
192
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.1 JANUARY 2012

PAPER

Combinatorial Auction-Based Marketplace Mechanism for
Cloud Service Reservation

Ikki FUJIWARA†a), Kento AIDA†,††, Members, and Isao ONO†††, Nonmember

SUMMARY This paper proposes a combinatorial auction-based mar-
ketplace mechanism for cloud computing services, which allows users to
reserve arbitrary combination of services at requested timeslots, prices and
quality of service. The proposed mechanism helps enterprise users build
workflow applications in a cloud computing environment, specifically on
the platform-as-a-service, where the users need to compose multiple types
of services at different timeslots. The proposed marketplace mechanism
consists of a forward market for an advance reservation and a spot market
for immediate allocation of services. Each market employs mixed integer
programming to enforce a Pareto optimum allocation with maximized so-
cial economic welfare, as well as double-sided auction design to encourage
both users and providers to compete for buying and selling the services.
The evaluation results show that (1) the proposed forward/combinatorial
mechanism outperforms other non-combinatorial and/or non-reservation
(spot) mechanisms in both user-centric rationality and global efficiency,
and (2) running both a forward market and a spot market improves utiliza-
tion without disturbing advance reservations depending on the provider’s
policy.
key words: cloud computing, resource allocation, combinatorial auction,
integer programming, optimization

1. Introduction

Building enterprise systems on a cloud computing platform
is becoming increasingly popular these days. In contrast to
a conventional on-premise computing system, to which the
user has to invest in dedicated hardware and software, the
cloud computing system delivers virtualized hardware and
software resources to users on demand via the internet, gen-
erally in a pay-per-use manner. It significantly reduces the
cost for deploying and maintaining enterprise systems.

The cloud is described as a three-tier structure, namely
Infrastructure as a Service (IaaS), Platform as a Service
(PaaS) and Software as a Service (SaaS) from low-layer
to high-layer. Recently, PaaS has been evolving rapidly as
a software development/deployment environment for enter-
prise systems. For example, Microsoft Windows Azure [1]
provides .NET development environment and SQL service,
whereas Google App Engine [2] provides Python and Java
development environment with key-value store service. A
developer chooses an appropriate service among available

Manuscript received May 16, 2011.
Manuscript revised September 6, 2011.
†The authors are with the Graduate University for Advanced

Studies (SOKENDAI), Tokyo, 101–8430 Japan.
††The author is with National Institute of Informatics, Tokyo,

101–8430 Japan.
†††The author is with Tokyo Institute of Technology, Yokohama-

shi, 226–8502 Japan.
a) E-mail: ikki@nii.ac.jp

DOI: 10.1587/transinf.E95.D.192

ones to build his customized system.
An enterprise system is generally consists of multiple

subsystems to model a complex real business. The subsys-
tems are often provided by service on the internet, or PaaS,
and the developer of the enterprise system needs to choose
appropriate PaaS providers to develop an efficient system.
As the number of PaaS provider will increase, a challeng-
ing issue is how to choose an appropriate combination of
services, or PaaSes, to build a complex enterprise system.
Furthermore, the enterprise system has strict requirements
for the quality of service (QoS) as well as a budget limita-
tion. Unfortunately no practical workaround to this complex
problem has been provided so far in the cloud computing en-
vironment.

This kind of problem has long been discussed as a re-
source allocation problem on a distributed computing sys-
tem [3]. The problem is typically described as a sort of opti-
mization problem and tends to have computational complex-
ity to obtain optimum solutions. A market-based approach is
a promising methodology to deal with the complexity while
satisfying budget limitation [4], [5]. Specifically a combina-
torial auction-based approach has recently evolved because
of its ability to optimize allocation of a bundle of multi-
ple goods [6], [7]. However, the previous work, not only
market-based approaches but also conventional ones, does
not satisfy requirements of resource allocation in the enter-
prise system composed of multiple PaaSes.

In this paper, we propose a combinatorial auction-
based marketplace mechanism for cloud computing ser-
vices, which allows users to reserve arbitrary combination of
services at requested timeslots, prices and quality of service.
The proposed mechanism helps enterprise users build work-
flow applications on PaaS, where the users need to compose
multiple types of services at different timeslots. The pro-
posed marketplace mechanism consists of a forward market
for an advance reservation and a spot market for immedi-
ate allocation of services. Each market employs mixed in-
teger programming to enforce a Pareto optimum allocation
with maximized social economic welfare, as well as double-
sided auction design to encourage both users and providers
to compete for buying and selling the services.

The rest of this paper is organized as follows. Section 2
presents the background and the related work, and Sect. 3
shows cloud computing model discussed in this paper. Sec-
tion 4 shows the proposed market mechanism. Section 5
presents our simulator and Sect. 6 shows the performance
evaluation of the proposed mechanism. Finally, Sect. 7 sum-

Copyright c© 2012 The Institute of Electronics, Information and Communication Engineers

FUJIWARA et al.: COMBINATORIAL AUCTION-BASED MARKETPLACE MECHANISM FOR CLOUD SERVICE RESERVATION
193

marizes our contributions and outlines the future work.

2. Background and Related Work

Our work is mainly related to two research areas: (1) auction
theory and (2) distributed computing. Below we review the
previous work in these areas.

2.1 Combinatorial Auction

The backbone of a market mechanism is the auction theory.
The type of auction varies with the number of goods and
the side of price decision [8]. Among them the double-sided
combinatorial auction is the most generic form of auctions,
where the participant can bid on a combination of multiple
goods and both of the sellers and buyers express their val-
uation [9]. It is well known that the combinatorial auction
is NP-complete. Theoretical researches of combinatorial
auction therefore tend to focus on approximate algorithms
rather than exact algorithms [10]–[13].

We modeled our service allocation problem as a com-
binatorial auction. The combinatorial auction is suitable to
simulate our target model, where each user tries to reserve
multiple services to build the user’s application, or the en-
terprise system. We employ MIP-based exact algorithm to
solve the allocation problem. Currently, fast software tools
to solve MIP in practical time are available [14], [15]. Our
preliminary experiments indicate that computation time to
solve the MIP for our target model is acceptable [16].

