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A Real-Time Human Detection System for Video

Bobo ZENG†,††, Student Member, Guijin WANG†a), Member, Xinggang LIN†, and Chunxiao LIU†, Nonmembers

SUMMARY This work presents a real-time human detection system
for VGA (Video Graphics Array, 640 × 480) video, which well suits vi-
sual surveillance applications. To achieve high running speed and accu-
racy, firstly we design multiple fast scalar feature types on the gradient
channels, and experimentally identify that NOGCF (Normalized Oriented
Gradient Channel Feature) has better performance with Gentle AdaBoost
in cascaded classifiers. A confidence measure for cascaded classifiers is
developed and utilized in the subsequent tracking stage. Secondly, we pro-
pose to use speedup techniques including a detector pyramid for multi-scale
detection and channel compression for integral channel calculation respec-
tively. Thirdly, by integrating the detector’s discrete detected humans and
continuous detection confidence map, we employ a two-layer tracking by
detection algorithm for further speedup and accuracy improvement. Com-
pared with other methods, experiments show the system is significantly
faster with 20 fps running speed in VGA video and has better accuracy as
well.
key words: human detection, human tracking, real-time detection, normal-
ized oriented gradient channel feature

1. Introduction

Automatically finding humans in images and videos has
great importance for many applications such as the visual
surveillance or advanced driver assistance systems, but it’s
challenging due to the large within-class variations caused
by varying poses, illuminations, clothes and so on.

Many methods have been proposed for human detec-
tion, and the sliding window approach is the most effective
as it exhaustively scans and discriminatively classifies the
windows over positions and scales. It has two key com-
ponents including feature and learning algorithm. Feature
describes humans and learning algorithm discriminates hu-
mans and non-humans. The proposed human features can be
categorized as shape features (HOG [1], Edgelet [2], etc.),
texture features (LBP [3], etc.), color features (color similar-
ity [4], etc.) and motion features (HOF [4], etc.). Among the
above features, HOG feature is the most influential due to
its strong discriminative power and moderate computational
cost, and it has also been successfully applied to detect other
objects apart from humans. A recent benchmark [5] reveals
HOG still remains competitive, even though new features
have been introduced subsequently. As for the learning al-
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gorithms, the most common ones are linear SVM and boost-
ing. Detection accuracy can be improved by utilizing more
complex features (such as covariance feature [6]), integrat-
ing heterogeneous features [4] or employing sophisticated
learning algorithms (such as the intersection kernel SVM [7]
or latent SVM [8]), but they suffer from greatly increased
computation burden and are infeasible for real-time applica-
tions.

Some studies have focused on improving the detection
speed. Generally, the sliding window methods are compu-
tationally intensive due to feature computation in multiple
scales and classifier evaluation over huge numbers of win-
dows. Some methods use the simple and fast Haar feature to
realize early rejection, but this feature is known to be weak
in discriminating humans and the performance may be dam-
aged [9]. Instead of exhaustive scanning, a fast coarse to
fine scanning method is proposed in Ref. [10] but it may
fail to detect small humans. Some methods seek to speed
up HOG. By eliminating the Gaussian mask and trilinear
interpolation, a simplified but equally effective fast HOG
feature is defined in Ref. [11], [12]. With the integral his-
togram technique [13], the variable-sized fast HOG features
can be computed efficiently. Instead of the histogram fea-
ture, scalar channel feature is used to further speed up [14],
[15] due to its simplicity. For classifier evaluation, cascaded
classifiers structure [16] is the most effective, which rejects
the majority of negative windows in early stages at low cost.
However, despite all of the efforts devoted to improving the
speed, the fastest method can run only 2.67 fps on 640×480
images for humans ≥ 50 pixels among the evaluated meth-
ods [17].

