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PAPER

Securing Provenance of Distributed Processes in an Untrusted
Environment∗

Amril SYALIM†a), Nonmember, Takashi NISHIDE†, and Kouichi SAKURAI†, Members

SUMMARY Recently, there is much concern about the provenance of
distributed processes, that is about the documentation of the origin and the
processes to produce an object in a distributed system. The provenance has
many applications in the forms of medical records, documentation of pro-
cesses in the computer systems, recording the origin of data in the cloud,
and also documentation of human-executed processes. The provenance of
distributed processes can be modeled by a directed acyclic graph (DAG)
where each node represents an entity, and an edge represents the origin
and causal relationship between entities. Without sufficient security mecha-
nisms, the provenance graph suffers from integrity and confidentiality prob-
lems, for example changes or deletions of the correct nodes, additions of
fake nodes and edges, and unauthorized accesses to the sensitive nodes and
edges. In this paper, we propose an integrity mechanism for provenance
graph using the digital signature involving three parties: the process execu-
tors who are responsible in the nodes’ creation, a provenance owner that
records the nodes to the provenance store, and a trusted party that we call
the Trusted Counter Server (TCS) that records the number of nodes stored
by the provenance owner. We show that the mechanism can detect the
integrity problem in the provenance graph, namely unauthorized and mali-
cious “authorized” updates even if all the parties, except the TCS, collude to
update the provenance. In this scheme, the TCS only needs a very minimal
storage (linear with the number of the provenance owners). To protect the
confidentiality and for an efficient access control administration, we pro-
pose a method to encrypt the provenance graph that allows access by paths
and compartments in the provenance graph. We argue that encryption is
important as a mechanism to protect the provenance data stored in an un-
trusted environment. We analyze the security of the integrity mechanism,
and perform experiments to measure the performance of both mechanisms.
key words: provenance security, access control model, database encryp-
tion

1. Introduction

1.1 Background

Provenance of an object is the documentation of the ori-
gin and how to produce the object [1]–[6]. It describes the
causal relationship between objects, processes and the ac-
tors that control the processes and objects. For example, in
a hospital, the provenance describes the causal relationships
between the objects (medical records, medical test results),
the processes that produce the objects (a medical checkup,
medical diagnosis) and the actors that control the processes
(the physicians). In grid and cloud systems, the provenance
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records the source of the objects and the processes that af-
fects the condition of objects produced in the system. The
provenance is important to verify the quality of the pro-
cesses and objects.

The provenance can be explicitly recorded and stored
along with the objects in the same or different file sys-
tems/databases. It can also be later inferred, for example, by
asking the actors that control the processes or by checking
the computer logs where the processes are executed. Re-
cently, there is much interest in explicit provenance record-
ing where the provenance is recorded in a database (we call
the database as a provenance store). Many implementa-
tions represent the provenance as a directed graph where
the nodes represent the entities (i.e. objects, processes and
actors) and edges represent the causal relationship between
entities [7], [8].

The provenance has a long history in recording the doc-
umentation of valuable objects. In the paper-based world,
the provenance is normally recorded as a collection of doc-
uments that describe the origin of the object, and all events
related to the object that affect the object’s current condition.
In some fields, for example in works of art, the provenance
is regularly used to estimate the quality (and also the value)
of the art objects [9]–[11].

With the utilization of computers in almost all aspects
of human life, many paper-based provenance systems have
been converted to their digital counterparts. Being helped by
computers in its recording and storage, the provenance also
takes part in improving the quality of data produced by the
processes executed by computers [4], [12], [13]. The prove-
nance system has been implemented in computer and grid
systems for documenting the processes to produce the data.
The provenance system has also been applied in other con-
texts, for example, in hospitals to document the processes
that affect the patient’s health condition [14]–[17], and in the
courts and police/law institutions [18], [19].

Due to its liquidity, the digital form of provenance is
vulnerable to security problems because it can be easily
copied, changed, added or deleted by anybody who has ac-
cess to the provenance store. Ideally, after being recorded
in a storage, the provenance should not be altered for any
reason. An authorized update to an output of a process (i.e.
to correct an error in the output) should be documented in a
new provenance record.
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1.2 Problem Definition

In a distributed system, the provenance is normally stored
in a persistent storage (provenance store, for example a
database or a file system) [20] where an interested user can
query the provenance to verify the quality of objects pro-
duced in the system. Ideally, the storage and the comput-
ing environment should be trusted. However, with current
technology in computer and network security, it is difficult
(if not impossible) to implement a fully trusted storage and
computing environment.

There are some integrity and confidentiality mecha-
nisms that can be employed to protect the provenance. The
basic integrity mechanism is the digital signature that proves
the originality of the provenance. It detects unauthorized
updates to the provenance graph (i.e. updates by the per-
son who is not authorized to sign the provenance). It also
prevents repudiation by the signer. However, the signature
cannot detect malicious updates by an “authorized” person.
That is the person who owns the private key for signing the
provenance.

This attack (“authorized” update) is viable because nor-
mally the parties who are interested in the provenance do not
have prior knowledge or copy of the provenance. So, they do
not have any evidence about the malicious but “authorized”
update that has been made to the provenance. It is not effi-
cient and also costly for each user who is interested in the
provenance to make a copy of the provenance promptly af-
ter the provenance is submitted to the provenance store. It is
also possible that the interested users do not have any previ-
ous access to the provenance system, so the users could not
make any copies of the provenance.

We show some examples of this attack. The first ex-
ample is in the process of audit by an external auditor in
a company where normally the provenance are kept by the
company. When the external auditor inspects the company,
without security mechanisms that detect the alteration, the
company can re-create a fresh and verifiable provenance.
The external auditor cannot detect the alteration because it
is signed by authorized parties (if the provenance is created
by the people outside the company, they can also collude to
alter the provenance). In the context of computer systems,
an example is when a user wants to verify the quality of out-
puts of a grid system in other organizations where the user
does not have access previously. Without a secure prove-
nance system, the user does not have a choice other than
believing that the provenance is correct and is not altered by
“authorized” person in the organization. In the context of
the medical record, the medical data of a patient is normally
stored in the health care provider of the patient (i.e. the hos-
pital). The hospital can easily change the data without the
patient’s consent (although the laws in many countries man-
date that the data should be under the patient control).

We should also prevent unauthorized access to the sen-
sitive provenance. For example, the medical records contain
sensitive data that should not be accessed by unauthorized

users. Generally, the access control system to the medical
record’s database is sufficient to protect the medical records.
However, in the case of a higher security requirement, and
also whenever the data is stored in an untrusted server (i.e. in
the cloud), an alternative method (i.e. encryption) is needed
for securing the provenance data.

