.

Since the RCAs in one RPU are very likely to be

mapped with same configuration settings, one configuration
package may be sent to two or more RCAs at once, and this
is called the configuration multi-mapping. In order to sup-
port the multi-mapping feature, FIFO Write Channel and the
Tar code contained in Id head are designed with the sup-
port of multi-target reconfiguration (more than one RPU or
RCA at once). The most two significant bits of Tar code in-
dicate the target RPUs: ‘01’ and ‘10’ represent RPU0 and
RPU1 respectively, and ‘11’ indicates the current configu-
ration package is sent to both RPU0 and RPU1. The least
four significant bits of Tar code indicate the target RCAs:
each bit (bit0 ∼ bit3) represents a RCA (RCA0 ∼ RCA3)
respectively. Therefore, one configuration package can be
sent to more than one RCA at once by setting the Tar code.
With the multi-target reconfiguration technology there will
be a visible decrease on the number of configuration pack-
ages transferred from µPU to RPUs.

Considering the decrease in transmission of configura-
tion data by the multi-target reconfiguration technology, the
average clock-cycles required for transferring a configura-
tion cluster is then calculated in Eq. (3) (defined as T ′). The
parameter T represents the clock-cycles required for trans-
ferring a configuration cluster without the multi-target re-
configuration technology. The parameter P is the equivalent
ratio of T ′ to T , and P represents the decrease ratio of the
transmission with multi-target reconfiguration technology.
Much less the parameter P is, much less the transmission
of configuration data is. The computational formula for pa-
rameter P is shown in Eq. (4). The parameter Pdupi (i is 0∼7)
represents the average probability of i-duplicate reconfigur-
ing cases, and the total sum of Pdupi is 1, as shown in Eq. (5).
The i-duplicate reconfiguring case indicates the present con-
figuration package will be sent to (i+1) RCAs. Additionally,
the 0-duplicate case is also called the non-duplicate recon-
figuring case, where the configuration package is only sent
to a certain RCA. By profiling and computing the value of
these Pdupi, the parameter P can be calculated by Eq. (4).

T ′ = P × T (3)

P =

7∑
i=0

((8 − i) × Pdupi)

8
(4)

1 =
7∑

i=0

Pdupi (5)

In the CI of each RPU, there is also a tiny cache mem-
ory called Context Kernel Cache, which is used for the con-
figuration package buffering and reusing. Figure 5 depicts
the architecture of the CI. It includes three sub-modules:
the Input FIFO receives the incoming configuration pack-
ages; the Context Kernel Cache is responsible for configura-
tion package buffering and reusing; the Configuration Buffer
assigns the configuration package to corresponding RCAs.
The Context Kernel Cache consists of three sub-modules in-
cluding a cache controller, a cache memory (CacheMEM)
and a tag register file (TagRF), as shown in Fig. 5. The



LIU et al.: RECONFIGURATION PROCESS OPTIMIZATION OF DYNAMICALLY COARSE GRAIN RECONFIGURABLE ARCHITECTURE
1865

Fig. 5 Architecture of the CI.

cache memory has four cache lines (line0∼line3), and each
line can buffer the Conf context of a configuration package.
The cache register file has four cache tags (tag0 ∼ tag3), and
each cache tag buffers the Src code of a configuration pack-
age. Furthermore, linei and tagi (i is 0∼3) indicate a same
configuration package. The cache controller supervises the
working process of the Context Kernel Cache, which can be
classified into two cases: the case of a cache hit and the case
of a cache miss.