In video, human tracking is frequently utilized to find
humans. With the advance in human detection, the track-
ing by detection method emerges as an effective tracking
approach by employing the detector’s output as an obser-
vation model. Okuma et al. [18] employ a detector for
hockey players and track them in a particle filter tracking
framework. Breitenstein et al. [19] utilize an off-line trained
pedestrian detector [1] and online trained, instance-specific
classifier via online boosting [20] for multi-person tracking-
by-detection. Another frequently used technique in video
is background modeling, and most real-time systems [21],
[22] depend on it for a fast speed. For QVGA videos, the
systems [21], [22] have achieved real-time performance. But
for VGA videos, the background modeling itself costs much
time, making real-time processing challenging. More im-
portantly, background modeling applies to static cameras
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Fig. 1 Framework of the proposed system including training, detection and tracking stages.

only.
This work presents a human detection and tracking sys-

tem which is mainly designed for some outdoor surveillance
scenarios such as the unmanned toll gate of highway, where
not many humans appear and the occlusion is not a problem.
The most important achievement of the system is the real-
time processing for VGA video on a common PC, without
employing GPU or assuming static background, and it has
high detection accuracy as well. The proposed system has
three-fold contributions: (1) Inspired by Ref. [14], we ex-
tend their channel feature by constructing more scalar fea-
ture types on the oriented gradient channels and then ex-
perimentally identify the best feature type using the Gentle
AdaBoost learning algorithm [23]. The proposed discrimi-
native feature is fast and is the reason for the good perfor-
mance of our system. (2) We integrate several fast detection
techniques including a detector pyramid, the channel com-
pression and gradient look-up table, which further speed up
the detection. (3) We propose a confidence measure for eval-
uating the classification confidence of the cascaded classi-
fiers, which enables the detector to output both the discrete
detections and continuous confidence map. With the detec-
tor output’s guidance, a fast tracking by detection method
is introduced by combining object association and mean-
shift tracking [24]. The final system runs 20 fps for the VGA
resolution video, with a better accuracy than some state-of-
the-art methods [1], [8], [12], as well as more than 10 times

speedup.
The rest of this paper is organized as follows. In Sect. 2,

the framework of the system including training, detection,
and tracking is presented in overall. Section 3 explains the
system’s main modules in detail. Section 4 contains the ex-
periments of our system. Section 5 gives a conclusion and
the possible future work.

2. System Framework

The system has training, detection and tracking stages as
illustrated in Fig. 1. The training stage learns the human
detector, so it’s the most important in determining the de-
tection’s speed and accuracy. We propose NOGCF (Nor-
malized Oriented Gradient Channel Feature) as the human
feature. It’s a fast and discriminative scalar feature. A big
NOGCF feature pool is generated by densely sliding on the
human window in multiple positions and scales, for provid-
ing plenty of candidate features for learning. The Gentle
AdaBoost learning algorithm, which is superior to Discrete
AdaBoost and Real AdaBoost [23], is utilized to select the
features. The weak classifiers, which are decision trees with
the selected features, are combined into a strong classifier.
Then similar to the VJ object detection framework [16], we
train a cascade of strong classifiers as the human detector,
which rejects the majority of negative windows in the early
stages at low cost for fast classification. A detector pyramid
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with different sized detectors is trained finally for the next
detection stage.

In the detection stage, we use the trained detector pyra-
mid to classify the sliding windows in the full image. The
main focus of detection is the speed. Since the camera is
not restrained to be stationary and may have pan/tilt/zoom
motion, the foreground extraction for speedup by generat-
ing ROI is not used. For an input video frame, the oriented
gradient channels are extracted, compressed and the corre-
sponding integral channels are calculated for fast computa-
tion of features. Then the trained detector pyramid is per-
formed on the channels to detect humans in multiple scales.
The results are fused by a simple and fast nonmaximum
suppression method [25]. It groups and merges detections
which are adjacent both in position and scale. We also pro-
pose a confidence measure for the cascaded classifiers. Thus
during the sliding window scanning, the continuous con-
fidence map in multiple positions and scales is calculated.
The discrete detections and continuous confidence map are
fed into the next tracking stage.

The tracking stage doesn’t aim to discriminate the hu-
mans’ identity ; instead its main goal is improving the detec-
tion’s speed and accuracy in three-fold. Firstly, since track-
ing is much faster than detection, we detect humans in odd
frames only and use pure tracking to find humans in even
frames, achieving a speedup of almost twice. Secondly, the
occasionally appeared false positives in detection with no
consistent temporal continuity can be eliminated. Thirdly,
the missed detections between frames can be found back
with temporal continuity and appearance similarity. For odd
frames, to make the tracking fast, we propose a two-layer
tracking by detection method. The first layer performs data
association using motion prediction and appearance similar-
ity, which almost costs no time. If a tracked human is suc-
cessfully associated to a detected human, the tracked human
is updated to the position of the detected result, so the track-
ing precision is guided by the detection result. In the case of
missed detections of the detector, the first layer fails with no
appropriate detection associated, then the second layer color
histogram based mean-shift [24] tracking is performed. We
choose mean-shift tracking method due to its fast tracking
performance. For even frames, since no detection results
are available, we use the mean-shift tracking directly.

