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On-the-Fly Trace Generation Approach to the Security Analysis of
the TMN Protocol with Homomorphic Property: A Petri
Nets-Based Method
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SUMMARY Many Petri nets-based methods have been developed and
applied to analyze cryptographic protocols. Most of them offer the analysis
of one attack trace only. Only a few of them provide the analysis of multi-
ple attack traces, but they are rather inefficient. Similarly, the limitation of
the analysis of one attack trace occurs in most model checking methods for
cryptographic protocols. Recently, we proposed a simple but practical Petri
nets-based model checking methodology for the analysis of cryptographic
protocols, which offers an efficient analysis of all attack traces. In our pre-
vious analysis, we assume that the underlying cryptographic algorithms are
black boxes, and attackers cannot learn anything from cipher text if they do
not have a correct key. In this paper, we relax this assumption by con-
sidering some algebraic properties of the underlying encryption algorithm.
Then, we apply our new method to TMN authenticated key exchange pro-
tocol as a case study. Surprisingly, we obtain a very efficient analysis when
the numbers of attack traces and states are large, and we discover two new
attacks which exploit the algebraic properties of the encryption.
key words: formal methods for cryptographic protocols, model checking,
Petri nets

1. Introduction

Cryptographic protocols are protocols which use crypto-
graphic techniques to achieve certain tasks while prevent-
ing malicious parties from attacking the protocols. There
are many applications of cryptographic protocols, for exam-
ple, authenticated key exchange protocols, web security pro-
tocols, e-payment protocols, e-banking protocols, e-voting
protocols.

The design and analysis of cryptographic protocols are
difficult to achieve because of the increasingly sophisticated
attacking capabilities and the complex requirement of the
applications. Attacks in many cryptographic protocols have
been found after they have been designed [1], [2] and even
after implemented e.g. [3], [4]. Thus, it is desirable to have
a method which is able to analyze all possible attacks to the
protocols. Such a method would offer a comprehensive un-
derstanding of all vulnerabilities of protocols and certainly
would help in developing a better and total protection for
them. In this paper, we focus on message replay attacks [5]
and the analysis of multiple sessions of protocol execution
only.

Many Petri nets-based methods have been developed
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and applied to analyze cryptographic protocols [6]–[12].
Most of them offer the analysis of one attack trace only.
Only a few of them provide the analysis of multiple attack
traces, but they are rather inefficient. In fact, all of them em-
ploy an off-the-fly trace generation technique. It means that
after a state space is generated either partially or fully and
an attack state is found, then an attack trace is computed.
This kind of trace generation is called off-the-fly, since the
trace computation occurs after the state space is generated.
The analysis of a single attack trace is rather limited, since
one attack trace shows only one way amongst many possible
ways to carry out an attack.

Similarly, the limitation of the analysis of one attack
trace occurs in most model checking methods for crypto-
graphic protocols [14]–[16], [18]–[22].

Recently, we proposed a very simple but practical Petri
nets-based model checking methodology for the analysis
of cryptographic protocols, which overcomes this limita-
tion [39]. Our methodology offers an efficient analysis of all
attack traces, and is essentially independent of model check-
ing tools for the full and explicit state space analysis. We
employ a novel method which is the on-the-fly trace gener-
ation for computing all attack traces. In the new method,
while a state space is generated, attack traces for states are
computed at the same time, and are stored at the states. In
other words, the trace computation occurs at the same time
as the state space computation. This technique provides a
notable improvement in the computation time for all attack
traces when the number of attack traces and the number
of states are large. Then, we applied our new method to
two case studies, which are Micali’s contract signing proto-
col [30] and TMN authenticated key exchange protocol [31].
We found many new attacks on the two protocols

However, in our previous analysis, we assume that the
underlying cryptographic algorithms are black boxes, and
attackers cannot learn anything from a cipher text if they do
not have a correct key. In this paper, we relax this assump-
tion by considering some algebraic properties of the under-
lying encryption algorithm. In particular, we consider the
homomorphic property of RSA encryption. Then we apply
our new method to TMN authenticated key exchange proto-
col as a case study. Surprisingly, we found two new attacks
which exploit the homomorphic property. In addition, we
obtain a very efficient analysis when the numbers of attack
traces and states are large. In fact, when the number of states