2.2 Distributed Resource Allocation

Market-based resource allocation in a distributed computing
environment is discussed over a decade. Buyya et al. pro-
vides some comprehensive surveys in this area [17]–[20] as
well as grid/cloud computing toolkits and simulators [21],
[22]. The researches in this area mainly focus on a fair use of
academic computing resources. Spawn [23] by Waldspurger
et al. is the first market-based distributed resource allocation
method. It employs distributed auctions with double-sided
competition. The user is required to modify his program
to take part in Spawn system. Nimrod/G [24] by Buyya
et al. is a negotiation-based grid scheduler built on the top
of Globus [25]. The allocation and the price are determined
on negotiations between a provider and a user, rather than
auctions. Bellagio [26] by AuYoung et al. proposes a cen-
tralized market of shared resources. It employs single-sided
combinatorial auctions where the providers are out of com-
petition. Tan et al. [27] proposes a stable continuous double
auctions (SCDA) which emulates combinatorial auctions by
doing single-good auctions repeatedly. Schnizler et al. [28]
introduced the notion of using double-sided combinational
auctions to allocate grid resources to the user’s application
presented by workflow. It employs a mixed integer pro-
gramming to obtain exact solution rather than a heuristics.
We thought this might be suitable to the cloud marketplace;

however the users cannot combine arbitrary resources in dif-
ferent timeslots to compose a workflow.

Conventional resource management systems for dis-
tributed computing, such as PBS [29], SGE [30] and Con-
dor [31], are not based on an auction mechanism, therefore
are not comparable with the proposed mechanism. Fur-
thermore, these conventional systems are aimed to queue
jobs for available resources in cluster/grid computing en-
vironment, and are not designed to reserve combination of
services in cloud computing environment. To the best of
our knowledge, no conventional system supports both the
auction-based allocation and the enterprise cloud applica-
tion.

Cloud computing industries have developed some kind
of marketplace to promote their services and extend their
ecosystem. Amazon EC2 Spot Instances [32] enable the
provider to change the price of his IaaS and the users to
bid for it. Heroku Add-ons [33] enables the provider to sell
his PaaSes at a posted price and the users to buy them as a
component of their applications. However, we have so far
noticed no double-sided auction system for cloud comput-
ing services in production.

As mentioned above, marketizing resource allocation
is the wave of the future computing systems, whereas the
adoption of auction mechanism by cloud computing indus-
try is still in its infancy. Further research is needed to es-
tablish an efficient market mechanism meeting the require-
ments of the enterprise cloud applications.

2.3 Other Disciplines

Electricity markets are in practical operation for several
years. For instance, Japan Electric Power Exchange (JPEX)
started operations in 2005. According to Ref. [34], it pro-
vides three markets: (1) a spot market for trading the elec-
tricity on the next day, (2) a forward market for trading the
electricity to be delivered weeks or months ahead and (3) a
forward bulletin board market for free transactions. Since
electricity and computing services have similar natures (i.e.
they cannot be stored), we regard the electricity market as
a preceding model to the cloud services market. However,
the electricity market model cannot be directly applied to
cloud computing because the electricity is almost uniform,
whereas computing services vary in type and quality.

The stock market deals with a variety of stocks, which
can be stored and resold, unlike a computing service. The
studies on dealing strategies and mechanism design have
used multi-agent simulations. U-Mart [35] is a test bed for
multi-agent simulations of the stock market, and it is espe-
cially focused on futures trading. It allows machine agents
and human agents to trade future stocks at the same time.
Our simulator presented in this paper is developed with an
interface with the U-Mart system, so that we can evaluate
performance of various machine/human agents.

194
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.1 JANUARY 2012

3. Cloud Computing Model

This section presents the cloud computing model discussed
in this paper. In this model, users build their applications, or
enterprise systems, by reserving multiple services offered by
providers. The marketplace brokers services between users
and providers.

3.1 Cloud Service

The “cloud” spreads over a wide level of abstraction from
hardware to software. Now it is understood in a three-tier
structure from low-level to high-level: Infrastructure as a
service (IaaS), Platform as a service (PaaS) and Software as
a service (SaaS). Many providers compete in each tier for
selling their own services, making it increasingly difficult
for users to select an appropriate service among them.

In this paper, we assume that an enterprise system
is implemented using PaaS. PaaS is becoming a major
methodology to build an enterprise system on it, because the
developer can build the system without procuring and con-
figuring hardware/software; thus, the customer can signifi-
cantly reduce cost and time for development. The number of
PaaS provider is expected to increase as the platform tech-
nology is becoming standardized or open-source software is
available [36]–[44].

We assume that the price of PaaS is set on a per-
process-per-hour basis for each type of service in this paper.
This assumption is reasonable to simulate the existing PaaS
model. For example, Heroku [45] charges for dynos, work-
ers, databases and add-ons separately. The dyno is a front-
end process responsible to HTTP requests (“more dynos
provide more concurrency”) and the worker is a back-end
process responsible for queued jobs (“more workers provide
more capacity”), both of which costs $0.05 per process per
hour; while the database costs monthly depending on its per-
formance.

3.2 Enterprise System

An enterprise system generally consists of multiple subsys-
tems running in parallel and/or sequentially, each of which
requires a guaranteed quality of service (QoS) at a pre-
dictable price. We assume that each enterprise system, or
each user’s request, is represented by workflow. An exam-
ple of business workflow is a payroll system [46]. It consists
of a payroll calculation task on Java service along with an
employee database task on SQL service, followed by report-
ing task on PDF/Email service as shown in Fig. 1. Another
example of engineering workflow is a CAE† system [47]. It
consists of a mesh generation task and a CFD†† analysis task
on a HPC††† service, controlled by an optimization task on
a general-purpose optimization service.

Every task needs to reserve the specified type of ser-
vice within an appropriate timeslots to meet a deadline. The

Fig. 1 Example enterprise application.

overall cost should also be restricted by the user’s total bud-
get. Each task in the workflow is implemented using PaaS;
thus, the user needs combination of PaaS services to orga-
nize the user’s workflow.

3.3 Marketplace

The service allocation decided by the marketplace must be
fair and efficient; otherwise the user will have no incentive
to take part in. Hence, we assume that the PaaS marketplace
has to support the following requirements:

1. Combination for a workflow: Each user needs to bun-
dle multiple services with different start/finish times as
mentioned above. The cloud marketplace should al-
low users to express complementary requirements for
an arbitrary combination of services.