3. System Modules

This section explains four important modules in the system
in detail. Fast scalar feature types are designed and then a
huge feature pool is generated. From the feature pool, the
Gentle AdaBoost based learning algorithm selects the most
discriminative features and the learned classifiers are orga-
nized in a cascaded form, with a corresponding confidence
measure being formulated. The fast features and the learned
classifiers are the foundation of the system’s speed. Besides,
additional speedup techniques are employed in the full im-
age detection stage. Finally, the two-layer fast tracking by
detection algorithm is utilized to improve the performance.

3.1 Scalar Feature Construction

HOG [1] or fast HOG [11] is a multi-dimensional histogram
(e.g. 36 bins) and then inner product should be performed
with SVM or LDA classifier, so it’s computational inten-
sive. Actually, many bins are not informative as the gradient
orientations are sparse, and adding them may damage the
performance of the classifier due to curse of dimensionality.
Therefore, we propose to design scalar features on the ori-
ented gradient channels to reduce the computational cost as
well as maintaining the HOG feature’s discriminative power.

Given the input image I(x, y), its gradient magnitude
G(x, y) and orientation O(x, y) is computed as

{
G(x, y) =

√
Ix(x, y)2 + Iy(x, y)2

O(x, y) = arctan(Iy(x, y)/Ix(x, y)) + π2
(1)

where Ix(x, y), Iy(x, y) are the x, y derivative obtained with
[−1 0 1] mask. The gradient orientation is quantized into
Nb bins

[
(n − 1) πNb

, n πNb

)
with bin center Oc(n), where n =

1, . . . ,Nb. G(x, y) is divided into O(x, y)’s two circularly ad-
jacent bins centered at Oc(n) and Oc(mod(n,Nb) + 1) with
linear interpolation as

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Gn(x, y) = G(x, y)

(
1 − O(x,y)−Oc(n)

π/Nb

)
G mod (n,Nb)+1(x, y) = G(x, y) O(x,y)−Oc(n)

π/Nb

(2)

where Gn(x, y)(1 ≤ n ≤ Nb) is oriented gradient channels.
With the interpolation, aliasing is reduced and performance
can be improved as stated in Ref. [1]. Also, an additional
gradient magnitude channel G0(x, y) = G(x, y) is added for
normalization. We define the feature Mn(R) inside a rectan-
gular region R on the channel n as

Mn(R) =
∑

(u,v)∈R
Gn(u, v) (3)

which is fast to compute with only 4 look-up and 3 addi-
tion/subtraction operations by means of integral image [16].
We call it Gradient Magnitude Channel Feature (GMCF)
when n = 0 and Oriented Gradient Channel Feature (OGCF)
when n = 1, . . . ,Nb. The two types of feature charac-
terize the edge strength inside the specified rectangle (see
Fig. 2 (a)).

HOG feature has a cell/block structure [1] for illumi-
nation normalization, where the gradient magnitude sum in-
side the cell rectangle Rc is divided by the sum inside the
block rectangle Rb. Inspired by this, we design the Normal-
ized Oriented Gradient Channel Feature (NOGCF) to be the
3rd feature type as follow:

M̄n(Rc,Rb) =
Mn(Rc) + ε
M0(Rb) + ε

, n = 1, . . . ,Nb (4)

where ε is a small value for avoiding 0 denominator. Though
L2 normalization has a slightly better performance [1], we
select L1 normalization as its computation cost is lower.
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Fig. 2 Illustration of the proposed features: (a) Feature rectangles defined in oriented gradient chan-
nels for Nb = 9. The first channel is the gradient magnitude channel. The images are average gradient
channels of human samples. (b) NOGCF features of different cell/block structures. The gray rectangle
is the cell and the whole big rectangle is the block.

