
2006
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.7 JULY 2012

LETTER

Asymmetric Learning Based on Kernel Partial Least Squares for
Software Defect Prediction

Guangchun LUO†, Member, Ying MA†a), and Ke QIN†, Nonmembers

SUMMARY An asymmetric classifier based on kernel partial least
squares is proposed for software defect prediction. This method improves
the prediction performance on imbalanced data sets. The experimental re-
sults validate its effectiveness.
key words: defect prediction, class imbalance, kernel partial least squares,
machine learning

1. Introduction

Software defect prediction is an essential part of software
quality analysis and has been extensively studied in the do-
main of software-reliability engineering [1]–[5]. However,
As pointed out by Menzies et al. [2] and Khoshgoftaar et
al. [4], the class imbalance problem encountered in real-
world data sets often degrades the performance of defect
predictors. The software defect data set is class imbal-
anced when the majority of defects in a software system
are located in a small percentage of the program modules.
Existing approaches to solving the class imbalance prob-
lem mainly include data-level and algorithm-level meth-
ods, which are compared in [4]. Their results show that
the algorithm-level method AdaBoost almost always outper-
forms even the best data-level methods in software defect
prediction. Most recently, Qu et al. [6] proposed an asym-
metric classifier APLSC, which is based on linear partial
least squares, to tackle the class imbalance problem.

In this paper, we develop a kernel based asymmetric
learning method, called Asymmetric Kernel Partial Least
Squares Classification (AKPLSC), which is able to non-
linearly extract the favorable features and retrieve the loss
caused by class imbalance problem.

2. Asymmetric Kernel Partial Least Squares Classifier
for Software Defect Prediction

Linear Partial Least Squares (PLS) [7] is an effective linear
transformation, which performs the regression on the subset
of extracted latent variables. Kernel PLS [8] first performs
nonlinear mapping Φ : {xi}ni=1 ∈ RN → Φ(x) ∈ F to project
an input vector to a higher dimensional feature space. Then
linear PLS is used in this feature space.

In software defect prediction, L = {(x1, y1), (x2, y2), . . . ,

Manuscript received December 13, 2011.
Manuscript revised March 5, 2012.
†The authors are with University of Electronic Science and

Technology of China, Chengdu, China.
a) E-mail: may@uestc.edu.cn

DOI: 10.1587/transinf.E95.D.2006

(x�, y�)} ⊂ X × Y denotes the labeled example set with size �
and U = {x�+1, x�+2, . . . , x�+u} ⊂ X denotes the unlabeled ex-
ample set with size u. For labeled examples, Y = {+1,−1},
the defective modules are labeled ‘+1’, the non-defective
modules are labeled ‘−1’. Software defect data sets are
highly imbalanced, i.e. the examples of the minority class
(defective modules) are heavily under-represented in com-
parison to the examples of majority class (non-defective
modules).

Given the center M, the radius of the class region r, and
the parameter of overlapping η, the relationship of the two
classes can be expressed as M+1 − M−1 = η(r+1 − r−1). The
parameter η indicates the level of overlapping between the
region of the two classes (The smaller value of η, the higher
overlapping). APLSC suffers from the high overlapping, es-
pecially when the data sets are nonlinear separable [6].

In order to overcome this overlapping problem, a ker-
nel method is exploited here. Kernel PLS [8] corresponds to
solving the eigenvalue equation as follows:

ΦΦTΨΨTτ = λτ (1)

where Φ and Ψ denote the matrix of mapped X-space data
Φ(x) and the matrix of mapped Y-space data Ψ(y) in the
feature space F, respectively. The nonlinear feature selec-
tion methods can reduce the overlapping level of the two
classes, but the class imbalance problem makes them fail to
distinguish the minority class [6]. In order to retrieve the
loss caused by class imbalance problem, we want to get the
bias b̂ of the kernel PLS Classification, KPLSC [8].