2. Predictability and flexibility: Since supply and demand
in the cloud computing environment changes dynami-
cally over time, users may desire predictable allocation
in advance and adjustment at runtime.

3. Economic efficiency: Every user and provider desires
a fair and efficient allocation of services. The cloud
marketplace should maximize the benefit of the partic-
ipants and should not waste any resource. To this end,
it is preferable for the marketplace to adopt an exact
optimization approach rather than a heuristic approach.

4. Double-sided competition: To encourage a fair ex-
change between providers and users, the prices should
only depend on supply-demand condition, giving no
structural advantage on a seller’s (provider’s) side or a
buyer’s (user’s) side. The cloud marketplace should be
designed after the double-sided auction model, mean-
ing that the providers and the users compete with each
other.

4. Market Mechanism

In this section we present the proposed market mechanism
†CAE: Computer Aided Engineering.
††CFD: Computational Fluid Dynamics.
†††HPC: High Performance Computing.

FUJIWARA et al.: COMBINATORIAL AUCTION-BASED MARKETPLACE MECHANISM FOR CLOUD SERVICE RESERVATION
195

Fig. 2 Overview of the proposed marketplace.

in detail.

4.1 Overview

Figure 2 illustrates an overall perspective of the cloud com-
puting environment with the proposed marketplace mecha-
nism. The marketplace has two independent markets: the
spot market for a short-term reservation (e.g. in one hour)
and the forward market for a long-term reservation (e.g. in
one month). The service providers participate in the markets
as sellers while the users participate as buyers. For instance,
the provider places sell orders with a market when he has a
capacity of service with specific QoS. The user places a buy
order with a market when he builds an application using spe-
cific services. The market accepts sell/buy orders for fixed
duration, and then it determines the allocation of the services
between the providers and the users. Finally, the market in-
forms the participants of the resulting allocation to allow the
user to deploy his application and the provider to preserve
his capacity. We refer to the time of actual usage/provision
as “delivery” and the sequence of the above procedures as a
“round”. The marketplace repeats the rounds periodically.

4.2 Service and Application

We assume that a service and an application satisfy the fol-
lowing conditions:

• An amount of resources that satisfy QoS is represented
as a one-dimensional value, e.g. the number of pro-
cesses or the performance of virtual machine. We refer
to the amount of resources as “quantity” and represent
it with the metric “units” in the rest of this paper. We
assume that the price of resources is proportional to its
quantity.
• A provider can host multiple users at the same time un-

less exceeding its capacity. For instance, the provider
can provide 20 units to a user and 40 units for another
user when it has a capacity of 60 units.

• A user can build an application using services offered
by multiple providers to fulfill his demand. For in-
stance, the user uses 10 units on the provider 1 and 30
units on the provider 2 when he builds an application
consuming 40 units.
• An application can be migrated at runtime, i.e. an appli-

cation running on a provider can be suspended, moved
and resumed on another provider.

We omit in our model the physical parameters, such as net-
work bandwidth and migration time, for the sake of simplic-
ity. The physical cost can be included in a price or traded as
a separate service in reality.

4.3 Trading Schedule

Each of the two markets holds clearinghouse auctions pe-
riodically. Figure 3 shows the schedule of the auctions.
The spot and the forward auctions have the same procedure
in different timescale. Here sellers and buyers are treated
equally as participants.

In the spot market, a participant willing to sell/buy ser-
vices in one-hour timeslot t needs to submit a request during
the timeslot t − 2, which begins two hours prior and ends
one hour prior to the requested timeslot. For instance, let
us suppose trading services at the third timeslot (from 2:00
to 3:00). The market opens for one hour at the first timeslot
(from 0:00 to 1:00) to accept sell/buy orders from the partic-
ipants. The market then closes and starts matchmaking, i.e.
computes the optimal allocation of services from providers
to users. Within one hour (by 2:00) the matchmaking fin-
ishes and the market notifies the results to the participants.
Finally the participants utilize the services they win during
the third timeslot (from 2:00 to 3:00).

Trading in the forward market is same as the spot mar-
ket except the timescale of the procedure. Let F denotes the
length of the forward delivery days† indicated by the blue-
colored boxes marked ‘forwards’ in Fig. 3. A participant
willing to sell/buy services starting on the f -th day needs to
submit a request during the days between f − (F − 1) and
f −2, that begins F−1 days prior and ends two days prior to
the delivery day. For instance, the market opens a forward
auction for one day (from 0:00 to 24:00) on the 1st day. As-
suming F = 7 the participants can place orders for services
delivered between 0:00 on the 3rd day and 24:00 on the 9th
day. The forward market performs matchmaking and noti-
fies the results advising when to utilize the services. Note
that the forward matchmaking can spend at most 22 hours;
this is the design to support time-consuming MIP technique.
Since the spot market opens at 22:00 for the next day’s ser-
vices, the forward matchmaking must finish before 22:00.

4.4 Bidding Language

The bidding language determines the information included
†(financial term) The day on which seller/buyer actually pro-

vide/use the services.

196
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.1 JANUARY 2012

Fig. 3 Trading schedule.

Fig. 4 Bidding language.

in an order. Figure 4 illustrates the order forms sent from a
participant to a market.

A buy order from a user has a valuation (maximum
price he wishes to pay) and a bundle of arbitrary services
he needs. For each service the user specifies a service type,
quantity, the earliest timeslot acceptable to start (arrival time
of the task), the latest timeslot acceptable to finish (deadline
of the task) and the total number of timeslots (estimated run-
time of the task). The latter three parameters are only used in
the forward market. Note that the valuation is given to a bun-
dle of services, not to each discrete service, so that the user

can express requirements for receiving multiple services in
combination. If the market cannot reserve all the services in
a bundle at once, the user receives nothing at all.

A sell order from a provider has a valuation (minimum
price he wishes to earn) and a service he offers. The provider
specifies a service type, quantity, the earliest timeslot and
the latest timeslot available for use. The latter two param-
eters are only used in the forward market. Note that a sell
order includes only one service. The provider can make sep-
arate orders for different services. If a provider wishes to sell
certain low-level services at the same time, he can do so by
bundling them into a single high-level service.