NOGCF characterizes the relative edge orientation strength
inside the cell Rc to the gradient magnitude inside the block
Rb. Cell and block have pre-defined geometric relation. In
Ref. [1], a block is evenly divided into four cells on 2 × 2
grids. For enriching feature set, we add the 1 × 1, 2 × 1 and
1 × 2 grids as well (see Fig. 2 (b)).

GMCF, OGCF and NOGCF will be tested in the sub-
sequent experiments to identify the best feature type or fea-
ture combination. A candidate feature pool is generated by
sliding the feature rectangle in the human window. To re-
duce the feature pool size, the rectangle’s location and size
x, y, w, h are restricted to be divisible by 4. The generated
feature pool is large with more than one million features,
for providing sufficient number of potentially good features
for the training.

3.2 Human Detector Learning

In the learning stage, a detector is trained for classifying
a specified sized window x centered at (x, y). Gentle Ad-
aBoost selects the most discriminative features from the fea-
ture pool to form a strong classifier. A cascade of strong
classifiers C(x) is trained as the human detector, with the
strong classifier Cl(x) in stage l (0 ≤ l < L) has the form

Cl(x) = sign
[
Hl(x)

]
= sign

⎡⎢⎢⎢⎢⎢⎣
T∑

t=1

hl
t(x) − bl

⎤⎥⎥⎥⎥⎥⎦ (5)

where hl
t(x) is the weak regressor with real-valued outputs

and bl is the stage threshold for adjusting the detection rate
and false positive rate of the strong classifier. Depth one re-
gression tree is employed as the weak regressor hl

t(x) char-
acterized by a triplet (al, ar, θ) as

hl
t(x) = alδ( f l,t(x) ≤ θ) + arδ( f l,t(x) > θ) (6)

where al, ar are the regression values, θ is the split threshold,

f l,t(x) is value of the selected feature in this weak regressor,
and δ is the Kronecker delta function

In each stage of cascaded classifiers learning, weak re-
gressor learned from the feature pool with the lowest regres-
sion error is added until the predefined minimum detection
rate Dr and maximum false positive rate Fp are met. Since
the feature pool is very large (over one million for Nb = 9)
and exhaustively exploring all the features is infeasible, a
small portion of features is randomly sampled with a rate
r = 0.02 in each AdaBoost round. The whole training pro-
cess is illustrated in Algorithm 1. We set Dr and Fp to be
0.999 and 0.5 respectively in the training.

Algorithm 1 Cascaded classifiers training.
Input:

Total cascade stages’ number L;
Stage’s minimum detection rate Dr;
Stage’s maximum false positive rate Fp;
Feature random sampling rate r;
Sample number N;

Output:
Cascaded strong classifiers C(x);

1: while stage number l < L do
2: l = l + 1;
3: Select N positive and negative samples which are classified as pos-

itive with the already trained cascades.
/*Train the strong classifier Cl(x) using Gentle AdaBoost.*/

4: while Dr and Fp are not satisfied do
5: Randomly sample the candidate features from the entire feature

pool according to r.
6: Learn the weak regressor hl

t(x) by selecting the best feature and
add it to Hl(x) .

7: Update the sample weight.
8: end while
9: end while

Besides the −1/1 discrete classified output of the cas-
caded classifiers, continuous confidence is also needed to
judge the extent of a window belonging to the human, as the



ZENG et al.: A REAL-TIME HUMAN DETECTION SYSTEM FOR VIDEO
1983

confidence is beneficial for the subsequent tracking stage.
For the SVM classifier used in Ref. [1], it’s straightforward
since the classifier has a continuous output and only one
classifier is involved. But for the cascaded classifiers, many
classifiers are cascaded one by one and it’s inappropriate to
use one particular classifier’s output as the final confidence.
We propose a confidence measure, under which the more
stages the window passes, the higher confidence it will get,
especially when it passes the last stage. Assume that the
window passes stage l has the being human probability fl,
we can get a recursive formula based on Dr and Fp as

fl+1 =
flDr

flDr+(1− fl)Fp
= 1

1+
1− fl

fl

Fp
Dr

≈ 1
1+

1− fl
fl

Fp

(7)