Since the Id head is comprised in the first 64 bits of
a configuration package, it will always be received by each
RPU in the first clock-cycle of the transmission. By com-
paring the Src code included in Id head, the cache con-
troller can detect whether the Conf context of the incoming
configuration package is already buffered in Context Ker-
nel Cache. If it is already buffered, then this is the case
of a hit, otherwise it is the case of a miss. In the case
of a miss: 1© the incoming configuration package is firstly
received and buffered in Input FIFO; 2© then the configu-
ration package will be transferred to Configuration Buffer,
and meanwhile a copy of the Src code and Conf context of
this configuration package will be buffered in Context Ker-
nel Cache (in TagRF and CacheMEM respectively); 3© fi-
nally the Conf context of this configuration package will be
sent to the corresponding RCAs. In addition, the content of
Context Kernel Cache can be supervised by a simple Round-
robin strategy. In the case of a hit: 1© only the Id head of the
incoming configuration package will be received by Input
FIFO; 2© one buffered Conf context will be selected from
CacheMEM and it will combine with the Id head buffered
in Input FIFO to form an entire configuration package. This
configuration package will be then stored in Configuration
Buffer; 3© finally the corresponding RCAs will be mapped
by the content of Configuration Buffer, just the same as the
former case of a miss. Besides, in the case of a hit, the
cache controller will inform CI to drive an output signal
called DUP VALID to µPU. Once getting the value 1 of
DUP VALID signal, µPU will terminate the transmission of
current configuration package. In this case, the whole trans-
mission will be accomplished in one clock-cycle. There-
fore, the Context Kernel Cache, which can hold the recent

configuration settings, will reduce the unnecessary transmis-
sions between µPU and RPUs.

4.2 The Pipelined Reconfiguration Processing Structure

The reconfiguration process proposed is divided to three
stages: the configuration word generating stage (Stage1),
the context group pre-fetching and sending stage (Stage2,
also called the context group preparing stage), and the con-
text kernel remapping stage (Stage3).

The context kernel is a group of configuration data used
to configure a RCA once. In REMUS-II, a configuration
package is equal to a context kernel. The size of each con-
text kernel is fixed as 2 K bits. There are totally about 315
different context kernels created in our proposed work for
H.264 decoding, and totally about 85 different context ker-
nels for MPEG-2 decoding.

The context group is a configuration set consists of sev-
eral context kernels to perform a certain sub-algorithm of
target application (e.g. IDCT4 × 4, IDCT8 × 8, MC, and so
on). A context group can contain up to eight context ker-
nels, and the context kernels involved in a context group are
arranged in order of their precedence.

The information that determining which context group
is chosen to be loaded and which RCA is to be mapped
is defined as the configuration word. Although there are
totally over three hundred context kernels for H.264, the
frequently-used context kernels are less than one hundred.
These frequently-used context kernels are normally used to
deal with some sub-algorithms for MC and deblocking, such
as the matrix-transposition and others. The data size of
frequently-used context kernels takes up about 30 percent
of the totals, but masks up about 80 percent of the access
times. Therefore, the external memory access overhead can
be greatly reduced with the technique of caching and reusing
the frequently accessed data.

The timing chart of 3-stage reconfiguration processing
structure for MPEG-2 and H.264 is shown in Fig. 6 (a) and
Fig. 6 (b), respectively. Since the context kernel remapping
stage costs quite little cycles, and is always accompanied
with the MB decoding operations, the corresponding MB
decoding process is depicted instead. These reconfiguration
stages are performed in a pipelined manner as follows.

Stage1. In this stage, the system allotting and schedul-
ing tasks are processed by eight µP elements in advance.
Therefore, information about the control flow of next MB
can be obtained by parsing the configuration word generated
and buffered. Therefore the context groups required in fu-
ture can be completely predicted and pre-fetched in advance.

Stage2. In this stage, the required context groups are
pre-fetched and the context kernels contained are then sent
to relevant RCAs in appropriate order.

Stage3. This stage is performed on each RCA and con-
trolled by the former context group pre-fetching and sending
stage. When one RCA is under the context kernel remap-
ping stage, the other RCAs in the same RPU can execute
their tasks at the same time, and this is also called the partial



1866
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.7 JULY 2012

Fig. 6 Timing chart of the reconfiguration processing structure.

reconfiguration feature. Besides, there is also a so-called
none-wait-reconfiguration feature which can further reduce
the mapping overhead in Stage2. In each RCA, there are
two register files for configuration mapping. When one reg-
ister file is active, the next incoming context kernel will be
loaded to a shadow register file. Once the current mapping
task is finished, the shadow register file will switch to be ac-
tive, and the former register file will then switch to be the
shadow register file.