1.3 Related Work

Two methods to protect integrity of a sequence of digi-
tal documents have been proposed by Habert et al. [21].
The first method employs a Trusted Time-Stamping Ser-
vice (TSS) that issues signed timestamps and also links two
timestamps requested consecutively. The TSS links two
timestamps by storing the hash value of the first timestamp
in the second timestamp. Any changes to the first times-
tamp can be detected by checking the hash value in the
second timestamp. To produce a fake timestamp, the TSS
needs to collude with all clients who are requested times-
tamps after the fake timestamp, so that this scheme assumes
the TSS may collude with some clients, but the collusion of
the TSS with all clients has a small probability. The second
method uses the digital signature to distribute trust among
many clients. A client who needs to timestamp a document
should ask k random other clients to sign the timestamp. The
list of the other clients is generated by a pseudorandom gen-
erator that uses hash of the document as a seed. Because the
other users are chosen randomly it is assumed that they do
not collude to create a fake timestamp. This second method
does not employ any TSS but assumes that the users can ask
the signatures from the other users.

Hasan et al. [22]–[24] show a threat model for prove-
nance and the method to prevent/detect the attacks asso-
ciated with the threats by using digital signature, check-
sum and broadcast/threshold encryption. The provenance is
modeled as a chain so the method cannot be applied directly
to the graph model. Their method to protect integrity of the
provenance chain is by signing each provenance record in
the chain and including a checksum of the previous record
in the current record to maintain the integrity of the records
and the chain structure. They also assume that no collu-
sion of all users (the people who write provenance). For
the confidentiality mechanism, Hasan et al. use a broadcast
and threshold encryption, and they do not propose a specific
access control model.

Gadelha et al. implement a simple time-stamp mech-
anism for protecting the provenance [25] in a grid system.
In their scheme, the provenance is signed by the data owner
and hash of the signature is sent to a Time-Stamp Authority
(TSA) that appends a timestamp to the hash. The hash and
the timestamp is signed by the TSA and send them back as a
provenance record receipt. This scheme can prevent repudi-
ation and unauthorized update, but it can not detect a dele-
tion and a malicious “authorized” update to the provenance.
Although the process executor cannot update a timestamp,
he/she can update the provenance and asks a new timestamp
without being detected.
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Braun et al. argue that provenance needs a new security
model [26]. They also propose a security model for prove-
nance based on observation of the usage of provenance [27].
They focus on the security model but do not deeply discuss
how to protect integrity of the provenance. Their main pro-
posal is that we need to control access to heads and tails of
the edges and the attributes of the nodes in the provenance
graph. However, there is no mechanism proposed to imple-
ment their access control model.

1.4 Contributions of This Paper

The contributions of this paper are twofold. First, we pro-
pose an integrity mechanism for a directed graph model
of the provenance that can solve the problems discussed
in Sect. 1.2. We propose a method to record the prove-
nance involving three parties: the process executors that
create the provenance, a provenance owner that records the
provenance to the provenance store, and a Trusted Counter
Server (TCS) that records the number of nodes created by
the provenance owner. The process executors need to sign
the nodes created by them and include the signatures of
inputs they used. The provenance owner needs to send a
request to a trusted party (we call the trusted party as the
Trusted Counter Server-TCS) to ask a “registration” number
before recording a node in the provenance store. The TCS
needs to keep the number of nodes stored by the provenance
owners. This scheme only assumes trust to the TCS, while
the other parties (the process executors and the provenance
owner) may cheat.

Our second contribution is introduction of an en-
cryption mechanism for protecting confidential provenance.
This mechanism supports an efficient access control to the
provenance graph by allowing access based on compart-
ments and access based on the causal relationships (paths
in the provenance graph). The key idea is by storing the en-
cryption key of a node in all children of the node. Because
when auditing the provenance, a user (i.e. an auditor) nor-
mally needs to access the provenance in a path (to check the
origin and causal relationships), this method is convenient
because we only need to give the key in the leaf node to the
user and key to compartments he/she can access.

1.5 Paper Organization

The organization of this paper is as follows. In the next sec-
tion (Sect. 2) we discuss the provenance system: the prove-
nance model, a uniform DAG representation of provenance,
and indirect provenance recording. In Sect. 3, we formal-
ize the notations used in Sect. 4 and Sect. 5. In Sect. 4, we
describe the integrity mechanism proposed in this paper.
In Sect. 5, we describe the confidentiality mechanism. In
Sect. 6, we discuss the experimental results. In the last sec-
tion (Sect. 7) we conclude the paper.

2. Provenance System

2.1 Modeling Provenance

The provenance of an object captures the information about
the process to produce the object [2], [6], [28] that include:
(1) the origin/source of the object, and also entities that
cause the existence of the object, (2) description about the
process to produce the object, and (3) the actor that ex-
ecutes/controls the process. For example, in the medical
contexts, the provenance of a medical object (i.e. a medi-
cal record) should include the sources of the object (for ex-
ample, medical tests), the description about the process (i.e.
reasoning of diagnosis or the treatment), and also the actor
that executes the process (i.e. the physician who write the
diagnosis or decides the medical treatments). The prove-
nance can be recorded by the actor that executes the process
and can also be recorded by other parties (either manually
by people or automatically by computers). On both cases,
there should be a proof of the relation between the process
with the actor (either by signatures or other proofs).

There are two models that can be used to represent the
source/causal relationships between objects. The first model
is the chain model that represents the sequential execution of
processes that produce the objects [22]–[24]. In this model,
the processes are executed one after another where each pro-
cess uses the output of the process that is executed before
the process. The provenance also takes a form of a chain
where each link is the documentation of each process. The
links are connected for two consecutive processes. Figure 1
shows a provenance of a sequential execution of six pro-
cesses (Checkup 1, Notes 1, Checkup 2, Test 1, Surgery 1,
and Result 1).

The second model supports sequential and also paral-
lel execution of processes. The provenance is modeled by
a directed graph where a node represents an entity and an
edge represents a causal relationship between two entities
(i.e. an object is derived from another object, a process uses
an entity as its input) [7], [8]. There should be no cycle in
the graph because a node in the provenance graph represents
the condition of entity at a specific time [26] (in the case of
the same process is repeated, the provenance is recorded in
a new node). A relationship between two nodes is a causal
relationship, for example a process B uses the output of pro-
cess A so that the output of A causes the output of B. An
annotation can be included in each edge to describe the de-
tail of the causal relationship (i.e. what is the role of an input
of a process).