The approximation is reasonable as Dr is close to 1. f0 is the
prior probability of being human and is set to 10−5. For a
window x with C(x) = −1 which means it has passed some
stage l and been rejected by stage l + 1 (l < L − 1), its
confidence is measured by interpolation between fl and fl+1

using Hl(x), and then attenuated by a factor ω (0 < ω <
1). Else for C(x) = 1 which means it has passed all the
stages, its confidence is enlarged by adding an additional
term determined by HL−1(x). The measure is given as below

con f (x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(
fl + 1−e−Hl(x)/ρ

1+e−Hl(x)/ρ ( fl+1 − fl)
)
ω

if C(x) = −1,Cl(x) = 1,Cl+1(x) = −1
ω fL−1 +

(1−ω)
1+e−HL−1(x)/ρ if C(x) = 1

(8)

ρ is for tuning the sigmoid function. Given the confidence
measure, all the sliding windows have a confidence after be-
ing classified, and a confidence map is generated.

3.3 Human Detection Speedup in the Full Image

In the previous two subsections, the fast feature and the cas-
caded classifiers are the foundation of the fast detection.
In this subsection, we emphasize additional speedup tech-
niques in the detection.

The Detector Pyramid for Fast Multi-scale Detec-
tion. Traditionally, only one detector is trained, so the multi-
scale detection creates a densely sampled image pyramid,
extracts features and performs classification in the images of
all the scales (see Fig. 3 (a)). The creation of image pyramid
and the feature extraction serves as a major bottleneck in the
detection, especially when the feature calculation is compu-
tational intensive, such as the features in our system involv-
ing per-pixel gradient and orientation calculation. Dollár
et al. [17] approximates the multiple nearby scales’ gradient
histograms given gradients computed at one scale. But the
speedup is limited since the approximation is only effective
inside one octave. Also it damages the performance a little.
Besides, it cannot eliminate the time for computing the inte-
gral images of all the oriented gradient channels, which also
accounts for much time.

Fig. 3 Two kinds of multiple scale human detection: (a) Image pyramid.
A detector with fixed size detects humans on multi-scaled image pyramid.
(b) Proposed detector pyramid. A detector pyramid with multi-scaled sizes
detects human on one image.

We propose to construct a detector pyramid by train-
ing different sized human detectors for multi-scale detec-
tion, so the pyramid detects different sized human in the
same image (see Fig. 3 (b)). The oriented channels and inte-
gral images are computed only once and then shared among
the detectors, therefore much time is saved. Actually, it’s a
method which sacrifices the training time for detection time.
We train 5 human detectors of sizes 40 × 80, 48 × 96, 56 ×
112, 64 × 128, 72 × 144. For QVGA resolution (320 × 240),
the pyramid can cover all the human sizes for most surveil-
lance scenarios. For VGA resolution (640 × 480), we uti-
lize a hybrid approach by running the detector pyramid on
the VGA and resized QVGA resolution. In this case, hu-
man sizes range from 80 to 288 in height is covered without
training new detectors.

Channel Compression. The oriented gradient chan-
nels of the detection image with size M × N can be com-
pressed to M

4 × N
4 by summing the values in each 4 × 4

patch sequentially. The compression is reasonable since
the feature rectangle (x, y, w, h) is 4-pixel aligned in the de-
tection window. Also, the detection window slides in the
detection image in 4-pixel step horizontally and vertically.
Therefore all the features evaluated in the detection stage
are 4-pixel aligned with the channels. Summing values in-
side (x, y, w, h) in the original channels is equivalent to sum-
ming inside

(
x
4 ,
y
4 ,
w
4 ,

h
4

)
in the compressed channels. For

each M × N channel, 2MN additions are needed in com-
puting the integral image originally. With this technique,
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MN plus 1
8 MN additions are needed for the compression

and the compressed integral image computation, so the cost
decreases by 40%. The technique has also been applied to
the training in Sect. 3.2 to dramatically reduce the memory
cost of the training samples to only 1

16 , which is essential for
large sample training.

Lookup Table. We construct a lookup table for the
gradient, orientation and linear interpolation in the cal-
culation of Gn(x, y) in Eq. (1)(2). The table’s input is
Ix(x, y), Iy(x, y) where (−255 ≤ Ix(x, y), Iy(x, y) ≤ 255) and
the output is (G0, n1,Gn1 , n2,Gn2 ) including gradient G0 and
divided gradients Gn1 ,Gn2 in the neighboring bins n1 and
n2. By using lookup table, the time-consuming arctan and
square root operations are eliminated and the speed can be
improved.