As illuminated above, the operations in Stage3 can be
easily carried out within Tmb. Besides, since eight sequential
tasks can be processed by eight µP elements in parallel, each
task in Stage1 can be processed within 8×Tmb, which is also
easy to be satisfied. Among these stages, the Stage2 where
numerous operations for context group loading and sending
are involved is the critical path. In order to satisfy the per-
formance requirement of this stage, two optimization meth-
ods are introduced for reducing the transmission required as
following:

Firstly, a Context Group Cache is implemented in µPU
to pre-fetch and buffer the context groups for reusing pur-
pose. Considering the decrease in transmission of configu-
ration data by the Context Group Cache, the average clock-
cycles required for transferring a configuration cluster is
given in Eq. (6) (defined as T ′′). The parameter Phit-CGC rep-
resents the Context Group Cache hit ratio, and T ′ given in
Eq. (3) represents the clock-cycles required for transferring
a configuration cluster without Context Group Cache. Be-
sides, TCGC represents the clock-cycles for loading a context

kernel from Context Group Cache to RPUs, and TDDR rep-
resents the average clock-cycles for loading a context ker-
nel from DDR memory to Context Group Cache. The
value of TCGC/TDDR is equal to the inverse proportion of
the bandwidth of Write FIFO Channel to that of the EMI:
64/512 = 0.125.

T ′′

=
Phit-CGC×TCGC+ (1−Phit-CGC)× (TDDR+TCGC)

TDDR
×T ′

=

(
TCGC

TDDR
+ (1−Phit-CGC)

)
×T ′ (6)

Furthermore, the Context Kernel Cache in each RPU
will also significantly reduce the total transmission of con-
text kernels from µPU to RPUs. In the case of a hit, the
whole transmission of a context kernel can be accomplished
with only one clock-cycle. Therefore, 75 percent system
cycles will be saved when the Context Kernel Cache access
hits. Considering the decrease in transmission of configura-
tion data by Context Kernel Cache, the average clock-cycles
required for transferring a configuration cluster is then cal-
culated in Eq. (7) (defined as T ′′′). The parameter Phit-CKC

represents the context kernel cache hit ratio, and T ′′ given in
Eq. (6) represents the clock-cycles required for transferring
a configuration cluster without the Context Kernel Cache.
The parameter Thit-CKC represents the clock-cycles required
by the transmission of a context kernel when the Context
Kernel Cache access hits, and Tmiss-CKC represents the clock-
cycles required in the case of a miss. As mentioned above,
the Thit-CKC is 1 and the Tmiss-CKC is 4 respectively in our
implementation.

T ′′′=
Phit-CKC×Thit-CKC+ (1−Phit-CKC)×Tmiss-CKC

Tmiss-CKC
×T ′′

(7)

As can be seen in Fig. 4 and Fig. 6, the proposed op-
timization methods enhance the processing performance of
H.264 and MPEG-2 by improving the reconfiguration ef-
ficiency of their kernel sub-algorithms such as MC, IDCT
and deblocking, which are also widely used in other media
applications, including AVS [23], MPEG-4, H.263, and so
on. Therefore, the proposed reconfiguration architecture is
not specified for H.264 or MPEG-2, and can be also suitable
for other multimedia applications such as H.263, MPEG-4,
AVS, and so on.

4.3 The Context Group Control Unit

The Context Group Control Unit (CGCU) is responsible for
the configuration data pre-loading from external DDR mem-
ory and distributing to RPUs. As shown in Fig. 3, CGCU
consists of four sub-modules: the Context Group Cache,
the Configuration Word FIFO, the Look-up Table, and the
Parser.

The Context Group Cache is responsible for caching
the context groups required by RPUs. When a new



LIU et al.: RECONFIGURATION PROCESS OPTIMIZATION OF DYNAMICALLY COARSE GRAIN RECONFIGURABLE ARCHITECTURE
1867

Fig. 7 Content of the Context Group Cache: (a) the logical view, (b) the
physical view.

configuration word is generated by µPEA and written to
CGCU, CGCU will parse the incoming configuration word
and then pre-load the context group required from exter-
nal DDR memory. Besides, there is also a register de-
fined as the Active Context Group Index (ActCtxGrp index).
The ActCtxGrp index is designed to indicate which context
group is currently transferred from CGCU to RPUs. The up-
dating strategy for the value of ActCtxGrp index is a simple
Round-robin algorithm.