Formulation: Let M = {m1, . . . ,m|M|}, mi = {vi, S i}
be sell orders; N = {n1, . . . , n|N|}, n j = {v j, S j} be buy or-
ders; and G = {g1, . . . , g|G|} be service types; 1 ≤ t ≤ T be
timeslots; and vi and v j be valuation. A buy order is formu-
lated as

Oj = {(gk, q j,k, b j,k, d j,k, l j,k) | 1 ≤ k ≤ |G|}
where q j,k is the quantity of service gk, b j,k is the earliest be-
ginning timeslot, dj,k is the latest ending timeslot and l j,k is
the number of timeslots†. Similarly, a sell order is formu-
lated as

Oi = (gk, qi,k, bi,k, di,k) 1 ≤ k ≤ |G|.

4.5 Allocation Scheme

The allocation scheme determines the winners of an auc-
tion, or allocation of services from providers to users. Our

†If l j < dj − bj + 1 then the task may be suspended/resumed
during runtime.

FUJIWARA et al.: COMBINATORIAL AUCTION-BASED MARKETPLACE MECHANISM FOR CLOUD SERVICE RESERVATION
197

Fig. 5 Illustration of surplus and welfare (social economic welfare =
users’ surplus + providers’ surplus).

goal is to get an economically efficient (or Pareto optimal)
allocation of resources, where it is impossible to increase
a participant’s surplus without decreasing another partici-
pant’s surplus. Here the surplus means the difference be-
tween the market price and the participant’s internal valua-
tion; i.e. (price − cost) for the provider and (utility − price)
for the user, as shown in Fig. 5. The aggregate surplus, i.e.
the difference between the buyers’ valuation and the sellers’
valuation, is also known as the social economic welfare.

Maximizing the social economic welfare w is the suf-
ficient condition for Pareto optimality [48]. Therefore we
formulate the winner determination problem into a linear
mixed integer program (MIP) and try to exactly maximize
w. Here, we introduce four decision variables: u j ∈ {0, 1}
denotes whether the buyer nj gets all services in the bundle;
x j,k ∈ {0, 1} denotes whether the service gk is allocated to
the buyer n j; z j,k,t ∈ {0, 1} denotes whether the service gk is
allocated to the buyer n j in the timeslot t; 0 ≤ yi, j,k,t ≤ 1 de-
notes the percentage of the service allocated to the buyer nj

in the timeslot t, where the service gk is owned by the seller
mi. The solver then maximizes the social economic welfare
w by solving the MIP:

Maximize

w =
|N|∑

j=1

v ju j −
|M|∑

i=1

|N|∑

j=1

|G|∑

k=1

T∑

t=1

viyi, j,k,t (1)

s.t.
|G|∑

k=1

x j,k − |G|u j = 0,

1 ≤ j ≤ |N|
(2)

T∑

t=1

z j,k,t − l j,k x j,k = 0,

1 ≤ j ≤ |N|, 1 ≤ k ≤ |G|
(3)

|N|∑

j=1

yi, j,k,t ≤ 1,

= 1 ≤ i ≤ |M|, 1 ≤ k ≤ |G|, 1 ≤ t ≤ T

(4)

q j,kz j,k,t −
|M|∑

i=1

qi,kyi, j,k,t = 0,

1 ≤ j ≤ |N|, 1 ≤ k ≤ |G|, 1 ≤ t ≤ T

(5)

(b j,k − t)z j,k,t ≤ 0,

1 ≤ j ≤ |N|, 1 ≤ k ≤ |G|, 1 ≤ t ≤ T
(6)

(t − d j,k)z j,k,t ≤ 0,

1 ≤ j ≤ |N|, 1 ≤ k ≤ |G|, 1 ≤ t ≤ T
(7)

(bi,k − t)
|N|∑

j=1

yi, j,k,t ≤ 0,

= 1 ≤ i ≤ |M|, 1 ≤ k ≤ |G|, 1 ≤ t ≤ T

(8)

(t − di,k)
|N|∑

j=1

yi, j,k,t ≤ 0,

1 ≤ i ≤ |M|, 1 ≤ k ≤ |G|, 1 ≤ t ≤ T

(9)

u j ∈ {0, 1},
1 ≤ j ≤ |N| (10)

x j,k ∈ {0, 1},
1 ≤ j ≤ |N|, 1 ≤ k ≤ |G| (11)

z j,k,t ∈ {0, 1},
1 ≤ j ≤ |N|, 1 ≤ k ≤ |G|, 1 ≤ t ≤ T

(12)

0 ≤ yi, j,k,t ≤ 1,

1 ≤ i ≤ |M|, 1 ≤ j ≤ |N|, 1 ≤ k ≤ |G|, 1 ≤ t ≤ T
(13)

4.6 Pricing Scheme

A price earned/paid by a provider/user for an allocation is
decided by the pricing scheme. The pricing scheme should
be budget balanced and individually rational in order to sus-
tain the market and give providers/users incentives to partic-
ipate in the market. The former means that total earnings of
providers should equal the total payment of users, and the
latter means a provider/user earns/pays no less/more than
their valuation.

We employ the K-pricing scheme [49] to meet the
above requirements. The basic idea of K-pricing is to dis-
tribute the social economic welfare among the users and the
providers. It is straightforward in non-combinatorial auc-
tions. In our combinational auctions, however, we can nei-
ther calculate the discrete price for each service nor for each
timeslot of a user’s order. Here, we propose the following
algorithm to determine the price.