3.4 Human Tracking

Pure detection is still hard to detect all the humans, so track-
ing with temporal information is utilized to retrieve missed
detections and remove false positives. More importantly, in
consideration of speed, detection is performed in the odd
frames only and humans in the even frames are found with
tracking at much low cost. The two-layer tracking by de-
tection framework in the odd frames is illustrated in Fig. 4.
The tracking is guided by both discrete detected humans and
continuous human confidence map. The tracked humans get
their new positions with motion prediction firstly, and then
data association is carried out between the detected humans
and tracked humans. If a tracked human is associated, its po-
sition is updated to the associated detection position. Else,
it goes to the mean-shift tracking. The tracking has a confi-
dence map guided termination judgement to decide whether
to terminate the tracker. The un-associated detected humans
go to the tracking initialization, where they are validated as
true trackers or rejected as false positives. In the even frames
without detection, only the mean-shift tracking module is
performed.

Tracking Initialization. For a detection not associated
to any existing trackers, a pre-tracker with the detection is
initialized for a validation process. N frames are observed
and the pre-tracked human should be detected for at least
Nd frames. Also, the average detection confidence of the Nd

detections should be above a threshold. The pre-tracker is

Fig. 4 Human tracking framework.

turned into a tracker if it satisfies the requirements. By this
confirmation, spurious detections can be rejected.

Data Association. Data Association links the detected
results to the tracked results. To guarantee the association
correctness, we combine human position, scale and color
similarity measured as

S (T,D) = pN
(

posT − posD

posT

)
pN

(
sizeT − sizeD

sizeT

)

B(HT ,HD) (9)

where T,D is the tracked humans and detected humans re-
spectively. The first and second term measures the human
position (center of human) and scale (human width and
height) agreement between T and D, based on the observa-
tion the associated pairs should be similar both in position
and scale. The similarity is measured by the Normal dis-
tribution pN . The third term measures the humans’ appear-
ance similarity by the widely used Bhattacharyya coefficient
on color histograms [24].

A greedy association algorithm is employed to find the
best matching pairs of tracking and detection. Firstly, a
matching similarity matrix M of all the tracked and detected
humans is calculated using Eqs. (9). Then the maximum
similarity S (T

′
,D

′
) in M is selected, and if it’s greater than

the matching threshold th, the pair is successfully associ-
ated and its row and column in M are deleted. Otherwise,
no proper association exists. Repeat above association pro-
cess until no further valid pair is available.

Two-layer Tracking. In the first layer, a constant ve-
locity motion model is defined as

(x, y)t
′ = (x, y)t−1 + (u, v)t−1

(u, v)t = (1 − α)(u, v)t−1 + α[(x, y)t − (x, y)t−1]
(10)

where (x, y)t
′ is the predicted position and (x, y)t is the fi-

nally tracked position. The velocity update rate α is set to be
0.1. Data association is performed from position (x, y)t

′ to
the detection results. If it’s associated to a detection D(x, y),
D(x, y) is taken as (x, y)t. Otherwise, the second layer track-
ing is performed. Mean-shift iteration is started from (x, y)t

′
using RGB color histogram and the converged result is taken
as (x, y)t. Note that data association is in the first layer as
it’s very fast. If the speed is not a matter, we can also in-
terchange the order by doing mean-shift tracking firstly and
then doing data association.

Tracking Termination Guided by Confidence. It’s
very important to terminate a tracker in the right time. If
it’s terminated too early, the human is not tracked and the
detection rate will drop. On the contrary, if terminated too
late, a lot of false positives will be generated. We propose
a detection confidence guided termination rule. The confi-
dence Tc is looked up from confidence map (see Sect. 3.3)
according to the tracker’s position and scale. We set two
thresholds thlow and thhigh. If Tc < thlow, the tracker is im-
mediately terminated (such as when the human exits). Else
if thlow ≤ Tc ≤ thhigh, the termination is determined by the
tracker’s number of consecutive frames of no association
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Fig. 5 The illustration of detection confidence guided termination rule in tracking. The rectangle and
the diagonal line denote the tracked human and the detected human. Only the detection confidence in
the around square is showed and green color means high value. Left: Human P1 has very high detection
confidences around her and she is associated to a detection result. Middle: P1 is missed in the detection
but the detection confidences are still high, so the tracker continues. Right: P1 leaves the scene and the
detection confidences are very low, so the tracker is terminated.