Since the context groups in Context Group Cache are
always likely to contain same context kernels, the Context
Group Cache is designed in a so-called two-side-view way:
the logical view and the physical view. From the logical
view, context group is regarded as the basic unit processed
in Context Group Cache, as shown in Fig. 7 (a). From the
physical view, configuration data stored in Context Group
Cache is in the unit of context kernel, as shown in Fig. 7 (b).
Furthermore, the same context kernel involved in multiple
context groups will be only stored once, and the informa-
tion about context groups is recorded in the Look-up Table,
as shown in Fig. 8. Depending on the consumption rate of
RPUs and the generating rate of µPEA, the average con-
text groups cached in Context Group Cache is about sixty.
Besides, the average number of context kernels contained
in each context group is about four (4.2 for H.264, and 3.7
for MPEG-2). Therefore, from the logical view, the num-
ber of context kernels required by these context groups is:
60× 4 = 240. However, from the physical view, the number
of context kernels actually stored in Context Group Cache is
in maximum 64. Therefore, with the two-side-view design,
totally 44 K bytes of the Context Group Cache will be saved
(with a 73% reduction on memory space occupancy).

The Look-up Table is responsible for tracing two kinds
of information: the content record of a context group, and
the usage record of each context kernel. Once a new con-
figuration word is received, or a context group is moved out
from the Context Group Cache and sent to the RPUs, the

Fig. 8 Content of the Look-up Table: (a) the Kernel weight, (b) the
nValid flag and the Kernel index.

content of Look-up Table will be updated accordingly. As
shown in Fig. 8 (b), a 64-entry table (defined as entry0 ∼
entry63) is used to record the content of each context group.
Each entry of the table consists of eight 10-bit items (de-
fined as item0 ∼ item7). The lowest 9-bit (defined as the
Kernel index) registers the serial number of the context ker-
nel (the lowest 9-bit of Src code). The most significant bit
is used to indicate whether the context kernel is valid or not
(defined as the nValid bit: 0 is valid, and 1 is not valid). If
the nValid bit of item4 in entry0 (marked as (item3, entry0)
in Fig. 8 (b)) is 1, and the nValid bit of item3 in entry0
(marked as (item4, entry0) in Fig. 8 (b)) is 0, it indicates
that the entry0 context group contains four context kernels
(the invalid items are marked with X in Fig. 8 (b)). Besides,
a 16-bit register is used to indicate the total number of con-
text kernel involved in all context groups, and this number
is also defined as the Kernel weight, as shown in Fig. 8 (a).

The Parser is responsible for receiving configuration
words sent from µPEA. The Configuration Word FIFO is
responsible for buffering the incoming configuration words.
When there is no more space in Context Group Cache for
the incoming context groups, the Parser will inform µPEA
to hold the current write operation.

By parsing configuration words buffered in Configura-
tion Word FIFO, context groups required in near future can
be completely predicted in advance. If some context kernels
involved in these context groups are currently not cached in
Context Group Cache, then victim context kernels should be
selected for the context kernels going to be pre-loaded. To
select the most appropriate victims, a dynamic strategy is
implemented to organize Context Group Cache as follows:
Firstly, the context kernels with a kernel weight of 0 will be
selected as candidates for the victims. Afterwards, a simple
Round-robin algorithm is performed to choose the victims
from these candidates. Finally, the memory space used by
the victims will be rewritten with the context kernels going



1868
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.7 JULY 2012

to be pre-loaded. When the memory space provided by the
victims is not enough for a certain context group going to be
pre-loaded, CGCU will not load this context group at once,
until more victims and enough memory space are available.

Besides, the multi-bank interleaving mode of DDR
memory is also chosen to improve external memory access
efficiency. Taking the advantage of bank interleaving, the
extra latencies caused by the DDR reading operations from
a different row can be greatly reduced [24].

5. Experimental Results

As illuminated in Sect. 4, in order to support the 1920 ×
1080@30 fps stream decoding at the clock frequency of
200 MHz, the average reconfiguration overhead for driving
the RPUs to process each MB should be limited to Tmb (816
clock-cycles). Since the average reconfiguration overhead is
indicated by the parameter T ′′′, it can be easily calculated in
Eq. (8). Ttotal-reconf is the total clock-cycles spent by the two
RPUs for getting configuration data, Ntotal-CG is the number
of the context groups totally loaded to the two RPUs, and
Nmb-CG is the average number of the context groups loaded
to the two RPUs for one MB.