APLSC can be expressed as Ŷ = sign
(∑k

i=1 miti − b
)
,

which is derived from the regression model of the linear
PLS, ŷ =

∑k
i=1 miti, where k is the number of the latent

variables, ti is the ith score vector of testing data, mi indi-
cates the direction of ith score, and the bias b is equal to
m1(M+1 − r+1η). Different from APLSC, the kernel PLS re-
gression is ŷ =

∑�
i=1 αiκ(xi, x), where � is the size of labeled

example set, κ(xi, x) is a kernel function, and αi is dual re-
gression coefficient. Then AKPLSC can be expressed as:

Ŷ = sign
(�∑

i=1

αiκ(xi, x) − b̂
)

(2)

where αi is dual regression coefficient, which can be ob-
tained from kernel PLS, as shown in Algorithm 1. b̂ is the
bias of the classifier.

Since kernel PLS put most of the information on the

Copyright c© 2012 The Institute of Electronics, Information and Communication Engineers

LETTER
2007

Table 1 Metrics used in the experiment.

Type # Metric
Loc 5 Halstead’s count of blank lines; McCabe’s line count of code; Halstead’s line count;

Halstead’s count of lines of comments; line count of code and comment
McCabe 3 cyclomatic complexity; essential complexity; design complexity
Halstead 12 unique operators; unique operands; total operators; total operands; total operators and operands; volume;

program length; difficulty; intelligence; effort; volume on minimal implementation; time estimator
BranchCount 1 branch count

global data complexity; cyclomatic density; decision count; decision density; global data density;
Others 18 essential density; design density; loc executable; parameter count; percent comments;

normalized cyclomatic complexity; modified condition count multiple condition count; node count;
maintenance severity; condition count; global data complexity; call pairs; edge count

Table 2 Comparative performance evaluation for the six methods.

data RUS AdaBoost PLSC APLSC KPLSC AKPLSC
cm1 0.676 0.725 0.534 0.542 0.756 0.761
pc1 0.769 0.846 0.505 0.508 0.794 0.800
kc3 0.696 0.690 0.734 0.743 0.791 0.801

Algorithm 1 AKPLSC
Require:

Labeled and unlabeled data sets, L and U; number of components, k
Ensure:

Asymmetric Kernel Partial Least Squares Classifier, H;
1: Ki j = κ(xi, x j), i, j = 1, . . . , �, xi, x j ∈ L;
2: K1 = K, Ŷ = Y % K is the kernel matrix, Y is the label vector.
3: for j = 1, . . . , k do
4: β j = β j/||β j || % β j is projection directions
5: repeat
6: β j = ŶŶ

′
K jβ j

7: β j = β j/||β j ||
8: until convergence
9: τ j = K jβ j % τ j is the score

10: c j = Ŷ
′
τ j/||τ j ||2 % c j is the direction of the score

11: Ŷ = Ŷ − τ jc
′
j % Ŷ is the deflation of Y

12: K j+1 = (I − τ jτ
′
j/||τ j ||2)K j(I − τ jτ

′
j/||τ j ||2)

13: end for
14: B = [β1, . . . , βk],T = [τ1, . . . , τk]
15: α = B(T

′
KB)−1T

′
Y; % α is the vector of dual regression coefficients

16: Calculate b̂ according to Eq. (3);

17: H(x) = sign

(∑�
i=1 αiκ(xi, x) − b̂

)
, x ∈ U;

18: return H;

first dimension, the bias in the AKPLSC can be computed
similarly as [6]:

b̂ = c1 ∗ (M+1 − r+1η) = c1 ∗ M+1r−1 + M−1r+1

r−1 + r+1
(3)

where c1 indicates the direction of the first score τ1, the cen-
ters (M+1, M−1) and radiuses (r+1, r−1) are computed based
on τ1, which can be obtained from Eq. (1). After centering†
the data, AKPLSC can be described as Algorithm 1.