There is no standard of the provenance model although
the provenance research community has proposed a prove-
nance model as a standard [2], [29], [30]. The model, that

Fig. 1 Provenance chain of a medical record.
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Fig. 2 An example of the Open Provenance Model [5], (U=Used,
wDF=wasDerivedFrom, wGB=wasGeneratedBy, wCB=wasControlledBy).

is the Open Provenance Model (OPM), is a directed acyclic
graph (DAG) with three types of nodes and five types of
edges. The types of nodes are: (1) the artifact, that is im-
mutable information (i.e. an input or an output), (2) the pro-
cess, that is the series of action on or caused by artifacts and
resulting in new artifacts, and (3) the agent is the active en-
tity that starts/controls a process (see Fig. 2). The types of
relationships between the nodes are as follows (represented
by edges in the graph): (1) an artifact was used by a process,
(2) an artifact was generated by a process, (3) a process was
triggered by a process, (4) an artifact was derived from an
artifact, and (5) a process was controlled by an agent. The
OPM standard does not specify the internal provenance rep-
resentation and the protocol to store or query the provenance
graph to/from a storage [2].

The OPM can be represented graphically by using an
octagon as an agent, a rectangle (or a square) to represent a
process and an ellipse (or a circle) to represent an artifact.
In Fig. 2, we show an example of the OPM in the medi-
cal context. This example is adopted from the example of
the OPM in [5]. In this example, a patient medical records
are created by three physicians and one surgeon (Physician
1, Physician 2, Physician 3, and Surgeon 1). Initially, the
Physician 1 does a checkup (Checkup 1) that uses a previ-
ous medical record (Doc 1). The Physician 1 writes a note
that is recorded in the Doc 2. In the next checkup (Checkup
2), the patient meets the Physician 2 who reads the Doc 2,
does a test (Test 1) that produces Doc 3. In the third visit a
surgery (Surgery 1) is done by Physician 3 and Surgeon 1.
They write the result (Result 1) in the Doc 4.

2.2 A Uniform DAG Representation: Binding the Pro-
cesses and Artifacts to Agents

In the OPM representation, there are no edges between an
agent with an artifact. To know who are responsible for
an artifact, we should trace the causal relationship from an
artifact to a process and from the process to an agent. In
our security mechanism, because an agent should sign the
process and its output artifacts, we use a representation of
DAG that directly binds each artifact and process. We rep-
resent the provenance in a DAG representation (we call a
uniform DAG model) where the three types of the entities
in the OPM model are represented by a uniform entity: a
provenance node. A provenance node represents a compu-
tational entity that consists of a process (P), list of references

Algorithm 1: Converting the OPM model to the uniform
DAG model

Input: an OPM graph
Output: the uniform DAG representation
for each OPM node where the type is process do

Create a node, where
Process← the OPM process
Ouputs← ref. to artifacts connected with “was generated by”
Agents← ref. to agents connected with “was controlled by”
Inputs← ref. to artifacts connected with “used”, and
ref. to artifacts connected to Ouputs with “was derived by”

end for
for each OPM artifact with no “was generated by” connection do

Create a node, where
Process← “None”
Ouputs← ref. to the OPM artifact
Agents← ref. to agent of process that first uses the OPM artifact
Inputs← ref. to artifacts connected by “was derived from”

end for
return the uniform DAG nodes

Fig. 3 The uniform DAG model.

to output artifacts (O), list of references to executing agents
(A) and list references to the input artifacts (I). The OPM
model can be converted to the uniform representation using
Algorithm 1.

Figure 3 shows the result of conversion of the OPM
model shown in Fig. 2. In the uniform DAG, in a node only
one process documentation is allowed, although there can
be many inputs, outputs and agents (an example of a process
executed by many agents is the surgery process illustrated in
Fig. 2). The uniform DAG representation covers all types of
the nodes in the OPM: processes, agents, and input/output
artifacts. It also represents four causal relationship between
the process, artifacts and agents, because in a node:

1. the outputs (O) “was generated by” the process (P)
2. the process (P) “was controlled by” the agents (A)
3. the inputs (I) are “used” by the process (P)
4. the outputs (O) “was derived from” the input (I)

However, the uniform DAG model does not support a
relationship, that is “was triggered by” relationship that rep-
resents a relationship between two processes, i.e. process
A and process B, where the process B used the output of
the process A without explicitly defined the output of the
process A. This relationship exists in an account view that
represents a less detail process execution where an artifact
(that is an output of A which is also an input of B) is re-
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moved from the view. An account is useful to simplify the
presentation of a provenance graph. The uniform DAG rep-
resentation does not support account because all the outputs
and inputs of a process are clearly stated.

2.3 Indirect Provenance Recording

The OPM model does not specify how to record and secure
the provenance. A simple model of the provenance record-
ing is by assuming the provenance is created by the pro-
cess executor and allowing the process executor submits the
provenance directly into the provenance store. It is also pos-
sible that the provenance is recorded locally by the process
executor without sending the provenance to a centralized
provenance store. The problem is whenever a party needs to
verify the provenance, the party should contact many pro-
cess executors asking the provenance.

There are three choices of storage of the prove-
nance [3]: (1) no separation of the storage of data and prove-
nance, (2) the data and the provenance are logically sepa-
rated however in the same physical storage, and (3) the data
and the provenance are physically separated. The choice of
the storage affects the way to link the provenance and the
data. The easiest method of the linking is in the first choice,
because we do not need to specify the place of the data and
the provenance, they reside in the same storage. In the sec-
ond and the third storage models, we need to have a linking
mechanism that connect data in different storages (logical or
physical).

Our scheme does not specify a storage model and the
emphasis is in the provenance recording process. In the
provenance recording process, the provenance is not stored
directly by the process executors, but we introduce another
entity, we call the provenance owner who mediates the
recording process. A provenance owner can be assigned
to be responsible for mediating the provenance recording
process in a sub-organization (i.e. a department) or a whole
organization.

The mediation by the provenance owner is crucial in
our security mechanism, because:

1. The provenance owner has a role as an integrity
checker before a provenance node is submitted to the
storage. The provenance owner checks the signatures
of the provenance node before storing the node to the
provenance store.

2. In our integrity scheme, we use a counter system for
the integrity checking. The counter is the number of
the provenance node stored by the provenance owner
and the counter is kept by a trusted party (TCS). The
counter should be requested by the provenance owner
before storing the provenance node. Besides its secu-
rity advantage, this method (the provenance mediation)
also makes the TCS-system is transparent to the pro-
cess executors.

3. In our confidentiality scheme, the provenance node is
encrypted by the provenance owner because in our se-

Fig. 4 Our Provenance Recording Architecture.

curity model, the provenance owner is the one that
should be responsible for the security of the prove-
nance from unauthorized access (it acts as a security
administrator of the provenance).

Our provenance recording architecture is illustrated in
Fig. 4. It depicts a design choice of the provenance archi-
tecture for distributed processes where the provenance store
is separated from the data storage (it should be noted that
this storage model is not mandatory, our scheme can use the
other storage models). Figure 4 shows a provenance archi-
tecture in an organization where there can be many prove-
nance stores (shown in Fig. 4 as P. Stores), many provenance
owners that serve many groups of process executors (shown
as Processes), and also there can be many data storages re-
ferred in Fig. 4 as DB Servers. A Trusted Counter Server
(TCS) serves many provenance owners. Its coverage can be
in an organization or larger than an organization.