Copyright c© 2012 The Institute of Electronics, Information and Communication Engineers



216
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.1 JANUARY 2012

and traces are 126,536 and 11,676, respectively, our method
improves over the off-the-fly trace generation on the compu-
tation times by 5,043%. In particular, our on-the-fly method
reduces the computation times from 25 hours in the off-the-
fly method to 29 minutes. We implement our methodology
in Coloured Petri Nets (CPN) [32] and use its model checker
tool called CPNTools [33] to do the experimental analysis.
Our preliminary results were reported previously [36]–[38].

Furthermore, the comprehensive analysis of all attack
traces has not received adequate attention in the literature. In
this paper we would like to point out the importance of this
kind of analysis and show its use when analyzing algebraic
properties of the underlying encryption algorithm in proto-
cols. Indeed, the importance of the analysis is even clearer
when dealing with algebraic properties of encryption, since
the analysis shows clearly many different attacking ways to
create the same damage, e.g. to expose a session key. Those
attacks are significantly different. Thus, our analysis offers
a thorough examination of all attacks.

In Sect. 2, we provide the background on TMN pro-
tocol and Coloured Petri nets. In Sect. 3, we compare our
new method with existing related works, and discuss known
attacks on TMN protocol. In Sect. 5, we present our new
CPN methodology and apply it to TMN. Furthermore, in
Sect. 5 new attacks are explained, the comparison on the per-
formance between our on-the-fly method and the off-the-fly
method is discussed, and an analysis of our method is given.

2. Background

We use the following notations throughout the paper. S →
R : M means that user S sends message M to user R. While
{M}PK-I means public-key encryption by the RSA algo-
rithm on message M by I’s public key, EK(M) means the
Vernam cipher or one-time pad on message M by key K. In
is an attacker. Also, In(A) means that the attacker who im-
personates user A. While 1) - 4) describe protocol steps in
the 1st session, 1’) - 4’) indicate protocol steps in the 2nd
session.

2.1 TMN Authenticated Key Exchange Protocol [31]

TMN is a cryptographic key exchange protocol for mobile
communication system. TMN allows initiator A to exchange
a session key with responder B by the help of server J. The
detail of TMN is described as follows.

1) A→ J : (B, {Kaj}PK-J), A
2) J→ B : A
3) B→ J : (A, {Kab}PK-J), B
4) J→ A : B, EKaj(Kab)

where Kab is an exchanged session key and Kaj is A’s secret
which is used to transport the session key at the last step.
Note that the session key is created by user B.

It is well-known that RSA public key encryption satis-
fies the following homomorphic property [40].
{M1}PK × {M2}PK = {M1 × M2}PK

where × means the multiplication modulo the public mod-

ulus. Note that throughout the paper, × means the multipli-
cation modulo the public modulus. Therefore, a thorough
analysis on TMN must deal with the homomorphic property
of RSA public key encryption too.

2.2 Coloured Petri Nets [32]

CPN is a graph-based modeling language which is equipped
with model checking algorithms and tools. CPN has been
applied to many applications, for example, distributed sys-
tems and communication protocols. In CPN, a system is
first modeled by a kind of graphs, called a net, and then a
state space of all possible executions of the system is gen-
erated and analyzed to search for errors in the system. CPN
provides a software tool called CPNTools [33] which facili-
tates the creation, the modification and the analysis of nets.
Originally, CPN and CPNTools provide the off-the-fly trace
generation method. Also, only a single error trace or attack
trace can be detected by the built-in mechanism in CPN-
Tools.