T ′′′ =
Ttotal-reconf

Ntotal-CG
× Nmb-CG (8)

The actual performance gain of the reconfiguration
process can be calculated in Eq. (9) (defined as G′). The
formula for T ′/T , T ′′/T ′, and T ′′′/T ′′ are given in Eq. (3) ∼
Eq. (7) respectively.

G′ =
1

(T ′′′/T ′′) × (T ′′/T ′) × (T ′/T )
(9)

The profit of the reconfiguration structure on several
benchmark streams for H.264 and for MPEG-2 is shown in
Table 2 and Table 3, respectively.

The results show that, with the proposed reconfigura-
tion architecture, REMUS-II can support the 1080p@32 fps
of H.264 HiP@Level4 and 1080p@40 fps High-level
MPEG-2 stream decoding at the clock frequency of
200 MHz. Based on all benchmark streams for both H.264
and MPEG-2 decoding, the reconfiguration overhead for
processing one MB (the parameter T ′′′) is much less than
the restricted Tmb (816 clock-cycles). The results also de-
pict that, with the proposed reconfiguration architecture,
the performance of reconfiguration process can achieve
a great increase in profits of about 4 times (the parameter
G′ ≈ 4). The simulation results show that, for both H.264
and MPEG-2 benchmark streams, the actual performance
gain of reconfiguration process (denoted by G′) is much
greater than the required performance gain for H.264 and
MPEG-2 real-time 1080p@30 fps stream decoding (denoted
by G). In contrast to the CGRAs mentioned in Sect. 2,
REMUS-II can comprise and support a much larger array
scale, with the proposed reconfiguration architecture de-
sign. As the array scale of REMUS-II is much greater,
it can obtain much higher processing parallelisms. There-
fore, REMUS-II can achieve a much higher processing

Table 2 Profit of reconfiguration on benchmark streams for H.264.

Table 3 Profit of reconfiguration on benchmark streams for MPEG-2.

performance.
Besides, Table 2 and Table 3 also show that, the re-

configuration overhead for MPEG-2 is much less than that
for H.264. As illustrated in Sect. 4, there are mainly two
reasons: Firstly, since the MB decoding task for H.264 con-
tains much more computations than that for MPEG-2, the
amount of configuration data to be transmitted for H.264 is
much greater than that for MPEG-2, and therefore the re-
configuration overhead for H.264 is also greater. Secondly,
since the parallel working mode is chosen for MPEG-2, the
two RPUs are mapped with same configuration settings, and
therefore the reconfiguration overhead can be significantly
reduced with multi-target reconfiguration technology. How-
ever, in ping-pong working mode, the two RPUs are mapped
with different configuration settings, and therefore the re-
configuration overhead for H.264 cannot be reduced by as
much as that for MPEG-2 with the multi-target reconfigura-
tion technology.

Taking the benchmark stream foreman qcif as exam-
ple, the value of T ′/T is about 0.86 for H.264 and 0.64
for MPEG-2. As mentioned above, the two RPUs are per-
formed in a parallel way for MPEG-2, and therefore the
value of P for MPEG-2 is much less than that of H.264.
This result shows that with multi-target reconfiguration, the
transmission overhead for configuration data will be re-
duced to less than 86% for H.264 and 64% for MPEG-2.
Besides, as Phit-CGC is about 0.79 for H.264 and 0.66 for
MPEG-2, the value of T ′′/T ′ is then about 0.34 for H.264
and 0.47 for MPEG-2 respectively (by Eq. (6)). This results
show that with the context group cache placed in µPU, the



LIU et al.: RECONFIGURATION PROCESS OPTIMIZATION OF DYNAMICALLY COARSE GRAIN RECONFIGURABLE ARCHITECTURE
1869

Fig. 9 Layout of REMUS-II.

Table 4 Comparison among REMUS-II and other reconfigurable plat-
forms in H.264 decoding.

transmission overhead for configuration data will be further
reduced to less than 50 percent. Furthermore, as the Phit-CKC

is about 0.33 for H.264 and 0.28 for MPEG-2, the value of
T ′′′/T ′′ is then about 0.75 for H.264 and 0.79 for MPEG-2
respectively (by Eq. (7)). This results show that with a tiny
cache (the Context Kernel Cache) implemented in RPU, the
configuration data sent from µPU will be further reduced to
less than 80 percent.