We assume u j = 1, since the only orders that succeed
need pricing. Let 0 ≤ K ≤ 1 be an arbitrary fraction. For a
buy order n j, let wj be the welfare corresponding to n j, p j

be the price, pi, j be the price earned by the provider i, and
ri, j,k,t be the proportion of the provider i’s valuation to all the
providers’ valuation of the service k in timeslot t. They are
formulated as

wj = v j −
|M|∑

i=1

|G|∑

k=1

T∑

t=1

viyi, j,k,t, (14)

198
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.1 JANUARY 2012

p j = v j − (1 − K)wj, (15)

ri, j,k,t =
viyi, j,k,t

∑|M|
i=1

∑|G|
k=1

∑T
t=1 viyi, j,k,t

, (16)

pi, j =

|G|∑

k=1

T∑

t=1

viyi, j,k,t + K
|G|∑

k=1

T∑

t=1

wjri, j,k,t. (17)

Consequently, the provider i’s total earning pi is

pi =

|N|∑

j=1

|G|∑

k=1

T∑

t=1

viyi, j,k,t + K
|N|∑

j=1

|G|∑

k=1

T∑

t=1

wjri, j,k,t. (18)

The incentive compatibility, which means that the par-
ticipant’s dominant strategy is to reveal his valuation truth-
fully, is another important aspect of the pricing scheme.
However, these three aspects —the budget balance, the in-
dividual rationality and the incentive compatibility— cannot
be fulfilled at the same time [50]. In W-Mart, we focus on
the first two aspects, the budget balance and the individual
rationality, because we consider non-truthful bidding should
also be allowed as the participant’s strategy.

5. Simulator

We developed a simulator, named W-Mart, to explore mar-
ket behavior by means of multi-agent simulations. The over-
all architecture of W-Mart is shown in Fig. 6.

The W-Mart server and the machine agents are im-
plemented as a Java class. Two markets with matchmak-
ing/pricing mechanism are also implemented as Java class,
running their own threads being synchronized by the server.
The machine agents have their own demand and strategies
to make orders. They can be run on separate machine or on
the same machine, talking a dedicated text-based protocol
over TCP/IP to communicate with the server. The human
agents can also take place using same protocol, trading with

Fig. 6 Overview of W-Mart simulator.

the machine agents at the same time†. The winner deter-
mination problem is solved by an external general-purpose
solver, which can be CPLEX [51] or lp solve [52]. The over-
all architecture is designed after U-Mart [35] and the auction
mechanism is built using MACE framework [53].

6. Evaluation

We conducted three experiments to study the performance
of the proposed mechanism. Figure 7 illustrates who takes
part in the experiments.

First, in the single-market experiment, we ran one of
two market mechanisms (the forward market and the spot
market) to see the difference between them. In addition,
we employed one of two kinds of buyer agent (the combi-
natorial buyer who makes a combined order and the sep-
arate buyer who makes separate orders for each service)
to see the effectiveness of combinatorial auctions. Con-
sequently, we compared the performance of four scenar-
ios: (1) forward/combinatorial, (2) forward/separate, (3)
spot/combinatorial and (4) spot/separate.

Second, in the dual-market experiment, we ran the for-
ward market and the spot market simultaneously to verify
the independency between them.

6.1 Simulation Settings

The simulations are carried out with the settings described
below. Table 1 summarizes all the parameters used in the
simulations.

Fig. 7 Actorsof experiments.

†Human agent was not used for this paper.

FUJIWARA et al.: COMBINATORIAL AUCTION-BASED MARKETPLACE MECHANISM FOR CLOUD SERVICE RESERVATION
199

Table 1 Summary of simulation parameters.

A) Market
One timeslot is one hour and one day is 24 timeslots.

The market operates for 30 days (720 hours). The forward
market deals with seven days (168 hours) of future services
and clears a round at every midnight. The spot market deals
with one hour of services and clears a round every hour. This
setting exactly implements the trading schedule described in
Sect. 4.

B) Sellers
There are five sellers with different type of services,

namely service A, B, C, D and E. A seller has an ability to
provide constant units of his service every hour (the quantity
is shown in Table 1). The order price is fixed to one cent
per unit per hour, for the sake of simplicity. A seller agent
attempts to sell all amount of his service as early as possible.
For instance, after he ordered 100 units and contracted to
sell 30 units in one round, he will order to sell remaining 70
units in the next round.

C) Buyers
All buyers have their own applications presented by

workflows. Each workflow consists of two phases of tasks,
namely the leading task(s) and the following task, as shown
in Fig. 8. Each task requires service A, B, C, D or E, ex-
clusively. The overall length of a workflow follows the ex-
ponential distribution with λ = 0.25, where the minimum
length is two hours and the maximum is 24 hours. This
means that 50% of the workflows have four hours or shorter

Fig. 8 Shapes of wofkflow.

length. The lengths of the leading tasks are set randomly
within the overall length of the workflow and the following
task spends the remainder. The valuation of a task follows
the uniform distribution between 2 and 10 cents per unit per
hour. The order price is the sum of the valuations of all tasks
in the workflow.

The user places an order for a workflow before the time
he actually start to use them. The margin of time between or-
dering and starting follows the uniform distribution between
two and seven days for the forward orders, and is fixed to
two hours for the spot orders. The quantity of each service
follows the uniform distribution between 1 and 100 units.

200
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.1 JANUARY 2012

Fig. 9 Example forward buyer order.

Fig. 10 Example spot buyer order.

Fig. 11 Buyer order division.

Figure 9 and Fig. 10 show examples of orders placed with
the forward market and with the spot market, respectively.
We assume that arrival of workflows follows the Poisson Ar-
rival with parameters shown in Table 1. We conducted 100
times of simulation run for each arrival rate and show the
average results.

A buyer agent attempts to buy all services in a work-
flow. In forward/combinatorial scenario he orders all ser-
vices at once as a bundle; in other scenarios he divides the
bundle into a set of orders in an appropriate manner. Fig-
ure 11 illustrates how to divide a workflow depending on
the scenario. Here, a user needs to run a workflow of three
tasks, for example, starting with four hours of services A
and B followed by two hours of service C. In the for-
ward/combinatorial scenario he puts one order for all ser-
vices on the forward market at once. In the forward/separate

scenario he puts three orders for each service on the for-
ward market at once, i.e. each order is processed indepen-
dently. In the spot/combinatorial scenario he puts six or-
ders for each timeslot on the spot market for six times. In
the spot/separate scenario he puts 10 orders for each service
and timeslot on the spot market for six times. The workflow
is fulfilled if he succeed to reserve all services required by
the tasks in the workflow; otherwise the workflow is not ful-
filled and the reserved services are wasted, i.e. paid but not
utilized. In other words, the wasted services give the buyer
no benefit while consuming his budget.

6.2 Performance Metrics

We used the following metrics to evaluate the performance
of the market mechanisms.