3. Related Works

3.1 Existing Petri Nets Methods for Cryptographic Proto-
cols

Many Petri nets-based methods, which are equipped with
model checking algorithms, have been developed and ap-
plied to analyze cryptographic protocols [6]–[12]. All of
them [6], [8]–[12] with one exception [7] aim at analyzing
only one attack trace. The exception [7] offers the analy-
sis of multiple attack traces, but it is inefficient. In fact,
all of them employ an off-the-fly trace generation technique
which means that an attack trace or multiple attack traces
are computed after a state space is generated either partially
or fully. The off-the-fly trace generation for all attack traces
involves the searching for all paths between two states in
a state space, which is extremely time-consuming. Indeed,
the searching for all paths can be seen as a core part of algo-
rithms for solving the traveling salesman problem which is
known to be NP-complete.

Nieh and Tavares’s method [6] is the first work which
applies PN to analyze security protocols. Their approach
is based on CPN and provides a generic model of an at-
tacker for message replay attack in a single session of
protocol execution. Some attacks are discovered in some
protocols. Later on, Lee et. al.’s works [7], [8] developed
place/transition nets which are low-level nets to analyze se-
curity protocols. Their method [7] was applied to analyze
multiple attack traces for the message replay attack. Also,
TMN was chosen as a case study, but only known attacks on
TMN were reconstructed. Another low-level PN was devel-
oped to analyze a key recovery protocol [8]. But the analysis
is on the recoverability of a key rather than the message re-
play attack. Also, both works [7], [8] deal with the analysis
of a single session only.

Al-Azzoni et. al. [9] have developed a CPN model to
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analyze TMN protocol. Their method appears to analyze
two sessions of protocol execution. However, it does not re-
ally analyze two concurrent sessions but two sequential ses-
sions according to the detected attack reported in the work.
Their CPN model is well-structured. But attacker capabili-
ties in their model are quite limited. Indeed, our CPN model
extends their work to analyze multiple concurrent sessions
of protocol execution and to analyze more attacking capa-
bilities, namely, a new session initiation by the attacker, re-
ceiver impersonation and message dropping.

Dresp [10] applied CPN to analyze a security protocol.
The work strictly analyzes a single session, but can be used
to analyze two sequential sessions by executing one session
at a time.

Bouroulet and Devillers [11] developed a specification
language and a verification for security protocols. A se-
curity protocol and attackers are specified by a language
based on process algebra. For verification, the specification
is translated into a high-level PN. Then, a general purpose
high-level PN model checker called Helena is applied. Their
method offers the analysis of multiple concurrent sessions.
However, their method can analyze only one attack trace.

Liu et. al. [12] applied two PN methodologies to ana-
lyze an authenticated key exchange protocol in wireless net-
work. In particular, they employ CPN to reproduce a known
attack in the protocol by the simulation analysis and employ
PEP [13] to detect the known attack by the state space anal-
ysis. In their state space analysis, only one known attack
trace is reproduced and a single session is analyzed.

Indeed, PEP [13] indigenously computes one attack
trace only. However, it can be used to compute multiple at-
tack traces. The verification in PEP, called the unfolding, is
considered as the off-the-fly trace generation method, since
the search for attack traces is performed after a state space is
computed partially. This amounts to the search of all paths
in a graph.

3.2 Other Model Checking Methods for Cryptographic
Protocols

Many model checking methods [14]–[25] have been devel-
oped and applied to analyze cryptographic protocols. All of
them except for NRL [23], SATMC [17], Proverif [24], [25]
and Scyther [27], [28] offer the analysis of one attack trace
only. For the exceptions, while NRL is inefficient, SATMC
and Proverif can compute a restricted kind of attack traces
only, not all attack traces. Scyther can compute a greater
number of attack traces than all others. We will discuss more
about Scyther below.

In this paper, we focus on the discussion of methods
which currently analyze multiple attack traces, but we will
also discuss one well-known existing method which ana-
lyzes a single trace. A more detailed discussion on each
method can be found in another work of our group [39].