3. Preliminaries

A provenance graph is defined as a set of provenance nodes
P = {P0, P1, . . . , Pn−1} where n is the number of nodes and
binary relation E on P that represents the edges such that for
(x, y) ∈ P × P and x � y. The relation E maps the prove-
nance nodes in P such that (x, y) ∈ P × P and the process in
y takes the output in x as its input. We define a tuple as a
structure containing multiple elements of the same or differ-
ent types. A tuple with three elements a, b, c is represented
by 〈a, b, c〉. We also use the notation {Di} to represent the
set D = {D0,D1, . . . ,Dn}.

A documentation of a process A is a documentation that
describes the steps required to produce the set of outputs D
from the set of inputs I. From A we can understand the
process to produce the output, what inputs were used, what
outputs were produced, how to produce the outputs, when
the outputs were produced, and who controlled the process
that produced the outputs. The set I contains the inputs that
are used by the process. The set D contains the outputs of
the process.

The provenance owner PO is an entity that mediates
the provenance recording process. A set of process execu-
tors C are the actors that controls the execution of a process.
A process executor S ∈ C is a process executor that submits
a provenance node to the provenance owner. The Trusted
Counter Server TCS is the server that keeps the number
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of nodes stored by the provenance owner. The provenance
store PS is a database where the provenance is permanently
stored. nid is a unique identification number for each prove-
nance node. We add a subscript in to a symbol in a prove-
nance node to represent the same symbol in the documen-
tation of processes that produce the inputs. So, that nidin

is the provenance node identification number of the process
that produce the input. The symbol S in represent a process
executor that submit provenance node of an input.

Hash is a cryptographic hash of an object. S ign is a se-
cure digital signature on an object by a subject, for example
S ignCi (Hash(A,D)) is a digital signature on hash of A,D by
Ci. Enckey is a symmetric encryption function with private
key key. R is the counter number provided by the TCS for
a provenance node. T is a timestamp. We summarize the
notations used in this paper in Appendix.

4. Integrity Mechanism for the Provenance Graph

4.1 Provenance Storage

A secure provenance tuple SP consists of the process docu-
mentation A and the integrity data IntData as follows:

SP = 〈A, IntData〉
IntData = 〈IntS ub, IntInp〉
IntS ub = 〈IntProOut, S ignS (IntProOut)〉

IntProOut = 〈Hash(A,D), {S ignCi (Hash(A,D))}〉
IntInp = {〈IntProOutin, S ignS in (IntProOutin)〉i}

The IntData consists of IntS ub and IntInp. To cre-
ate IntS ub, each process executor records the hashes of
A and all outputs D in a file Hash(A,D) and creates a
signature S ignCi (Hash(A,D)) on it. The process execu-
tor S combines the hashes Hash(A,D) and all signatures
{S ignCi (Hash(A,D))} in a file to form IntProOut and cre-
ates signature S ignS (IntProOut) on it to form IntS ub.
IntInp is the collection of integrity data IntS ub of processes
that produce the input I.

Each node Pi in the provenance graph is stored in the
provenance store in the following format:

Pi = 〈Pid,SP,T,R, S ignData, S ID〉
Pid = 〈PO, S , nid〉

S ignData = 〈S ignS (SP), S ignPO(RQS T ), S ignTCS (CNT )〉
S ID = {〈PO, S in, nidin〉i}

RQS T = 〈PO, S , nid,Hash(SP),T 〉
CNT = 〈Hash(RQS T ),R〉
We give an example of the usage of this scheme for

P5 of provenance graph shown in Fig. 3. We use the name
of the process, output, agent and input to refer to each pro-
cess documentation, output, process executor and input. For
P5, the process documentation is ATest1, the input is Doc2,
the process executor is Physician2 and the output is Doc3.
Because the input is Doc2, IntInp is IntS ub of P3 whose

Fig. 5 Secure Provenance Recording Protocol, (S=The Process Execu-
tor that submit the provenance node, PO=Provenance Owner, TCS=
Trusted Counter Server, PS=Provenance Store).

process is Notes1 and output is Doc2. We represent the nid,
timestamp T and counter R for P5 as nidP5,TP5 and RP5 and
the nid of P3 is represented by nidP3.

SP = 〈ATest1, IntData〉
IntData = 〈IntS ub, IntInp〉
IntS ub = 〈IntProOut, S ignPhysician2(IntProOut)〉

IntProOut = 〈Hash(ATest1,Doc3),

S ignPhysician2(Hash(ATest1,Doc3))〉
IntInp = 〈IntProOutP3, S ignPhysician1(IntProOut)〉

IntProOutP3 = 〈Hash(ANotes1,Doc2),

S ignPhysician1(Hash(ANotes1,Doc2))〉
The provenance node P5 is stored in the following for-

mat:

P5 = 〈Pid,SP,TP5,RP5, S ignData, S ID〉
Pid = 〈PO, Physician2, nidP5〉

S ignData = 〈S ignPhysician2(SP), S ignPO(RQS T ),

S ignTCS (CNT )〉
S ID = 〈PO, Physician1, nidP3〉

RQS T = 〈PO, Physician2, nidP5,Hash(SP),TP5〉
CNT = 〈Hash(RQS T ),RP5〉

4.2 The Provenance Recording Protocol

The protocol to record provenance consists of three groups
of steps as follows (The protocol execution is illustrated in
Fig. 5).

1. Creation of the provenance node
2. Requesting the counter from the TCS
3. Storing the provenance node to the provenance store

First: Creation of the provenance node

1. The process receives the inputs, the signatures of the
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inputs (the IntS ub-parts of the documentation of pro-
cesses that produce the inputs), and the identifications
of documentation of the processes that produce the in-
puts {〈PO, S in, nidin〉i}. For a flexible model of execu-
tion of the processes, the protocol does not mandate the
mechanism to receive the inputs and signatures. The
inputs can be received directly from the processes that
produce the inputs, queried from the data storage, or
by other mechanisms. The signatures can also be re-
ceived from the processes that produce the inputs, re-
ceived from the provenance store, or by other mecha-
nisms.

2. The process checks the signatures on the inputs. If the
signatures are correct, the process is started.

3. All process executors C create a file that contains
hashes of A and all outputs D and signatures by all
process executors on the file. The process executor S ,
who responsible to submit the provenance node cre-
ates IntS ub that combines IntProOut and signatures
S ignS (IntProOut). The process executor S creates the
secure provenance package SP that consists of a file A
and its integrity data IntData as defined in Sect. 4.1.

4. S generates the node identification 〈S , nid〉, creates a
signature on SP, appends a collection of identification
of processes that produce the inputs {〈PO, S in, nidin〉}
and sends SP along with that information, that
is 〈〈S , nid〉,SP, S ignS (SP), {〈PO, S in, nidin〉}〉, to the
provenance owner PO.