Nmiss. If Nmiss > NMAX , the tracker is terminated. Else, the
tracking is continued. Else if Tc > thhigh, we continue the
tracker and set Nmiss = 0. The detection confidence guided
termination rule is very effective, since in most missed de-
tection regions, the confidence is still higher than the back-
ground, and based on the rule the tracker can continue (see
Fig. 5 for a detailed illustration). If judged by Nmiss only, the
tracker will soon be inappropriately terminated.

4. Experimental Results

4.1 Experiment Setup and Evaluation Criteria

We first evaluate the performance of proposed feature types
(including NOGCF, GMCF and OGCF) to identify the best
feature type or combinations for the detector, with the com-
parison to the HOG detector [1]. The evaluations are carried
out on the INRIA [1] and Daimler [26] pedestrian dataset.
Though Daimler dataset is captured on the running vehi-
cle instead of in surveillance scenario, it can test proposed
detector’s performance for different applications. Then the
whole system is evaluated on both our own surveillance
video dataset and the public PETS 2006 dataset [27]. Our
own dataset contains 10 VGA resolution videos with about
20 minutes long in total. For PETS 2006 dataset, we choose
S4-T5-A-4 (2 minutes long) which has adequate number of
humans and is similar to our application scenario. Apart
from HOG, two additional state-of-the-art public available
human detectors’ results are given as a comparison (boosted
Histogram [12] and cascaded Deformable [8]). The result
of our previous fast detector (30 fps on QVGA) with ma-
trix based structure [28] is also given. All experiments are
carried out in a common PC with a dual-core 3.0 GHz pro-
cessor.

Two evaluation criteria called FPPW and FPPI are em-
ployed in the literature [5]. FPPW (False Positive Per Win-
dow) evaluates a detector by classifying cropped human
windows against densely generated negative windows from
full images without human. As it doesn’t consider the in-
fluence of post-processing or false detections on body parts,

better per-window scores will not necessarily result in better
per-image performance. Therefore, we use FPPI instead to
evaluate the detector in the entire full images. In evaluation,
a detection bbdt with confidence cdt is considered true if its
overlap with the ground truth bbgt satisfies the PASCAL cri-
terion

αo =
area(bbdt ∩ bbgt)

area(bbdt ∪ bbgt)
> 0.5 (11)

The miss rate vs. FPPI curve is obtained by continuously
increase the confidence threshold of bbdt at a small step.

4.2 Evaluation of the Detectors on Image Datasets

We train the human detectors on the INRIA dataset with
NOGCF and its combination with other features. The
trained detectors are evaluated on both INRIA and Daim-
ler as illustrated in Fig. 6. Among the proposed features,
NOGCF gains the best performance, while combining it
with the other two feature types degrades the performance
more or less. Though AdaBoost has the ability to select
the most discriminative feature theoretically, the selection
is based on the training set which may not well general-
ize to the testing set. Thus the fusing of multiple feature
types using AdaBoost does not necessarily improve the per-
formance. A similar phenomenon has also been observed
in Ref. [29] when combining Haar feature. Due to enriched
feature pool, NOGCF with all the structures improves over
NOGCF with 2 × 2 cell/block structure only. From the re-
sults, NOGCF with all the structures is identified as our fi-
nal feature type. Our detector is better than HOG on both
datasets, especially with a large margin on Daimler.

To illustrate the speed of the detector, we list the num-
ber of NOGCF features and time cost units in the first 5
stages compared to the fast HOG [11] in Table 1, since both
methods use cascaded classifiers structure whose speed is
determined by several frontal stages. Each fast HOG feature
is 36D and costs 36 time units per feature, while NOGCF
costs only 1 time unit. 1 time unit is 8 table look-up, 8 ad-
dition and 1 division operations. The result shows NOGCF
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maintains the discriminative power at a much low cost.
The speedup techniques in Sect. 3.3 are tested by using

or removing them. The results are showed in Table 2. All
techniques have improved the speed considerably, and the
overall speedup is 55.9%, which is significant.