SPIN [29] is a widely used explicit model checker
which provides the analysis of a single trace. SPIN is em-
ployed to analyze a cryptographic protocol [19]. A known

attack to a protocol is detected. SPIN is based on the on-
the-fly verification which offers an advantage in that only a
partial state space which is relevant to a verification prop-
erty is constructed instead of the full state space. During the
construction, a single attack trace is computed and is stored
in a stack. SPIN can thus be considered as the on-the-fly
trace generation but for a single attack trace only.

SATMC [17] which stands for SAT-based Model
Checker employs the satisfiability approach for model
checking. One of the interesting features of SATMC is that
it can compute a single partial order attack. A partial or-
der attack represents some specific kinds of multiple attack
traces where some parts of the traces are partially ordered
and other parts are totally ordered. The partially ordered
parts of the traces are traces which can be interleaved with-
out any effect, are grouped into a set and are interpreted by
parallel execution. However, a single partial order attack
represents only a specific structure of attack traces but not
all possible attack traces, since all possible attack traces can-
not always be organized into a single total order of sets of
interleaving attack traces.

Both NRL [23] and Proverif [24], [25] analyze multiple
attack traces and they are based on the logic programming
approach. NRL can compute all attack traces, but its ap-
proach is inefficient, since it uses the path-searching in an
entire state space. Thus, it is based on the off-the-fly trace
generation. On the other hand, Proverif can compute only a
restricted set of attack traces which contains only one trace
in most cases, according to their experiment and analysis.
Note that this restricted set of attack traces is far from the
set of all attack traces.

Recently, Maude-NPA [26], a successor of NRL, has
been developed. It appears that Maude-NPA records an at-
tack trace into each state during the backward computation
of a state space. However, the main purpose of Maude-
NPA for recording an attack trace is to allow users to debug
a protocol during the computation rather than to compute
all attack traces as this is evident by the following sentence
quoted from the paper [26]:

Note that two extra state components (the message se-
quence, or attack trace, and some auxiliary data) are asso-
ciated to a Maude-NPA state ..., but they are irrelevant and
useful only for user debugging of the protocol, ...

In addition, there is neither discussion nor analysis of
the advantageous point of recording an attack trace to a state
for computing all attack traces in Maude-NPA [26]. Our ap-
proach has been developed independently of their method,
and we provide a comprehensive analysis on the compu-
tation of all attack traces by two different methods as dis-
cussed in Sect. 5.6.

Scyther [27] is a high performance model checking tool
that is capable of analyzing the unbounded verification. Cur-
rently, Scyther does not offer the analysis of algebraic prop-
erties of encryption. Scyther provides the analysis of all at-
tack traces. But the analyses of all attack traces in Scyther
and in our method are different. There are attacks found
by Scyther but not found by our method, and there are at-
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tacks found by our method but not found by Scyther too.
Scyther computes a state space for a specified total num-
ber of instances of user roles, but with many possibilities of
the assignment of the number of instances to each user role
within the same state space. For example, with the total of 4
instances of users, Scyther analyzes many possibilities, for
example, 2 instances of initiator and 2 instances of server,
2 instances of responder and 2 instances of server, and 1
instance of initiator and 1 instance of responder and 2 in-
stances of server. However, our method computes a state
space for a fixed number of instances for each fixed user
role. Thus, the attacks found by Scyther but not found by
our method are those which occur in the other assignments
than the fixed one in our method. But we argue that all the
attacks found by Scyther can be found in our method by
computing a state space with each possible assignment or
configuration as which will be discussed in Sect. 5.2.

For TMN with black-box encryption and with 1 in-
stance of initiator, 1 instance of responder and 2 instances of
server, we found 10 attacks that allow the attacker to learn
the session key, but Scyther found 3 attacks only, and these
can also be found by our method. In addition, for the attacks
that allow the attacker to learn the session key and fool the
initiator to accept Kaj as a session key, we found 10 attacks,
but Scyther found none. Note that the security analysis of
TMN in Scyther reported here was done by running the tool
on TMN supplied with the tool [28] as an example. The de-
tails of the attacks are given in the appendix.