Second: Requesting the counter from the TCS

1. The provenance owner checks the signature
S ignS (SP), and creates hash of SP, generates a times-
tamp T , creates RQS T = 〈PO, S , nid,Hash(SP),T 〉,
signs RQS T , and sends 〈RQS T, S ignPO(RQS T )〉 to
the Trusted Counter Server (TCS).

2. The TCS checks the signature S ignPO(RQS T ) and the
timestamp T and checks how many requests that have
been received associated with this provenance owner
PO. If the timestamp is within the time X where X
is the delay that is acceptable, the TCS increases the
number of requests by one, creates the tuple CNT =
〈Hash(RQS T ),R〉 and its signature S ignTCS (CNT ).
The TCS sends CNT and S ignTCS (CNT ) to the prove-
nance owner PO.

Third: Storing the provenance node to the provenance
store

1. The provenance owner receives CNT and
S ignTCS (CNT ), and stores the following tuple to the
provenance store PS (as defined in Sect. 4.1): Pi =

〈〈PO, S , nid〉,SP,T,R, 〈S ignS (SP), S ignPO(RQS T ),
S ignTCS (CNT )〉, {〈PO, S in, nidin〉i}〉.

4.3 Proof of Correctness of the Integrity Mechanism

Definition 1: Let N be the counter for the provenance

Fig. 6 Integrity Checking.

owner PO recorded by the TCS (that is the highest R that
is issued by TCS for PO). All provenance graphs submitted
by PO are consistent if:

1. there is N total number of nodes in the graphs, and
2. for each node in the graphs, all the signatures

stored in integrity data IntData and signatures
S ignC(SP), S ignPO(RQS T ), S ignTCS (CNT ) are cor-
rect

Theorem 1: By using the above scheme (described in the
Sect. 4.2), if the TCS does not collude with any other parties,
any other parties cannot make a fake but consistent prove-
nance graph.

Proof 1: We should show that any changes to the prove-
nance graph can be detected. Figure 6 shows the integrity
checking for all possible alterations, insertions and deletions
done by any parties (except the TCS). It illustrates two nodes
connected by an edge (P2 uses the output of P1). To up-
date a node Pi consistently, an attacker should also update
the signatures S ignS (SP), S ignPO(RQS T ), S ignTCS (CNT ),
and IntData = 〈IntS ub, IntInp〉. We show that it is not
possible to have a consistent provenance graph after any al-
teration, addition or deletion of the provenance graph:

1. To alter the content of SP consistently, an attacker
should also update the S ignS (SP) (arrow no 1 in
Fig. 6). If the process executor S corrupts and re-
creates the signature S ignS (SP), the alteration can be
detected from S ignPO(RQS T ) (arrow no. 2) because
RQS T = 〈PO, S , nid,Hash(SP),T 〉. If the prove-
nance owner PO also corrupts and re-creates the sig-
nature S ignPO(RQS T ), the alteration can be detected
from S ignTCS (CNT ) (arrows no. 3 and 4) because
CNT = 〈Hash(RQS T ),R〉. The provenance owner can
ask new correct CNT from the TCS, but the TCS will
give a new number R so that the total number of nodes
will be less than the number recorded by the TCS.

2. To insert a node between two nodes (a parent and a
child connected by an edge) consistently, so that the
parent will be the parent of the new node and the child
will be the child of the new node, an attacker should
also update IntInp in the child (arrows 5), because it
refers to the IntS ub of the previous parent. To alter
IntInp, an attacker should also alter S ignS (SP) in the
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Table 1 Attack Possibilities and the Integrity Checking.

Attack Possibilities Integrity Checking
Alteration of a node checking S ignS (SP), S ignPO(RQS T ),

and S ignTCS (CNT )
Inconsistency of a relationship checking IntS ub and IntInp

Deletion of a node checking R as in corollary 1

child, which is not possible (shown in the proof argu-
ment no. 1).

3. To delete a node consistently, deletion causes the num-
ber of nodes to decrease, so that the total number of
nodes is not the same as N. �

Corollary 1: By using the above scheme (described in the
Sect. 4.2), if all provenance graphs created by the prove-
nance owner PO is consistent, for each node whose counter
R � 1 and R � N, there are two other nodes submitted by
PO whose counters are R + 1 and R − 1.

Proof 2: Because in a consistent provenance graph, a node
cannot be deleted, each node has a unique counter number
occupying all numbers from 1 to N where N is the number
of nodes created by the provenance owner PO. So that for
any number of counter R � 1 (counter for the first node)
and R � N (counter the last node) there will be other nodes
whose counters are R + 1 and R − 1. �

4.4 Checking the Integrity/Consistency of the Provenance
Graph

An interested user checks the integrity/consistency of a node
or a relationship in the graph using the following method:

1. To check alteration in a node, the user checks signa-
tures S ignS (SP), S ignPO(RQS T ), and S ignTCS (CNT ).
If any of the signatures is not correct, the node has been
altered.

2. To check the integrity of relationship between a child
and its parents, the user retrieves the parent nodes of
the child. For each parent node, the user checks outputs
of the parent by comparing IntS ub of the parent with
IntInp in the child. If the signature is not correct the
relationship is not consistent.

3. To find a deletion, for each node, the user checks in-
tegrity of the counter R using corollary 1 where for
each node whose counter R � 1 and R � N, there are
two other nodes submitted by PO whose counters are
R+1 and R−1. The user needs to ask the TCS to know
N. A node has been deleted if there is a node that does
not fulfill the corollary 1.

Table 1 summarizes the integrity checking mechanism.
The first column shows the possible attacks, and the second
column shows the integrity checking.

4.5 Discussion

4.5.1 Assumptions

To implement this scheme, we need to assume that each pro-

cess executor, the provenance owner and the TCS have a pair
of public key and private key, and each party can retrieve the
public keys certificates of the other parties securely. For ex-
ample in the case of application of provenance in a hospital,
each actor (i.e. a physician) should have a pair of public key
and the private key. They can also access the public key
certificates (to access the public keys) of all other parties se-
curely. We believe this assumption is acceptable because of
common usage of the public key system, for example the
Public Key Infrastructure (PKI) or alternatively decentral-
ized trust management with the web of trust in PGP [31],
[32].

We also assume that a replay attack, where an at-
tacker replays a request that had been sent by the prove-
nance owner, can be detected by using the timestamp T . The
timestamp T records the time when the request is made by
the provenance owner. The TCS detects the reply attack by
recording each request that had been made within a time X
and compare each request with at least the requests that had
been made within the time X.