3. Experimental Result

The experimental data sets come from NASA projects [9],
which are developed in different languages, at different sites
by different teams, as shown in Table 3. cm1 is drawn from
a NASA spacecraft instrument project, pc1 is from a flight

Table 3 Data sets.

data language #modules #attr. size(loc) %defective
cm1 C++ 498 21 14,763 9.83
pc1 C 1,109 21 25,924 6.94
kc3 JAVA 458 39 7,749 9.39

software for earth orbiting satellite, and kc3 is from a soft-
ware for the collection, processing and delivery of satellite
meta data. All of metrics are given by [9], as shown in Ta-
ble 1. cm1 and pc1 contain 21 metrics, 5 different lines of
code metrics, 3 McCabe metrics, 4 base Halstead metrics, 8
derived Halstead metrics, 1 branch-count metric. kc3 also
contains another 18 metrics.

In order to investigate the performance of AKPLSC
(Gaussian kernel κ(x, y) = exp(−||x − y||2) is used here),
we compare it with random undersampling (RUS) [4],
AdaBoost [4], Partial Least Squares Classifier (PLSC) [7],
APLSC [6], and KPLSC [8]. For each data set, we perform
a 10 × 5-fold cross validation. We use the area under a
receiver operating characteristic curve (AUC) performance
metric, which is commonly used in software defect predic-
tion research area, to evaluate the performance of a classi-
fier. The results for the six methods are shown in Table 2.
We can see that AKPLSC outperforms other methods on all
the data sets, except for pc1, compared with AdaBoost.

4. Conclusion

A new kernel-based asymmetric learning algorithm, AK-
PLSC, is proposed for software defect prediction. This
method can nonlinearly extract the feature information and
retrieve the loss caused by class imbalance in software de-
fect data sets. Experiments validate its effectiveness.

Acknowledgments

We thank R. Rosipal for providing us with the KPLSC code,
†Centering data moves the origin to the center of mass [8]: K =

K − 1
�
JJ
′
K − 1

�
KJJ

′
+ 1
�2

(J
′
KJ)JJ

′
, where J is the all 1s vector.

2008
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.7 JULY 2012

and LeVis Group for APLSC code. This work was sup-
ported in part by the fundamental research funds for new
century excellent talents in university (NO. NCET-10-0298)
and foundation of science and technology department of
Sichuan province (NO. 2011GZ0192). We appreciate the
encouraging suggestions from anonymous reviewers.

References

[1] T.M. Khoshgoftaar, E.B. Allen, and J. Deng, “Using regression trees
to classify fault-prone software modules,” IEEE Trans. Reliab., vol.51,
no.4, pp.455–462, 2002.

[2] T. Menzies, J. Greenwald, and A. Frank, “Data mining static code
attributes to learn defect predictors,” IEEE Trans. Softw. Eng., vol.33,
no.1, pp.2–13, 2007.

[3] Y. Ma, G. Luo, X. Zeng, and A. Chen, “Transfer learning for
cross-company software defect prediction,” Information and Software

Technology, vol.54, no.3, pp.248–256, 2012.
[4] C. Seiffert, T.M. Khoshgoftaar, and J. Van Hulse, “Improving

software-quality predictions with data sampling and boosting,” IEEE
Trans. Syst. Man Cybern. A, Syst. Humans, vol.39, no.6, pp.1283–
1294, 2009.

[5] L. Guo, Y. Ma, B. Cukic, and H. Singh, “Robust prediction of fault-
proneness by random forests,” Proc. 15th International Symposium on
Software Reliability Engineering (ISSRE 2004), pp.417–428, 2004.

[6] H.N. Qu, G.Z. Li, and W.S. Xu, “An asymmetric classifier based on
partial least squares,” Pattern Recognit., vol.43, no.10, pp.3448–3457,
2010.

[7] M. Barker and W.S. Rayens, “Partial least squares for discrimination,”
J. Chemometrics, vol.17, no.3, pp.166–173, 2003.

[8] R. Rosipal, L.J. Trejo, and B. Matthews, “Kernel PLS-SVC for linear
and nonlinear classification,” Proc. 20th International Conference on
Machine Learning (ICML 2003), pp.640–647, 2003.

[9] http://promisedata.org/repository