3.3 Known Multiple-Session Attacks on TMN

In the literature, there are two kinds of known multi-session
attacks on TMN. The first kind does not exploit the ho-
momorphic property whereas the second kind does. In the
first kind, there are four known attacks [20], [22], [35]. In
the first attack found by Lowe and Roscoe [20], the attacker
learns the session key Kab and A’s secret key Kaj. Thus, the
attacker can then learn all the subsequent communications
between the users. The second attack [22] is a variant of the
first one. In the third and the fourth attacks found by us [37],
user A is fooled to commit on a fake session key known by
the attacker, and the attacker learns the valid session key
Kab. Thus the attacker can impersonate B to A by using the
fake key and can impersonate A to B by using the correct
session key.

In the second kind of known multiple-session attacks
on TMN, there is one known attack found by Simmons [31].
In the attack, the attacker modifies message at step 1 by us-
ing the homomorphic property. We show the first attack in
the following.

1) A→ J : (B, {Kaj}PK-J), A
2) J→ B : A
3) B→ J : (A, {Kab}PK-J), B
4) J→ A : B, EKaj(Kab)
1’) In→ J : (B, {Kaj×Kc}PK-J), In
2’) J→ In(B) : In
3’) In(B)→ J : (In, {Ki}PK-J), B

4’) J→ In : B, E(Kaj×Kc)(Ki)
where Ki and Kc are attacker’s secret keys.

At step 1’) of the second session, the attacker computes
the cipher text {Kaj×Kc}PK-J from the cipher text {Kaj}PK-
J and {Kc}PK-J by using the homomorphic property. At
the completion of the two sessions, the attacker In learns
(Kaj×Kc), and then obtains Kaj by computing the multiplica-
tive inverse of Kc. Also, by the cipher text at step (4), the
attacker obtains Kab.

Lowe and Roscoe [20] argued that this attack is useful
when J is able to detect the reuse of the cipher text, en-
crypted by J’s public key, at steps 1 and 3 in the multiple
concurrent sessions.

4. A Modified Version of TMN

To illustrate our new attacks by using the homomorphic
property clearly, we will consider a modified version of
TMN instead of the original TMN. The modified TMN is
similar to the TMN, but J has the ability to detect the reuse
of the cipher texts at steps 1 and 3 in multiple concurrent
sessions. In addition, user A has the ability to check if the
exchanged session key is identical to A’s secret Kaj. So, if
the session key is identical to Kaj, then A will abort the ses-
sion. So, the modified TMN is more secure than the orig-
inal TMN. Also, the analysis of the modified TMN would
demonstrate the importance of attacks using the homomor-
phic property.

5. Our Model

5.1 Our General Methodology

In the following, we present our general methodology which
is independent of model checking tools for the full and ex-
plicit state space analysis. Our methodology consists of
five steps which are (1) protocol and attacker representation,
(2) computations of a decomposed state space and multiple
attack traces, (3) characterization of and search for attack
states, (4) attack trace extraction and (5) attack trace classi-
fication. Our on-the-fly trace generation is employed in steps
2 and 4.

(1) Both a protocol and an attacker models are rep-
resented. In fact, such representation depends on a model
checker tool.

(2) Then, a state space is generated from the represen-
tation. During the state space generation, when a state is
generated, an attack trace to the state is computed at the
same time and the computed trace is stored at the state. This
computation is the core of the on-the-fly trace generation.
Figure 1 illustrates the on-the-fly trace generation process
in general. In the figure, a1, a2 and a3 stand for message
sending by users or attackers. In state s3, the path or trace
<a1,a2> to the state is stored in the state. Conceptually, an
attack trace for a state is constructed by simply extending an
attack trace stored in the previous state.

For simplicity, we assume that each state stores only
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Fig. 1 The on-the-fly trace generation.

one attack trace. Thus, our state space in general may con-
tain a greater number of states than the state space in the
off-the-fly trace generation. A state which can be reached by
two different attack traces in the off-the-fly method becomes
two different states in our method. To reduce the size of
a computed state space, we employ a decomposition tech-
nique in the state space computation. Our decomposition
technique aims to generate a state space for one specific at-
tack scenario at a time.

