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An Efficient Wide-Baseline Dense Matching Descriptor

Yanli WAN†a), Zhenjiang MIAO†, Zhen TANG†, Lili WAN†, Nonmembers, and Zhe WANG††, Student Member

SUMMARY This letter proposes an efficient local descriptor for wide-
baseline dense matching. It improves the existing Daisy descriptor by com-
bining intensity-based Haar wavelet response with a new color-based ratio
model. The color ratio model is invariant to changes of viewing direction,
object geometry, and the direction, intensity and spectral power distribu-
tion of the illumination. The experiments show that our descriptor has high
discriminative power and robustness.
key words: dense matching, wide-baseline, DAISY, Haar wavelet, photo-
metric color invariants

1. Introduction

Dense matching is one of the most active research areas in
computer vision. Over the last few years, a number of ex-
cellent short-baseline dense matching algorithms has been
proposed. However, the wide-baseline dense matching faces
much more challenging due to large perspective distortions.
It is worth addressing in many pattern recognition and com-
puter vision tasks.

Tola et al. proposed a fast descriptor (DAISY) [1] for
wind-baseline dense matching. It significantly reduces com-
putational cost by convolving gradient map to compute the
bin values. It not only retains the robustness of existing de-
scriptors, such as SIFT [2] and GLOH [3] which were de-
signed for robustness to perspective and lighting changes in
sparse wide-baseline matching, but also can be computed
quickly at every single image pixel. Bay et al. [4] proposed
a descriptor (SURF) based on an integral image to compute
the histogram bins. Although this method was also compu-
tationally effective, all pixels in a regular region contribute
equally to their respective bins which does away SIFT’s spa-
tial weighting scheme.

The above excellent descriptors are all based on inten-
sity by transferring color to grey images. However, color
also provides powerful information for matching tasks. If
it is neglected, a very important source of distinction may
be lost. Abdel-Hakin et al. [5] proposed a colored local in-
variant feature descriptor (CSIFT) with Gaussian invariance
color model. It is more robust than the conventional SIFT
with respect to color and photometrical variations. However,
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it depends on the changes of illumination color. Gevers et
al. [6] proposed a color constant model m1m2m3. It is in-
variant to the changes of viewing direction, surface orienta-
tion, illumination direction, illumination intensity, illumina-
tion color, except highlights.

In this paper, we propose an efficient local descriptor
for wide-baseline dense matching. It has the following char-
acteristics:

• The descriptor combines two different sub-descriptors
based on the Haar wavelet response and a color invari-
ant model respectively to improve the robustness and
distinctiveness.
• In the first sub-descriptor, the advantages of DAISY

and SURF are combined to improve the speed in the
stage of pixel description.
• In the second sub-descriptor, a color model is pro-

posed. It is invariant to the changes of viewing direc-
tion, highlights, illumination direction, illumination in-
tensity, and illumination color.

The remainder of this paper is organized as follows.
The detail of our descriptor is described in Sect. 2. Exper-
imental results are presented and discussed in Sect. 3. Sec-
tion 4 concludes the paper.

2. Our Local Descriptor

Our local descriptor is built based on two sub-descriptors:
Haar wavelet response sub-descriptor, and color sub-
descriptor. It is defined as:

F = [ωH, (1 − ω)C] (1)

where H is a 100-dimension Haar wavelet response sub-
descriptor, which improves DAISY descriptor by Haar
wavelet response instead of the oriented gradient. C is a
75-dimension color sub-descriptor. ω is a weighting factor.
Thus, Our descriptor has 175-dimension in total.

2.1 Sub-Descriptor Based on Haar Wavelet Response

The sub-descriptor based on the Haar wavelet response is
built with the grey images. The Haar wavelet filter is a t × t
box type convolution filters (Fig. 1 (a)). The two responses
at pixel m(x, y), which are written as dx and dy, are respec-
tively convolved in x and y directions with the integral im-
age IΣ(m) (Fig. 1 (b)). The integral image is used to improve
computational effectiveness,and it is the sum of all pixels in
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Fig. 1 (a) Haar wavelet filters. (b) Diagram for integral image. (c) Our
description region.

the grey image I(m) within a rectangular region formed by
the origin O and point m:

IΣ(m) =
∑i�x

i=0

∑ j�y

j=0
I(i, j) (2)

The neighboring region of our descriptor is similar to
DAISY structure (Fig. 1 (c)). The difference is that each cir-
cle sub-region is replaced by a square. It can greatly im-
prove computational effectiveness of Haar wavelet response
histogram in each squared sub-region.