4.3 Evaluation of the System on Video Datasets

To further improve the performance, we train the detector
pyramid by enlarging the positive samples in INRIA from
2416 to 5000. We train each detector to 10−5 in FPPW to
achieve a low false positive rate. The detector’s accuracy

Fig. 6 Detectors’s performance on (a) INRIA and (b) Daimler datasets
with different feature configurations, given the comparison of HOG.
Missed detection percentages at 0.3 FPPI is listed in the parenthesis.

Table 3 The detection rate (DR), false positive per image rate (FPPI) and running time per frame
(Time) on our video dataset and PETS 2006. For our methods, the results of detection with the image
pyramid, with the detector pyramid and the final system are given. Three state-of-the-art methods are
evaluated for comparison.

Dataset Our dataset PETS 2006
Method DR FPPI Time DR FPPI Time

cascaded LatSvm [8] 70.35% 9.20% 1679 ms 61.4% 7.3% 1810 ms
boosted Hist [12] 77.34% 8.30% 1058 ms 63.5% 8.6% 1098 ms
matrix Structure [28] 79.65% 6.25% 186 ms 70.3% 9.1% 195 ms
HOG [1] 84.84% 3.64% 1238 ms 75.1% 7.4% 1310 ms
Our detector (image pyramid) 93.13% 2.10% 210 ms 81.5% 7.3% 221 ms
Our detector (detector pyramid) 93.69% 2.30% 100 ms 81.3% 7.1% 105 ms
Our system with detection&tracking 98.21% 2.76% 51 ms 96.0% 3.7% 53 ms

and speed evaluated on our video and PETS 2006 dataset
is illustrated in Table 3, given the comparative results of
HOG, boosted Histogram and cascaded Deformable. Oc-
clusion is not considered in all the evaluations. The results
show our method improves significantly in both accuracy
and speed. Our detector with detector pyramid has the same
accuracy with the image pyramid version, but the speed is
twice faster, which illustrates the better performance of the
detector pyramid. Humans in PETS 2006 are more in a top
view rather than a frontal view in our dataset, so the de-
tection rate drops. With the effective tracking method, de-
tection rate increases on both datasets by 5% and 15% re-
spectively. The system with detection and tracking run in
real-time with 20 fps.

We evaluate the tracking module on our dataset. The
average tracking time for the odd frames with detection
(means two-layer tracking) and even frames without detec-
tion (means mean-shift tracking) is 0.9 ms and 4.3 ms per-
spectively, so on only 2.6 ms is spent on the tracking. If
we interchange the order of data association and mean-shift
tracking, the accuracy (FP:98.31%,FPPI:2.89%) has no no-
ticeable improvement, but the tracking time increases to
4.7 ms. This validates the ordering of the two-layer track-
ing.

Finally, Fig. 7 shows some real examples on INRIA
dataset (detection only), our own video dataset and a se-
quence from PETS 2006 dataset.

Table 1 Number of features and time cost units for the features in first 5
stages of the trained cascaded classifier by NOGCF and fast HOG respec-
tively. Each NOGCF and fast HOG needs 1 and 36 time units to compute
respectively.

Method Stage 0 Stage 1 Stage 2 Stage 3 Stage 4

#NOGCF,time 4,4 12,12 12,12 18,18 18,18
#Fast HOG,time 2,64 5,160 5,160 8,256 13,416

Table 2 Speedup of the techniques on 640 × 480 images. T1: detector
pyramid. T2: channel compression. T3: lookup table.

Techniques None With T1 With T2 With T3 With all

Time (ms) 211 149 171 153 93
Speedup 29.4% 19.0% 27.5% 55.9%
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Fig. 7 Some detection and tracking examples. Row 1: the pure detection examples on the INRIA
dataset. Row 2: system examples on our dataset. Row 3: system examples with snow on our dataset.
Row 4: system examples on PETS 2006 dataset.

5. Conclusion

In this paper, we present a real-time human detection system
for video. Experimental results illustrate its high accuracy
and a running speed of 20 fps in VGA video, better than the
existing state-of-the-art methods. Its superiority is attributed
to the proposed NOGCF feature, speedup techniques such
as the detector pyramid and the fast tracking method. In
future research, we plan to introduce more channels such as
the color channels to improve the detection further. Besides,
we will extend the system to driver assistant applications,
which requires an advanced tracking method for handling
fast camera motion.
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