To validate the proposed optimization methods, the
hardware architecture of REMUS-II was described with
Verilog HDL language and simulated with Synopsys Verilog
Compiler Simulator (VCS) to show the system performance,
as well as the performance of reconfiguration process. This
design was implemented under TSMC 65 nm low power
process. The area and timing results were generated by
Synopsys Design Compiler (DC) using the worst case con-
ditions, and the dynamic power was estimated by Synopsys
PrimeTime-PX (PTPX).

The layout of REMUS-II is shown in Fig. 9, and it is
mainly composed of several components: the two RPUs,
the µPU (including the SPA, the µPEA and the CGCU), and
the SPM. In addition, because the inter circuits of µPEA
and CGCU are tightly coupled, they are placed in one block
of the layout. The area of REMUS-II is 23.7 mm2 and the
dynamic power is estimated to 620 mW by PTPX (the power
consumption of off-chip memory is not included).

Table 4 gives the comparisons for H.264 decoding on
different reconfigurable platforms. The results show that the

Table 5 Implementation details of REMUS-II.

processing performance of REMUS-II is better than that of
XPP-III and ADRES. Besides, since the computations of
HiP decoding are 54% more than that of BP, REMUS-II
achieves 105.3% better performance with the comparison to
XPP. Moreover, since the dynamic power of XPP-III can
be as high as 3,420 mW (450 MHz × 7.6 mW/MHz) [12],
REMUS-II consumes much less power due to the much
more advanced semiconductor process and the lower clock
frequency.

The implementation details of REMUS-II are outlined
in Table 5. As shown in Fig. 9, the hardware costs for the
proposed reconfiguration architecture design are composed
primarily of the µPEA and CGCU. The hardware costs and
the energy consumption of µPEA and CGCU are as follows:
the memory space occupied accounts for 23.1% of the em-
bedded memory total, the equivalent logic gates used ac-
counts for 13.3% of the total, the estimated dynamic power
consumed accounts for 13.4% of the total on-chip power
consumption, which are all not too high.

6. Conclusions

This paper presents a novel architecture design to opti-
mize the reconfiguration process of a coarse-grained re-
configurable architecture called REMUS-II. To optimize
the reconfiguration architecture, a hierarchical configura-
tion storage structure and a 3-stage reconfiguration process-
ing structure are proposed. Besides, the multi-target re-
configuration method and the configuration caching strate-
gies are also introduced to dynamically detect and ex-
ploit the temporal locality of configuration data for reusing
purpose. Since the proposed reconfiguration architecture
is not specified for H.264 or MPEG-2, it can be also
suitable for other multimedia applications such as H.263,
MPEG-4, AVS, and so on. With the reconfiguration archi-
tecture proposed, the performance of reconfiguration pro-
cess can be improved by 4 times. Based on RTL simu-
lation, the proposed reconfiguration process can meet the
requirement for H.264 and MPEG-2 HiP decoding. Ex-
perimental results show that REMUS-II can support the
1080p@32 fps of H.264 HiP@Level4 and 1080p@40 fps
High-level MPEG-2 stream decoding at the clock frequency
of 200 MHz. The proposed REMUS-II system has been im-
plemented on a TSMC 65 nm low power process with a die
size of 23.7 mm2. Comparison results also show the pro-
cessing performance of REMUS-II is better than that of XPP
and ADRES.



1870
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.7 JULY 2012

Acknowledgments

This work was supported by the National High Technol-
ogy Research and Development Program of China (863
Program) (grant no.2009AA011701), and the Natural Sci-
ence Foundation of Jiangsu Province of China (grant
no.BK2010167 and no.BK2010166).

The authors would like to thank to C. MEI, J. XIAO,
J.J. YANG, Y.C. LU, Y.Q. FAN, H. LEI and C.X. ZHANG
for their helpful discussions and technical support.

References

[1] T. Cervero, S. López, G.M. Callicó, F. Tobajas, V. de Armas, J.
López, and R. Sarmiento, “Survey of reconfigurable architectures
for multimedia applications,” VLSI Circuits and Systems IV (Pro-
ceedings Volume), SPIE Microtechnologies for the New Millen-
nium, Dresden, Germany, 2009, doi:10.1117/12.821713.