The demand/supply ratio (D/S) indicates a load on the
overall system. D/S is computed by (19).

D/S =

∑|N|
j=1

∑|G|
k=1 q j,k

∑|M|
i=1

∑|G|
k=1 qi,k

(19)

The workflow completion rate (WC) indicates the rate
of the number of workflows fulfill their requirements com-
pared to the total number of workflows. A higher rate means
better performance. WC is computed by (20).

WC =

∑|N|
j=1 u j

|N| (20)

The cost performance (CP) indicates the users’ total
valuation fulfilled (excluding wasted services) compared to
the total payments (including wasted services) by the users.
A higher value means better performance. CP is computed
by (21).

CP =

∑|N|
j=1 v ju j

∑|N|
j=1 p j

(21)

The global utilization (GU) indicates total quantity
of services utilized in the market (i.e. reserved and not
wasted) compared to the total quantity of services offered by
providers. A higher utilization means better performance.
GU is computed by (22).

GU =

∑|N|
j=1

∑|G|
k=1 q j,ku j

∑|M|
i=1

∑|G|
k=1 qi,k

(22)

The market price (MP) indicates an average price per
unit per hour decided in the market. The users/providers
actually pays/earns this amount of money. A lower price
means better for users. MP is computed by (23).

MP =

∑|M|
i=1 pi

∑|M|
i=1

∑|N|
j=1

∑|G|
k=1

∑T
t=1 yi, j,k,tqi,k

(23)

Note that the minimum MP in the experiments is 3.5.
The reason is that an order price is one cent for a selling
order and two to 10 cents in uniform distribution (six cents
on average) for a buying order; thus, the K-pricing scheme
calculates (1 + 6)/2 = 3.5.

FUJIWARA et al.: COMBINATORIAL AUCTION-BASED MARKETPLACE MECHANISM FOR CLOUD SERVICE RESERVATION
201

6.3 Results

A) Single-market experiment
First we show the results of the single-market ex-

periments to compare performance of four market mecha-
nisms: forward/combinatorial (fwd/cmb), forward/separate
(fwd/sep), spot/combinatorial (spt/cmb) and spot/separate
(spt/sep).

Figure 12 shows the workflow completion rate (WC).
First we can see the advantage of the forward market mech-
anism. Users have more opportunity to buy services that
satisfy the users’ requests in the forward market. Second,
the combinatorial market mechanism shows more advantage
compared to the separate market mechanism. In the cloud
computing model discussed in this paper, users need to re-
serve services for all tasks in the users’ workflow. The com-
binatorial market releases all services for tasks in the work-
flow if it fails to fulfill the requirements, while the separate
market keeps them. Thus, the separate market significantly
waste services and degrade the performance. We conclude
that fwd/cmb is the best mechanism to improve WC.

Figure 13 shows the cost performance (CP). CP indi-

Fig. 12 Workflow completion rate (single market).

Fig. 13 Cost performance (single market).

cates the effectiveness of the market mechanism from the
users’ point of view. The result shows that CP keeps the
ideal value in fwd/cmb mechanism, because it guarantees
the users to profit from all the services they pay for. In
other mechanisms, in contrast, CP decreases monotonically
because they cannot guarantee the users to complete their
workflows while keeping the payments for the fragmented
services.

Figure 14 shows the global utilization (GU). GU in-
dicates the effectiveness of the market mechanism from the
providers’ point of view. Ideally speaking, GU can be equal
to D/S where D/S ≤ 1 and can be 1 where D/S > 1. The
result shows that GU increases monotonically in fwd/cmb
mechanism since it does not waste any services. In fwd/sep
mechanism the similar trend is observed where D/S ≤ 1.
In the spot market mechanism, in contrast, GU is saturated
quickly and begins to decrease because the excessive colli-
sion in the spot market makes most of the workflow incom-
plete and wastes significant amount of services.

Figure 15 shows the market price (MP). Again we see
the advantage of the forward market mechanism, in which
the users can buy services at significantly low prices com-

Fig. 14 Global utilization (single market).

Fig. 15 Market price (single market).

202
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.1 JANUARY 2012

Fig. 16 Workflow completion rate
(dual market, D/S of fwd/cmb = 0.2).

Fig. 17 Cost performance (dual market,
D/S of fwd/cmb = 0.2).

Fig. 18 Global utilization (dual market,
D/S of fwd/cmb = 0.2).

pared to those of the spot market mechanism. Remem-
ber that the market mechanism determines winners among
users’ requests according to their valuation. Users undergo
such competitions for every timeslots in the spot market
mechanism, buying services at unreasonably high prices and
wasting most of them. In the forward market mechanism,
in contrast, users experience fewer competitions for entire
reservations, resulting in reasonable prices and efficient uti-
lization of services.

The performance of conventional scheduling systems is
estimated to be similar with the separate market mechanism,
since no conventional scheduler is able to reserve a combi-
nation of resources for a workflow. The simulation results
demonstrate that fwd/cmb mechanism always outperforms
the separate market mechanisms in WC and GU†. Conse-
quently, we conclude that the proposed fwd/cmb mechanism
outperforms any conventional scheduling systems under the
condition discussed in this paper.

B) Dual-market experiment
Next we show the results of the dual-market experi-

ment to verify the independency between the forward mar-
ket and the spot market running simultaneously. In this
scenario the forward contracts should have a priority over
the spot contracts; otherwise the forward trading cannot
serve as an advance reservation. We verified it by deploy-
ing two users: one takes part in fwd/cmb with a constant
load (D/S = 0.2)†† and the other takes part in spt/cmb while
changing its load. The providers place the order first at the
forward market to sell as much as possible and next at the
spot market to sell the remainder.

Figure 16, Fig. 17 and Fig. 18 shows the workflow
completion rate (WC), the cost performance (CP) and the
global utilization (GU), respectively. Their x axes indicate
the aggregate load of two markets. The plots indicate that
the performance of fwd/cmb does not fluctuate and is not
affected by the spot market. Thus the users can rely on the
forward market to make an advance reservation. At the same
time, the spot market also works well; it contributes to the

providers utilizing the remainder resources and to the users
procuring immediate resources.