4.5.2 The Trusted Counter Server

For the integrity checking, in the TCS we can store infor-
mation other than the number of nodes, for example the list
of the provenance nodes and also hashes/signatures of all
nodes. However, this alternative has some drawbacks. The
first is we need more storage to store the information be-
cause for each node the TCS stores the hashes and signa-
tures. The second drawback is in integrity checking, the
user should download all of the integrity data from the TCS
while using our method, the user only needs to ask the TCS
one time to ask the number N (to check a deletion in in-
tegrity checking no. 3). The last drawback is the security
mechanism depends only on the TCS while in our model,
the security mechanism is distributed among many parties:
the process executor, the provenance owner and the TCS.

5. Confidentiality Mechanism for the Provenance
Graph

Encryption is an alternative to access control enforced in
the provenance store. It is suitable in some situations, for
example in the situation where the provenance store cannot
be fully trusted (i.e. it resides in a cloud server) or in the
situation where the provenance store is highly vulnerable
to attackers that break the OS and provenance store access
control.

In the encryption method, each sensitive data is en-
crypted with a key, and all authorized users should be pro-
vided with the keys for decrypting the data that he is au-
thorized to access. The provenance store and any attack-
ers breaking the provenance store cannot decrypt the sensi-
tive data without having access to the decryption keys. The
problem in the encryption method is how to manage a large
number of encryption keys that should be provided to a large
number of users with different access policy.
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In this section, we show an encryption mechanism for
provenance graph that allows path-based access control, so
that a user can be granted access to all nodes that have at
least a path to a node. This access control is suitable in the
provenance graph because a user normally needs to access
all nodes that have the causal relationships (connected by
paths) with a node. This method is also has a more efficient
key management because to grant access to a node and all
of its ancestors, we only need to provide a decryption key to
access all ancestors. More flexible policies are supported by
a compartment-based access control. In compartment-based
access control, the access are controlled to groups of nodes
(we call the groups as compartments). The compartment-
based access control has a higher precedence than the path-
based access control, so if a user cannot access a node in
a compartment, he/she cannot access the node even if he is
allowed to access the node in the path-based access control.

5.1 Provenance Storage

To enforce the path-based access control, the secure prove-
nance tuple SP is encrypted with node and parent keys. The
secure provenance tuple SP is re-encrypted with the com-
partment key to enforce the compartment-based access con-
trol. We only encrypt the sensitive nodes, so that insensitive
nodes that can be accessed by anybody are not encrypted.
However, the integrity scheme described in Sect. 4 should
be applied to all sensitive and insensitive nodes.

In the encryption scheme, we can enforce both path-
based and compartment-based access control, path-based
access control only or compartment-based access control
only as shown in the schemes as follows:

1. Enforcing both path-based and compartment access
control:

Pi = 〈Pid,EP,T,R, S ignData, S ID, 〈nk, ck〉〉
EP = 〈EncKC(EncKN(SP)), EncKK〈(KNP,KKP)〉〉

2. Enforcing path-based access control only:

Pi = 〈Pid,EP,T,R, S ignData, S ID, 〈nk, null〉〉
EP = 〈EncKN(SP), EncKK〈(KNP,KKP)〉〉

3. Enforcing compartment-based access control only:

Pi = 〈Pid,EP,T,R, S ignData, S ID, 〈null, ck〉〉
EP = 〈EncKC(SP), 〈(KNP,KKP)〉〉

where
– Pid,SP,T,R, S ignData, S ID as defined in Sect. 4.1
– EP = encrypted provenance tuple
– nk = node key generator
– ck = compartment key generator
– KN = the node key
– KC = the compartment key
– KK = the key to encrypt the parent’s KN and KC
– KNP = a set of the parent’s KC
– KKP = a set of the parent’s KK

5.2 Key Generation

The provenance owner store three master keys MKN, MKC,
and MKK in a trusted place. Keys KN, KC and KK in each
node are generated from MKN, MKC, MKK as follows:

KN = EncMKN(nk)

KC = EncMKC(ck)

KK = EncMKK(nk)

Key generator ck of a node identifies the compartment of the
node (the nodes in the same compartments have the same
ck) while key generator nk should be unique for each node.
When encrypting the node, the provenance owner generates
KN, KC, and KK from the master keys MKN,MKC,MKK,
nk and ck.

5.3 Encryption Method

The nodes are encrypted by the provenance owner. To en-
crypt SP using KN,KC, and KK to produce EP the prove-
nance owner executes the following steps:

1. The provenance owner generates nk (which is unique
for each node) and defines the compartment number ck
(where the nodes in the same compartment have the
same nk). For path-based access control only, ck is set
to null. For compartment-based access control only, nk
is set to null.

2. The provenance owner generates KN,KC, and KK (the
mechanism is shown in Sect. 5.2).

3. The provenance owner encrypts the node with the key
KN to get EncKN(SP).

4. The provenance owner re-encrypts the node with key
KC to get EncKC(EncKN(SP)).

5. The provenance owner creates the tuple 〈KNP,KKP〉
that is a tuple that contains KN and KK of all par-
ent nodes and encrypts the tuple with key KK to get
EncKK(〈KNP,KKP〉).

6. Encrypted form of the node EP=〈EncKC(EncKN(SP)),
EncKK(〈KNP,KKP〉)〉.
Figure 7 shows an example of encrypting 4 nodes

(P1, P2, P3, and P4) in the provenance graph. Encrypted
forms of the tuples in the nodes are EP1,EP2,EP3, and
EP4. There are two compartments: Comp1 whose key is
KC1, and Comp2 whose key is KC2. The members of
Comp1 are P1 and P3, the members of the Comp2 are P2

and P4.
KNP and KKP of a node are all KN and KK in the par-

ent nodes. For example, Fig. 7 shows that KNP and KKP in
the node 3 are KN1,KK1,KN2, and KK2, KN1,KK1,KN2,
and KK2 (which are encrypted with KK3) because the parent
nodes of the node 3 are the node 1 and node 2. The KNP on
the EP4 is KN3 (the key to encrypt SP3), and the KKP on
the EP4 is KK3 (the key to encrypt 〈KN1,KK1,KN2,KK2〉.
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Fig. 7 An example of encryption of 4 nodes in a provenance graph.

5.4 Accessing the Provenance Graph

A user who needs to access the provenance, performs the
following steps:

1. The user starts from a leaf node.
2. The user decrypts EncKC(EncKN(SP)) with key KC

and KN to get SP.
3. The user decrypts EncKK(〈KNP,KKP〉) by using KK

to get KNP and KKP. KNP is a set of KN of the parent
nodes and KKP is a set of KK of the parent nodes.

4. By using KNP and KKP, the user decrypts the parent
node until reaching a root node. The user can only de-
crypt the node if he/she has the compartment key KC.
However, if the user has KK in a node, he can access
all keys of the ancestors of the nodes (all set KNP and
KKP).