Similar to the construction process of DAISY, Haar
wavelet response sub-descriptor is also constructed by three
steps: computing Haar wavelet response maps, convolving
response maps with different Gaussian kernels, and con-
structing sub-descriptor with convolved response maps.

2.1.1 Haar Wavelet Response Maps Computation

We first compute 4 Haar wavelet response maps, which
are written as Gr1,Gr2,Gr3,Gr4. These response maps are
respectively acquired by response values {dx, |dx|, dy, |dy|},
where |dx| and |dy| are the absolute values of the Haar
wavelet responses at x and y directions.

2.1.2 Response Maps Convolution

Each response map is then convolved several times with
Gaussian kernels of different Σ values to obtain convolved
response maps GΣr for different sized regions. Supposing
GΣ1

r is a response map generated by convolving Gr with the
smallest Gaussian kernel GΣ1 , then GΣ2

r can be obtained by
a larger Gaussian kernel as:

GΣ2
r = GΣ2 ∗Gr = GΣ ∗GΣ1 ∗Gr = GΣ ∗GΣ1

r (3)

where Σ =
√
Σ2

2 − Σ2
1. This consecutive convolutions can

greatly reduce computational cost. Figure 2 shows the pro-
cess of constructing those convolved response maps.

2.1.3 Sub-Descriptor Construction

As depicted by Fig. 1 (c), the sub-descriptor H(m0) based on

Fig. 2 Process of convolving Haar response maps.

the Haar wavelet responses can be defined as:

H(m0) = [h̃T
Σ1

(m0),

h̃T
Σ1

(m11), h̃T
Σ1

(m12), · · · , h̃T
Σ1

(m18),

h̃T
Σ2

(m21), h̃T
Σ2

(m22), · · · , h̃T
Σ2

(m28),

h̃T
Σ3

(m31), h̃T
Σ3

(m32), · · · , h̃T
Σ3

(m38)]

(4)

where h̃T
Σ1

(m0) is a normalized vector in each histogram of
hT
Σ1

(m0) that represents a vector composed of the values at
location m0 in the response maps after convolution by a
Gaussian kernel of standard deviation Σ1.

hT
Σ1

(m0) = [GΣ1
r1 (m0),GΣ1

r2 (m0),GΣ1
r3 (m0),GΣ1

r4 (m0)] (5)

where GΣ1
r1 , GΣ1

r2 , GΣ1
r3 and GΣ1

r4 denote the convolved Haar
wavelet responses. The normalization is performed in each
histogram independently, and it corresponds to each square
sub-region in Fig. 1 (c). The sub-descriptor H at each pixel
is composed of 4 ∗ 25 = 100 values, which are extracted
from 25 locations and 4 responses.

2.2 Sub-Descriptor Based on Color Invariant Model

Since the raw color recorded by a camera is not reliable
because of many factors, Therefore, the selected criteria of
color model should be robust to varying illumination across
the scene, and the changes in surface orientation of the ob-
ject.

2.2.1 Reflectance Model

The changes in the illumination can be modeled by a
diagonal-offset model [7]:
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Rc

Gc

Bc

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎜⎜⎝

a 0 0
0 b 0
0 0 c

⎞⎟⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Ru

Gu

Bu

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ +
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

o1

o2

o3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (6)

Based on the diagonal-offset model, five types of changes
are categorized: light intensity changes (a = b = c, o1 =

o2 = o3 = 0), light intensity shifts(a = b = c = 1, o1 = o2 =

o3), light intensity changes and shifts (a = b = c, o1 = o2 =

o3), light color changes (a � b � c, o1 = o2 = o3 = 0), and
light color changes and shifts (a � b � c, o1 � o2 � o3).
The surface reflectance s(x, λC) can be given by [8]:

Rc = ec(λR)s(x, λR) = aeu(λR)s(x, λR) + A(λR),
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Gc = ec(λG)s(x, λG) = beu(λG)s(x, λG) + A(λG), (7)

Bc = ec(λB)s(x, λB) = ceu(λB)s(x, λB) + A(λB).

where eu(λC) is the color of the unknown light source,
ec(λC) is the transformed color, s(x, λC) is the surface re-
flectance, and A(λC) is the term that models the diffuse light
(C ∈ {R,G, B}).