7. Conclusion and Future Work

In this paper we proposed a combinatorial auction-based
marketplace mechanism with exact optimization technique.
The experiments compared four types of market design. The
results showed that the forward/combinatorial design brings
the best completion rate and cost performance for the users
as well as the highest global utilization and second lowest
market price. The results also showed that operating simul-
taneously the forward market and the spot market did not
disturb the advance reservations while increased the global
utilization.

However, the priority of the forward contracts over
the spot contracts relies on the providers’ faithful reserva-
tion policy. If the providers adopt an aggressive policy like
double-booking, some of the forward contracts may be can-
celed at runtime, and thus it may not serve as an advance
reservation. Some additional mechanism like margin†††,
penalty or reputation system may be needed to secure the
predictability of resource allocation.

Sophisticated strategies of seller/buyer agents can sig-
nificantly improve the performance of the market. For in-
stance, a buyer agent can reduce wasted resources and can
increase workflow completion rate by employing a smarter
strategy to make his orders. Moreover, it is essential for
seller/buyer agents to adjust their order price according to
the market price in competition with each other††††.

Our future work therefore includes investigation of

†CP and MP is not comparable with conventional schedulers.
††We also carried out simulations with other loads but omit their

results since they have almost the same trend.
†††(financial term) A deposit money to hedge the credit risk.
††††The first fundamental theorem of welfare economics states

that a competitive equilibrium among participants leads to a Pareto
efficient allocation of resources [54]. This is also known as the in-
visible hand of God.

FUJIWARA et al.: COMBINATORIAL AUCTION-BASED MARKETPLACE MECHANISM FOR CLOUD SERVICE RESERVATION
203

market behavior using more sophisticated strategies of
seller/buyer agents. We also plan to publish the source code
of our simulator.

References

[1] “Microsoft Windows Azure” http://www.microsoft.com/
windowsazure/

[2] “Google App Engine” http://code.google.com/appengine/
[3] I. Foster and C. Kesselman, “The grid: Blueprint for a new comput-

ing infrastructure,” Oct. 1998.
[4] S. Clearwater, Market-Based Control: A Paradigm for Distributed

Resource Allocation, World Scientific, 1996.
[5] J. Shneidman, C. Ng, D.C. Parkes, A. AuYoung, A.C. Snoeren, A.

Vahdat, and B. Chun, “Why markets could (But don’t currently)
solve resource allocation problems in systems,” Challenges, p.7,
2005.

[6] P. Cramton, Y. Shoham, and R. Steinberg, Combinatorial Auctions,
The MIT Press, 2005.

[7] A. Das and D. Grosu, “Combinatorial auction-based protocols for
resource allocation in grids,” Parallel and Distributed Processing
Symposium, 2005. Proceedings. 19th IEEE International, 2005.

[8] Y. Shoham and K. Leyton-Brown, Multiagent systems: algorith-
mic, game-theoretic, and logical foundations, Cambridge University
Press, 2009.

[9] S. de Vries and R.V. Vohra, “Combinatorial auctions: A survey,”
INFORMS J. Comput., vol.15, pp.284–309, July 2003.

[10] M.H. Rothkopf, A. Pekec, and R.M. Harstad, “Computationally
Manageable Combinatorial Auctions,” April 1995.

[11] Y. Fujishima, K. Leyton-Brown, and Y. Shoham, “Taming the
computational complexity of combinatorial auctions,” pp.548–553,
1999.

[12] T. Sandholm, “Algorithm for optimal winner determination in com-
binatorial auctions,” Artif. Intell., vol.135, pp.1–54, Feb. 2002.

[13] A. Andersson, M. Tenhunen, and F. Ygge, Integer programming for
combinatorial auction winner determination, Proc. 4th International
Conference on MultiAgent Systems, pp.39–46, July 2000.

[14] P. He, Y. Li, Z. Nie, and N.E. Shawwa, Review of Linear Program-
ming Software, 2007.

[15] “Linear programming,” From Wikipedia, the free encyclopedia
http://en.wikipedia.org/wiki/Linear programming

[16] I. Fujiwara, K. Aida, and I. Ono, “Applying double-sided combi-
national auctions to resource allocation in cloud computing,” 2010
10th IEEE/IPSJ International Symposium on Applications and the
Internet, IEEE, pp.7–14, 2010.

[17] C.S. Yeo and R. Buyya, “A taxonomy of market-based resource
management systems for utility-driven cluster computing,” Soft-
ware: Practice and Experience, vol.36, pp.1381–1419, Nov. 2006.

[18] R. Buyya, D. Abramson, and S. Venugopal, “The grid economy,”
Proc. IEEE, vol.93, pp.698–714, March 2005.

[19] J. Broberg, S. Venugopal, and R. Buyya, “Market-oriented grids and
utility computing: The state-of-the-art and future directions,” J. Grid
Computing, vol.6, pp.255–276, Dec. 2007.

[20] R. Buyya, C.S. Yeo, and S. Venugopal, Market-Oriented Cloud
Computing: Vision, Hype, and Reality for Delivering IT Services
as Computing Utilities, IEEE, 2008.

[21] R. Buyya and M. Murshed, “GridSim: A toolkit for the modeling
and simulation of distributed resource management and scheduling
for Grid computing,” Concurrency and Computation: Practice and
Experience, vol.14, pp.1175–1220, Nov. 2002.

[22] R. Buyya, R. Ranjan, and R.N. Calheiros, Modeling and simula-
tion of scalable Cloud computing environments and the CloudSim
toolkit: Challenges and opportunities, IEEE, 2009.

[23] C.A. Waldspurger, T. Hogg, B.A. Huberman, J.O. Kephart, and W.S.
Stornetta, “Spawn: A distributed computational economy,” IEEE
Trans. Softw. Eng., vol.18, no.2, pp.103–117, Feb. 1992.

[24] R. Buyya, D. Abramson, and J. Giddy, “Nimrod/G: An architecture
for a resource management and scheduling system in a global com-
putational grid,” Computer, vol.1, pp.283–289, 2000.

[25] I. Foster and C. Kesselman, “Globus: A metacomputing infrastruc-
ture toolkit,” International Journal of Supercomputer Applications,
vol.11, pp.115–128, 1997.