[2] J. V. T. of ITU-T, “Draft itu-t recommendation and final draft inter-
national standard of joint video specification (itu-t rec. h.264 iso/iec
14496-10 avc),” Document JVT-GO50, Dec. 2003.

[3] T. Wiegand, G.J. Sullivan, G. Bjøntegaard, and A. Luthra,
“Overview of the H.264/AVC video coding standard,” IEEE Trans.
Circuits Syst. Video Technol., vol.13, no.7, pp.560–576, July 2003,
doi:10.1109/TCSVT.2003.815165.

[4] A. Joch, F. Kossentini, H. Schwarz, T. Wiegand, and G.J.
Sullivan, “Performance comparison of video coding standards using
Lagrangian coder control,” Image Processing. 2002. Proceedings.
2002 International Conference on, pp.II-501–II-504, vol.2, 2002.

[5] M. Zhu, L. Liu, S. Yin, C. Yin, and S. Wei, “A cycle-accurate simu-
lator for a reconfigurable multi-media system,” IEICE Trans. Inf. &
Syst., vol.E93-D, no.12, pp.3202–3210, Dec. 2010.

[6] T. Geng, L. Liu, S. Yin, M. Zhu, and S. Wei, “Parallelization of
computing-intensive tasks of the H.264 high profile decoding algo-
rithm on a reconfigurable multimedia system,” IEICE Trans. Inf. &
Syst., vol.E93-D, no.12, pp.3223–3231, Dec. 2010.

[7] B. Mei, B. De Sutter, T. Vander AA, M. Wouters, S. DuPont, and A.
Kanstein, “Implementation of a coarse-grained reconfigurable media
processor for AVC decoder,” J. Signal Processing Systems, vol.51,
pp.225–243, 2008.

[8] B. Mei, F.J. Veredas, and B. Masschelein, “Mapping an H. 264/AVC
decoder onto the ADRES reconfigurable architecture,” Interna-
tional Conference on Field Programmable Logic and Applications,
pp.622–625, 2005.

[9] V. Baumgarte, G. Ehlers, F. May, A. Nückel, M. Vorbach, and
M. Weinhardt, “PACT XPP: A self-reconfigurable data processing
architecture,” J. Supercomputing, vol.26, pp.167–184, 2003.

[10] M.K.A. Ganesan, S. Singh, F. May, and J. Becker, “H. 264 decoder
at HD resolution on a coarse grain dynamically reconfigurable
architecture,” Field Programmable Logic and Applications (FPL07),
International Conference on, pp.467–471, 2007.

[11] F. Campi, R. Konig, M. Dreschmann, M. Neukirchner, D. Picard, M.
Iuttner, E. Schuler, A. Deledda, D. Rossi, A. Pasini, M. Hubner, J.
Becker, and R. Guerrieri, “RTL-to-layout implementation of an em-
bedded coarse grained architecture for dynamically reconfigurable
computing in systems-on-chip,” Proc. 11th International Conference
on System-on-chip (SOC09), pp.110–113, 2009.

[12] E. Schuler, “NoC concepts with XPP-III,” International Symposium
on Reliability of Optoelectronics for Space (ISROS 2009), Cagliari,
Italy, May 2009.

[13] R. Hartenstein, “A decade of reconfigurable computing: A visionary
retrospective,” Proc. Design, Automation and Test in Europe (DATE
01), IEEE CS Press, pp.642–649, 2001.

[14] C. Ebeling, D. Cronquist, and P. Franklin, “RaPiD-reconfigurable

pipelined datapath,” Field-Programmable Logic Smart Applications,
New Paradigms and Compilers, pp.126–135, 1996.

[15] S.C. Goldstein, H. Schmit, M. Budiu, S. Cadambi, M. Moe, and R.R.
Taylor, “PipeRench: A reconfigurable architecture and compiler,”
Computer, vol.33, pp.70–77, 2000.

[16] P. Dai, X. Wang, and X. Zhang, “Implementation of H.264 algorithm
on reconfigurable processor ReMAP,” Microelectronics & Electron-
ics, Asia Pacific Conference on Postgraduate Research, pp.237–240,
2009.