2.2.2 Color Invariant Model

In order to make the color invariant to above five types of
changes, we present the following color ratio model:

f1 =
(Rxo − μRxo

)(Gxi − μGxi
)

(Rxi − μRxi
)(Gxo − μGxo

)
,

f2 =
(Bxo − μBxo

)(Rxi − μRxi
)

(Bxi − μBxi
)(Rxo − μRxo

)
,

f3 =
(Gxo − μGxo

)(Bxi − μBxi
)

(Gxi − μGxi
)(Bxo − μBxo

)
.

(8)

where xo and xi denote the locations of the two neighboring
pixels, μCxo

is the mean in channel C over the rectangle area
centered at xo.

If the illuminant color is assumed to be locally constant
(i.e. eu

x1
(λC) = eu

x2
(λC) = ēu

x1
(λC) = ēu

x2
(λC)), our model

f1 f2 f3 is independent to the above five types of changes by
substituting Eq. (7) (Rc,Gc, Bc) into Eq. (8).

f1 =
(s(x1, λR) − s̄(x1, λR))(s(x2, λG) − s̄(x2, λG))
(s(x2, λR) − s̄(x2, λR))(s(x1, λG) − s̄(x1, λG))

,

f2 =
(s(x1, λB) − s̄(x1, λB))(s(x2, λR) − s̄(x2, λR))
(s(x2, λB) − s̄(x2, λB))(s(x1, λR) − s̄(x1, λR))

,

f3 =
(s(x1, λG) − s̄(x1, λG))(s(x2, λB) − s̄(x2, λB))
(s(x2, λG) − s̄(x2, λG))(s(x1, λB) − s̄(x1, λB))

.

(9)

From above equation it can be seen that f1, f2, f3 only de-
pend on the sensors and the surface albedo.

2.2.3 Color Invariant Sub-Descriptor Construction

Just as Haar wavelet response sub-descriptor, we first com-
pute 3 color ratio maps Gd1,Gd2,Gd3. These color ra-
tio maps are respectively acquired by our invariant model
| f1|, | f2|, | f3| (Eq. 8) at center point and its neighboring points
in a rectangle area. Each color ratio map Gd is then con-
volved several times with Gaussian kernels of different Σ
values to obtain convolved color ratio maps for regions of
different size. These Gaussian kernels are determined the
same as Eq. 3. Then, the sub-descriptor C(m0) is defined as:

C(m0) = [c̃T
Σ1

(m0),

c̃T
Σ1

(m11), c̃T
Σ1

(m12), · · · , c̃T
Σ1

(m18),

c̃T
Σ2

(m21), c̃T
Σ2

(m22), · · · , c̃T
Σ2

(m28),

c̃T
Σ3

(m31), c̃T
Σ3

(m32), · · · , c̃T
Σ3

(m38)]

(10)

where c̃T
Σ1

(m0) is a normalized vector in each histogram of

cT
Σ1

(m0), and cT
Σ1

(m0) = [GΣ1
d1(m0),GΣ1

d2(m0),GΣ1
d3(m0)] denote

the vector composed of the values at location m0 in the con-
volved color ratio maps. The color invariant sub-descriptor
at each pixel is composed of 3 ∗ 25 = 75 values.

2.3 Matching Cost

After all the descriptors are constructed in two images, we
find the best matches by the following matching cost.

D = ωDH + (1 − ω)DC (11)

where the matching cost DH of Haar wavelet response sub-
descriptor is computed by Euclidean distance:

DH = |Hi − Hj| =
√∑100

k=1
(Hi,k − Hj,k)2 (12)

The matching cost DC of color invariant sub-descriptor is
computed by χ2 distances:

DC = χ
2 =

1
2

75∑
k=1

(Ci,k −C j,k)2

Ci,k +C j,k
(13)

The χ2 measure is very useful since it can normalize larger
bins.