[26] A. AuYoung, B.N. Chun, A.C. Snoeren, and A. Vahdat, “Resource
allocation in federated distributed computing infrastructures,” Proc.
1st Workshop on Operating System and Architectural Support for
the Ondemand IT Infrastructure, pp.1–10, 2004.

[27] Z. Tan and J.R. Gurd, “Market-based grid resource allocation us-
ing a stable continuous double auction,” Grid Computing, 2007 8th
IEEE/ACM International Conference on, pp.283–290, 2007.

[28] B. Schnizler, D. Neumann, D. Veit, and C. Weinhardt, “Trading grid
services – A multi-attribute combinatorial approach,” Eur. J. Oper.
Res., vol.187, pp.943–961, June 2008.

[29] “PBS Works” http://www.pbsworks.com/
[30] W. Gentzsch, “Sun grid engine: Towards creating a compute power

grid,” Proc. first IEEEACM International Symposium on Cluster
Computing and the Grid, IEEE Computer Society, pp.35–36, 2001.

[31] M. Litzkow, M. Livny, and M.W. Mutka, “Condor - A hunter of
idle workstations,” Proc. 8th International Conference of Distributed
Computing Systems, IEEE, pp.104–111, 1988.

[32] “Amazon EC2 Spot Instances” http://aws.amazon.com/ec2/
spot-instances/

[33] “Heroku | Add-ons” http://addons.heroku.com/
[34] K. Hoki, “Outline of Japan electric power exchange (JEPX),” Trans.

Inst. Electr. Eng. Jpn. B, vol.125, pp.922–925, 2005.
[35] H. Kita, H. Sato, N. Mori, and I. Ono, “U-mart system, software for

open experiments of artificial market,” Computational Intelligence
in Robotics and Automation 2003 Proceedings 2003 IEEE Interna-
tional Symposium on, Ieee, vol.3, pp.1328–1333, 2003.

[36] P.T. Endo, G.E. Gonçalves, J. Kelner, and D. Sadok, “A survey on
open-source cloud computing solutions,” Comput. Netw., pp.3–16,
2009.

[37] T.D. Cordeiro, D.B. Damalio, P.T. Endo, A.V. De Almeida Palhares,
G.E. Gonçalves, D.F.H. Sadok, J. Kelner, B. Melander, V. Souza,
and J.-E. Mångs, “Open source cloud computing platforms,” 2010
Ninth International Conference on Grid and Cloud Computing,
pp.366–371, 2010.

[38] “Cloud Foundry” http://cloudfoundry.com/
[39] “OpenCloud” http://www.opencloud.com/
[40] “Open Compute Project” http://opencompute.org/
[41] “OpenStack” http://openstack.org/
[42] “OpenShift” http://openshift.redhat.com/app/
[43] “RightScale” http://www.rightscale.com/
[44] “Engine Yard” http://www.engineyard.com/
[45] “Heroku” http://www.heroku.com/
[46] “Cloud Computing Use Cases White Paper Version 2.0”

http://www.opencloudmanifesto.org/Cloud Computing Use Cases
Whitepaper-2 0.pdf

[47] S. Weston, D. Green, G. Katsaros, T. Seed, N. Mc Donnell, and F.
Scharinger, GridCAE Grid for Computer Aided Engineering, 2009.

[48] A. Mas-Colell, M.D. Whinston, and J.R. Green, “Microeconomic
theory,” The Canadian Journal of Economics, vol.21, p.436, 1995.

[49] M. Satterthwaite and S. Williams, “The Bayesian theory of the k-
double auction,” in The Double Auction Market: Institutions, Theo-
ries, And Evidence, ed. J. Rust, pp.99–123, Westview, 1993.

[50] R.B. Myerson and M. Satterthwaite, “Efficient mechanisms for bi-
lateral trading,” J. Economic Theory, vol.29, pp.265–281, 1983.

[51] “IBM ILOG CPLEX Optimizer” http://www.ibm.com/software/
integration/optimization/cplex-optimizer/

[52] “lp solve” http://tech.groups.yahoo.com/group/lp solve/
[53] B. Schnizler, “MACE: A multi-attribute combinatorial exchange,”

Negotiation, Auctions, and Market Engineering, pp.84–100, 2008.
[54] A.M. Feldman and R. Serrano, Welfare economics and social choice

theory, Springer, 2006.

204
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.1 JANUARY 2012

Ikki Fujiwara received his B.S. and M.S.
degrees in Engineering from Tokyo Institute of
Technology in 2002 and 2004, respectively. He
worked as a systems engineer from 2004 to
2008 at Hitachi, Ltd. to develop railroad oper-
ation systems. He is now a doctoral student at
The Graduate University for Advanced Studies
(SOKENDAI). He is a member of IPSJ and
IEEE.

Kento Aida received Dr. Eng. in electrical
engineering from Waseda University in 1997.
He became a research associate at Waseda Uni-
versity in 1992. He joined Tokyo Institute of
Technology and became a research scientist at
the Department of Mathematical and Comput-
ing Sciences in 1997, an assistant professor at
the Department of Computational Intelligence
and Systems Science in 1999, and an associate
professor at the Department of Information Pro-
cessing in 2003, respectively. He is now a pro-

fessor at National Institute of Informatics and a visiting professor at the De-
partment of Information Processing in Tokyo Institute of Technology from
2007. He was also a researcher at PRESTO in Japan Science and Technol-
ogy Agency (JST) from 2001 through 2005, and a research scholar at the
Information and Computer Sciences Department in University of Hawai‘i
in 2007.

Isao Ono received his B.S. degree from
the Department of Control Engineering, Tokyo
Institute of Technology, Tokyo, Japan, in 1994.
He received Dr. of Engineering at Tokyo Insti-
tute of Technology, Yokohama, in 1997. He
worked as a Research Fellow from 1997 to 1998
at Tokyo Institute of Technology, and at Univer-
sity of Tokushima, Tokushima, Japan, in 1998.
He worked as a Lecturer from 1998 to 2001 and
an associate professor from 2001 to 2005 at Uni-
versity of Tokushima. He has been working as

an associate professor at Tokyo Institute of Technology since 2005. His
research interests include evolutionary computation, artificial intelligence
and grid computing. He is a member of JSAI, SCI, and SICE.