5. If there is another leaf node, for the new leaf node start
from the step 1.

5.5 Access Control Policy

In the naive implementation of access control, the security
administrator should define the access policy for each sub-
ject and object in the system, which is not efficient and it
is difficult to design a consistent policy because there is no
structure and common rules in the access policy. Many ac-
cess control systems improve the efficiency and consistency
of access control by supporting an access structure, for ex-
ample access policy definition based on role, groups or la-
bels [33], [34]. In our access control model for the prove-
nance graph we define structure of access policy by paths
and compartments.

By using path-based and compartment-based access
control system, the provenance owner defines the policy
more efficiently because he/she does not need to define ac-
cess for each node but he/she can define access to a path
and a compartment. The path and compartment structures
help the provenance owner to design a consistent policy.
Although at first the provenance owner should group the
nodes into some compartments, after grouping the nodes,
the provenance owner only needs to grant access to a fewer
number of compartments rather than a large number of
provenance nodes. The provenance owner does not need
to define the paths because they are defined from the paths
in the provenance graph.

To manage access, first the provenance owner gives ac-
cess based on the paths. The user who will audit a path

Fig. 8 Sample of access policies.

should be given access to that path. If the path contains
sensitive nodes in some sensitive compartments, the prove-
nance owner decides whether the user be given access to
the nodes by including the user to the sensitive compart-
ment. The path-based access control is convenient because
a user who audits the provenance normally needs to access
all nodes that have a path to the result because the nodes
have causal relationship to the result. Compartment-based
access control is required to support more general grouping
and expressive policies (for example, a user is granted ac-
cess to a part of the paths).

In Fig. 8, we show an access policy to a provenance
graph (that consists of seven nodes) to four users that can be
implemented using this encryption mechanism. In this pol-
icy, the nodes are divided into two compartments: confiden-
tial and unconfidential where the members of confidential
are P4 and P6. The others are members of unconfidential.
All users can access the nodes that are members of uncon-
fidential so the nodes do not need to encrypted with a com-
partment key. The first user (no. 1 in Fig. 8) can access P6

and its ancestors, but he/she cannot access the nodes that are
member of confidential (P6 and P4). The second user (no. 2
in the Figure) can access the node P7 and its ancestors, and
can also access all nodes that are members of confidential.
The third user (shown in no. 3) can access P4 and all its an-
cestors and also nodes in confidential. The last user (no. 4)
can access P2, but not its ancestor, and he/she cannot access
the nodes that are members of confidential. To implement
this access policy we provide the four users encryption keys
as follows:

• user 1: KN6 and KK6

• user 2: KN7,KK7, and KCcon f idential

• user 3: KN4,KK4, and KCcon f idential

• user 4: KN2

5.6 Discussion: Key Management

To grant access by providing the encryption keys, as de-
scribed in Sect. 5.5, first the provenance owner defines ac-
cess based on the paths. The user who will audit the paths
should be provided two keys, they are the node key KN and
the parent’s key KK in the leaf nodes of the paths. If the
path contains sensitive nodes in sensitive compartments, the
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provenance owner decides whether the user be given access
to the nodes by including the user in the sensitive compart-
ment. To grant access to the compartments, the provenance
owner sends the compartment keys to the users. Thus, if the
system implements the path-based and compartment-based
access control, the number of keys that should be sent to the
each user is linear with the number of leaf nodes of the paths
and the number of compartments that can be accessed by the
user.

Because the number of keys that should be sent to
each user is minimal in comparison to the number of nodes,
the cost to securely sending the keys (i.e. by using public
key encryption) for each user is also minimal. This advan-
tage reduces the computation and network bandwidth that
are needed to generate the keys and send the keys to the
users. In the basic implementation, to manage the encryp-
tion keys, the provenance owner needs to store three master
keys MKN,MKC,MKK in a secure storage and generates
the keys needed by the users by using the master keys and
the key generators nk and ck stored in each node. Alterna-
tive implementation is by delegating the key management to
a secure key server that stores the master keys and the ac-
cess policy for each user in the key server. The key servers
can compute the keys needed for each users from the master
keys and the access policies.

6. Experimental Results

In this section, we describe our experiments to measure the
performance of the integrity and confidentiality schemes. To
get real data about the performance of the schemes, we de-
velop three applications as follows:

1. The process executor, that is the actor that creates the
tuple SP, creates the signature IntS ub, and sends the
tuple and the signature to the provenance owner.

2. The provenance owner, that is the actor that receives
the provenance node and the signature, checks the sig-
nature, requests the counter to the TCS, encrypts the
provenance node and stores the provenance node to the
provenance store.

3. The TCS, that is the trusted entity that receives requests
from the provenance owner, records the request and re-
ply with the number of requests that have been received
from the provenance owner.

6.1 Experimental Setup

The process executor is implemented using Java SE 6 (JCE
library for the cryptographic functions: SHA1 for hash and
DSA for signature). It sends the provenance node to the
provenance owner using HTTP Post protocol. The prove-
nance owner is implemented using PHP and an Apache Web
Server. The provenance store is implemented using a Post-
gresql database. The provenance owner also uses HTTP
Post method to send the requests to the TCS. The TCS is

Table 2 Hardware and Software of experiment.

Role Hardware Software
Process Dual-Core 2.50 GHz, Java SE 6 (JCE lib.),
Executor 3 GB RAM Windows XP
Provenance Dual-Core 2.50 GHz, PHP 5.3.6, OpenSSL lib.
Owner 3 GB RAM ver. 0.9.8, Apache Web

Server ver. 2.2.17, Windows XP
TCS Core 2 Duo 1.4 GHz, PHP 5.3.6, OpenSSL lib.

4 GB RAM ver. 0.9.8, Apache Web
Server ver. 2.2.17, Postgresql

ver. 9.0.4, Windows 7
Provenance Core 2 Duo 1.4 GHz, Postgresql 8.4.8,
Store 4 GB RAM Linux 2.6.32

implemented using PHP, an Apache web server, and a Post-
gresql database for storing the counter. The cryptographic
functions for digital signature (DSA) in the provenance
owner and the TCS are implemented using OpenSSL library
while the SHA1 is supported natively by PHP. We use an
AES implementation for Windows for encryption [35].

We performed experiments in four computers where
the first computer acts as a process executor that submits
the provenance, the second computer acts as the provenance
owner, the third computer is the TCS and the fourth com-
puter is the provenance store. All of them are connected by
a LAN with speed 100 MB. In Table 2 below, we show the
detail specification of the hardware and software we used in
the experiments.