[17] M. Lanuzza, S. Perri, and P. Corsonello, “MORA: A new coarse-
grain reconfigurable array for high throughput multimedia pro-
cessing,” Proc. International Symposium on Systems, Architecture,
Modeling and Simulation (SAMOS), pp.159–168, 2007.

[18] H. Singh, M.H. Lee, G. Lu, F.J. Kurdahi, N. Bagherzadeh, and
E.M.C. Filho, “MorphoSys: An integrated reconfigurable system for
data-parallel and computation-intensive applications,” IEEE Trans.
Comput., vol.49, no.5, pp.465–481, 2000.

[19] B.D. Sutter, P. Raghavan, and A. Lambrechts, “Coarse-grained
reconfigurable array architectures,” in Handbook of Signal Process-
ing Systems, Springer, 2010, ISBN: 978-1-4419-6344-4.

[20] PACT XPP Technologies, “XPP-III Processor Overview: White
Paper,” 2006.

[21] ARM Limited, “ARM7TDMI: Technical Reference Manual Rev3,”
2001.

[22] Micron Technology, “Double Data Rate (DDR) SDRAM:
MT46V2M32,” 2001.

[23] AVS Video Expert Group, “Information Technology — Advanced
coding of audio and video — Part 2: Video (AVS1-P2 JQP FCD
1.0),” Audio Video Coding Standard Group of China (AVS), Doc.
AVS-N1538, 2008.

[24] S. Whitty and R. Ernst, “A bandwidth optimized SDRAM controller
for the MORPHEUS reconfigurable architecture,” 2008 IEEE Inter-
national Symposium on Parallel and Distributed Processing, pp.1–8,
2008.

Bo Liu was born in 1984. He received
the B.S., M.S. degrees in Electrical Engineering
from Southeast University in 2006, 2008 respec-
tively, where he is currently pursuing the Ph.D.
degree in electrical engineering. His research
interests mainly include multimedia processing,
reconfigurable computing and related SoC de-
signs.

Peng Cao received the B.S., M.S. and Ph.
D degrees in Information Engineering and Elec-
trical Engineering from Southeast University in
2002, 2005 and 2010 respectively. His research
interests mainly include digital signal and image
processing, image/video compression, reconfig-
urable computing and related VLSI designs.



LIU et al.: RECONFIGURATION PROCESS OPTIMIZATION OF DYNAMICALLY COARSE GRAIN RECONFIGURABLE ARCHITECTURE
1871

Min Zhu was born in 1984. He received
the B.S. degree from the Department of Micro &
Nano Electronic, Tsinghua University, Beijing,
China, in 2006, where he is currently working
toward the Ph.D. degree in the Institute of Mi-
croelectronics. His research interests include
reconfigurable computing and multimedia pro-
cessing.

Jun Yang received the B.S., M.S., and Ph.D.
degrees from Southeast University, Nanjing,
China, in 1999, 2001, and 2004, respectively, all
in electronic engineering. He is currently a re-
search fellow and the chairman of SoC depart-
ment of National ASIC system Engineering Re-
search Center (CNASIC), Southeast University.
His research interests include chip architecture
design and VLSI design.

Leibo Liu received the B.S. degree in
electronic engineering from Tsinghua Univer-
sity, Beijing, China, in 1999 and the Ph.D. de-
gree in Institute of Microelectronics, Tsinghua
University, in 2004. He now serves as an Asso-
ciate Professor in Institute of Microelectronics,
Tsinghua University. His research interests in-
clude Reconfigurable Computing, Mobile Com-
puting and VLSI DSP.

Shaojun Wei was born in Beijing, China
in 1958. He received Ph.D. degree from Fac-
ulte Polytechnique de Mons, Belguim, in 1991.
He became a professor in Institute of Microelec-
tronics of Tsinghua University in 1995. He is
a senior member of Chinese Institute of Elec-
tronics (CIE). His main research interests in-
clude VLSI SoC design, EDA methodology, and
communication ASIC design.

Longxing Shi received the B.S., M.S.,
and Ph.D. degrees from Southeast University,
Nanjing, China, in 1984, 1987, and 1992, re-
spectively, all in electronic engineering. He is
currently a Professor and the Dean of Integrated
Circuit (IC) College, Southeast University. His
research interests include system-on-a-chip de-
sign, VLSI design, and power IC design.