3. Experimental Results

3.1 Demonstration of Our Color Model

Figure 3 demonstrates our color invariant model. Although
the RGB color distributions of pixels in the two 20*20 corre-
sponding windows (shown in (a) and (b) with red and blue
rectangle) is very different in the two images [9] with illu-
mination changes, the color distributions of pixels are sim-
ilar after the color transformation with our color invariant
model.

3.2 Comparisons of Descriptors in Performance

In our dense matching algorithm, the sparse features are first
extracted in two uncalibrated images, and then the epipolar
constraint and homography constraint are estimated based

Fig. 3 Demonstration of our color invariant model. (a) and (b) show two
images with sudden illumination changes, and two 20*20 corresponding
windows; (c) and (d) show the RGB color distributions and the absolute
value of color ratio | f1 || f2 || f3 | distributions of pixels in two windows.
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Fig. 4 Performance evaluation of five descriptors (Daisy, SIFT, SURF,
CSIFT and our approach) in the 4 image sets with three changes from
INRIA: (1), (2) viewpoint changes, (3) zoom+rotation, (4) light changes.

on the self-adaptive RANSAC algorithm. These two con-
straints can acquire a small searching region which is re-
quired in the dense matching. For each point in the left im-
age, we compare descriptors with a simple nearest neighbor
distance (Eq. 11) with a threshold Td on the match, and keep
the pair with the best match in the small searching region of
the right image. In these experiments, the weighting factor
ω = 0.5, and Td is also set to be 0.5.

The first row in Fig. 4 shows 4 image sets from INRIA
used in our experiments. They have three different changes:
viewpoint changes, zoom and rotation changes, and light
changes. These image sets are related by homographies
(plane projective transformations) which are regarded as
ground truth to evaluate our algorithm. The Recall-Precision
is used to evaluate our algorithm. The correct matches cor-
respond to the same physical location which can be deter-
mined by image homography H. The number of the correct
matches is determined by the criterion that the errors be-
tween real position and predicted position of matches are
less than 3 pixels (i.e. ||x′i −Hxi|| < 3 and ||xi −H−1x′i || < 3).
The total number of positive matches for the given dataset
is known a priori. The Recall versus 1-Precision curves are
generated by changing the different matching threshold.

Recall = (#correct matches)/(#positive matches)

1 − Precision = (#false matches)/(#matches)
(14)

The last two rows in Fig. 4 shows the comparison re-
sults with four descriptors, including Daisy, SIFT, SURF,
CSIFT, and our approach in 4 image sets. Although these
image pairs have large viewpoint changes, affine variations
or light changes, the performance of our algorithm is bet-
ter than others. This is because first, although Haar wavelet

Table 1 Time complexity comparison in seconds.

Image Size Daisy SIFT CSIFT SURF Our method
965*726 8.01 344.55 320.51 104.62 4.81 6.75
832*553 5.79 228.65 182.15 68.25 3.36 4.88
930*598 6.32 265.48 223.56 82.54 3.85 5.02
1065*686 8.39 390.62 344.87 110.38 5.32 7.02

uses 4 responses instead of 8 orientations, it still has enough
information since Haar wavelet filter is based on a box type
region. Second, our descriptor combines intensity informa-
tion and color information together.

3.3 Comparisons of Descriptors in Efficiency

We compares the time complexity of our description al-
gorithm with Daisy, SIFT, and SURF algorithms in the
dense matching. Although our descriptor includes two sub-
descriptors, it has lower dimension than Daisy descriptor.
Table 1 shows some comparison results. From the result we
can see that our algorithm is faster than SIFT, CSIFT and
SURF algorithms.

4. Conclusions

This letter presents an efficient descriptor combining Haar
wavelet response and a new color invariant model. It
provides powerful discrimination in wide-baseline dense
matching. The color model is invariant to changes of view-
ing direction, and direction, intensity, and color of the illu-
mination. Experiment results validate our descriptor.
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