We performed 26 experiments to measure the perfor-
mance of the scheme. For each experiment, we executed the
process executor that send the provenance node to the prove-
nance owner. The provenance owner requested the counter
and stored the node to the provenance store. For the exper-
iments, we simulated execution of 26 processes that have
process documentations A with the range of size from 10 kb
to 1237 kb (each process documentation is a text file that de-
scribes the execution of a process, the inputs, its outputs and
the process executors). Each process use two inputs I and
produces two outputs D with size 100 kb each, so that the
difference between the processes is only on the size of the
process documentation A. In each experiment, we executed
the programs 12 times and measured the execution time of
various tasks to submit the provenance node. Those tasks
are as follows:

1. Hash-sign: the execution time that is needed to create
hash and signature of the process documentation by the
process executor.

2. Upload: the time to upload the tuple SP and its signa-
ture to the provenance owner

3. Check-PrepReq: the execution time that is needed to
check the signature by the provenance owner when re-
ceiving the provenance, the time to prepare the request
to the TCS (i.e. hash and signature) and the time to
receive the response from the TCS (i.e parsing the re-
sponse and checking the signature of the response)

4. Encrypt1: the execution time that is needed to generate
the node key and encrypt with the node key
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Fig. 9 Execution times of the process executor (in seconds). The list of
tasks described in Sect. 6.1 that are shown in this figure are Hash-sign and
Upload.

Fig. 10 Execution times of the provenance owner (in seconds). The list
of tasks described in Sect. 6.1 that are shown in this figure are Check-
PrepReq, Encrypt1, Encrypt2, Store. Total is the total time for those four
tasks.

5. Encrypt2: the execution time that is needed to encrypt
with the compartment key

6. Req-Counter: the execution time that is needed for
sending request until receiving the response from the
TCS.

7. Counter: the execution time that is needed to calculate
the counter by TCS.

8. Store: the execution time for storing the data to the
provenance store.

6.2 Results and Analysis of the Results

Figures 9, 10, and 11 show the average of the execution
times of the tasks. The X axis is the size of the process
documentation (in kb), the Y axis is the execution time (in
seconds) for each process executor, provenance owner and
the TCS. We summarize the complexity of the the execution
of each task relative to the size of the process documentation
A in Table 3.

As described in Table 3, for the process executor, the
time to create the signature is almost constant. This result

Fig. 11 Execution time of the TCS (in seconds). The list of tasks de-
scribed in Sect. 6.1 that are shown in this figure are Counter and Req-
Counter.

Table 3 The complexity of each task. (relative to the size of process
documentation A)

Role Task Complexity
Process Hash-Sign Almost constant
Executor Upload Linear
Provenance Check-PrepReq Almost Constant
Owner Encrypt1 Linear (with small growth)

Encrypt2 Linear (with small growth)
Store Almost constant

TCS Counter Constant
ReqCounter Constant

shows that there is not much difference in the execution time
needed to create signature and hash of files in the range of
size of the process documentation A (10 kb to 1237 kb) and
constant size of outputs. The time to upload the provenance
node to the provenance owner is linear to the size of the
process documentation. This result is natural because the
time needed to send the provenance node via the network is
linear with the size of the data.

As for the provenance owner, the time to check the
signatures and prepare the request is very small and almost
constant, while the time to encrypt and store is slightly in-
creased with size. Our analysis is that it is because the al-
gorithms to check the DSA signature, and creating the hash
using SHA1 (to prepare the request to the TCS) need al-
most constant time and the AES encryption algorithm needs
time linear with the size of the provenance node. An in-
teresting result is the growth of execution time to submit
the provenance node to the provenance store is almost con-
stant, and this growth is different from the growth of time
needed by the process executor to upload the provenance
node to the provenance owner. These results show that the
time needed to upload data using HTTP Post protocol and
store the data to a filesystem that are used by the process ex-
ecutor to send the provenance node to the provenance owner
is much slower than the protocol to store the data to a Post-
gresql database using Postgresql library used by the prove-
nance owner to submit the provenance node to the prove-
nance store.
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The time that is needed by the TCS to compute the
counter and the total time to send request and receive the
counter to/from the TCS are also constant. These results are
natural because the time to check the signature, to increase
counter and prepare the hash is constant. The time to pre-
pare the hash is also constant because the size of the requests
is constant (the request consists of the node id, the hash of
the provenance node and a timestamp). Because the size of
the requests to the TCS and reply (counter) from the TCS
are constant, the time needed to send the request and receive
the response using the network is also constant.

Our experimental results show the feasibility of imple-
menting our scheme in the real system, because most of the
execution times needed in the scheme (except for the time
needed to upload the provenance node to the provenance
store) are almost constant or with the small growth. Even
in our hardware configuration (which is a basic configura-
tion) the time for the TCS to create the counter is around
0.1 seconds and the total time including the network costs
(receiving the request and replying with the counter) is not
more than 0.5 seconds while for the provenance owner the
total time for all tasks except requesting the counter is not
more than 0.6 seconds. As for the time to upload the prove-
nance node to the provenance owner our results suggest to
use a better or faster protocol and storage than the HTTPS
protocol and the normal filesystem.

7. Conclusion

In this paper, we have described the integrity scheme for
provenance using digital signature and hash function. We
also described the method to protect the confidentiality of
the provenance using encryption. Our analysis to the in-
tegrity scheme shows that the integrity scheme can detect
basic integrity attacks and also integrity attacks namely “au-
thorized” updates, additions and deletions of the prove-
nance. We also shows the advantages of our encryption
scheme, that supports for convenient access control policy
and key management for managing access to the prove-
nance. Our experimental results show that the integrity and
confidentiality scheme is feasible to be implemented in the
real systems.
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Appendix: Notations

Table A· 1 Notations.

Notation Explanation
Hash A cryptographic hash of an object
S ign A signature on an object by a subject

Enckey A symmetric encryption function with private key key
P A set of the provenance node
A A documentation about the process execution
D A set of outputs of a process
I A set of inputs of a process
C A set of process executors that responsible to a process
S A process executor that sends the provenance node

PO A provenance owner
TCS The Trusted Counter Server
PS The Provenance Store
SP A secure provenance tuple

IntData Integrity data: 〈IntS ub, IntInp〉
IntInp Integrity data for inputs
IntS ub Integrity data that consists of IntProOut and

signature by S
IntProOut Integrity data for A and outputs D

IntProOutin An IntProOut that referred to the process
that produce the input

Pi A provenance node
Pid A provenance node identification = 〈PO, S , nid〉

S ignData Signature of S , PO, and TCS
S ID List of inputs’ identifications

RQS T Request sent to TCS by PO
CNT Reply by TCS to PO

R Counter number
T Timestamp

nid The node id
S in A process executor for the process that produce

the input and submit its provenance
nidin The id of the node that produce the input
EP Encrypted provenance tuple
nk Node key generator
ck Compartment key generator

KN Node key
KC Compartment Key
KK Key to encrypt the set of KNP and KKP

KNP The set of KN of the parent nodes
KKP The set of KK of the parent nodes
MKN The master key for generating KN
MKC The master key for generating KC
MKK The master key for generating KK
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