An attack scenario is defined by a configuration which
consists of the information for the protocol execution in a
multi-session setting, for example, the identities of initiator
and responder, the role of attackers, secrets and nounces in
each concurrent session, and a schedule of a specific inter-
leaving execution of the multiple concurrent sessions. Thus,
a decomposed state space contains one interleaving execu-
tion of multiple sessions, instead of all. However, we can ex-
plore each attack scenario one by one by computing a state
space for each possible configuration. Note that it can be
seen that our configuration contains a fixed number of in-
stances for each fixed user role in each session.

(3) After the state space is obtained, attack states for
each kind of attacks are specified and searched in the state
space. An attack is characterized by a vulnerability event
which is an event potentially leading to a compromise of
protocols. Vulnerability events are protocol-dependent.

(4) When an attack state is found in the state space,
an attack trace is extracted from the state immediately. By
searching for all attack states of the same attack, all attack
traces of the same attack can be obtained without any path
searching. In other words, the computation for all attack
traces is reduced to the searching for attack states which can
be done very efficiently and linearly on the number of states.

(5) The number of attack traces obtained can be quite
large. We propose textual trace analysis technique to clas-
sify such a large number of attack traces. Those attack traces
are classified by using attack patterns which are minimal
but necessary protocol traces for an attack. The develop-
ment of an attack pattern is manual, because it is protocol-
dependent. But the attack classification is automatic. Attack
traces that contain the same attack pattern are classified into
the same group of attack traces. As a result, a large number
of attack traces is reduced to a reasonable number of attack
patterns which are easier to analyze.

5.2 Our Method for the Modified TMN

In this section, we discuss the assumptions of our protocol
analysis. We also describe vulnerability events of TMN, and
a configuration of the protocol execution.

Definition 1 (Assumptions of the protocol execution): The
following are the assumptions of the execution of the TMN
protocol.

1. There is one attacker (In). The attacker abilities are
based on Dolev and Yao’s attacker assumption [41], but
our attacker can modify any public-key cipher text by
using the homomorphic property. Such a modified ci-
pher text contains at most the multiplication of two
keys as its plain text. Also, the attacker is allowed to
create cipher texts by single encryption only, not by
multiple and nested encryption. More generally, the at-
tacker can create only messages with a bounded length.

2. For RSA public key encryption, we consider two prop-
erties: the homomorphic property and the commutative
of the multiplication.

3. We consider the execution of two different concurrent
sessions of the protocol where such execution can be
performed in an interleaving and non-sequential man-
ner between multiple sessions.

4. A well-behaved initiator and a well-behaved responder
are involved in one session only, but they may or may
not take part in the same session. While the server is
involved in two sessions, the attacker may involve in
up to two sessions.

5. The attacker has one secret (symmetric) key Ki.

In 3, we do not consider two identical sessions, since
the message replay between them does not produce any new
information but duplicates one and thus it is not useful for
an attack.

In 4, a well-behaved initiator and a well-behaved re-
sponder are involved only in one session amongst the con-
current two sessions, because we are interested mainly in
analyzing a man-in-the-middle attack where an attacker im-
personates the initiator and the responder in the remaining
session. Even though we assume that the server is involved
in the two sessions, our attacker can impersonate the server
in one session, two sessions or none.

Definition 2 (The finite analysis of all attack traces): Our
analysis of all attack traces is finite in that it is performed
in a finite setting where

• The length of messages that the attacker can create is
bounded.
• The number of concurrent sessions of protocols that the

attacker involves is bounded.

Therefore, our method produces a finite set of all at-
tack traces, because we consider the finite setting of attack
analysis. However, in general the set of all attack traces can
be infinite due to the unbounded length of messages and the
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unbounded number of sessions.
Attack states are characterized by vulnerability events.

For the TMN protocol, there are two basic vulnerability
events which are secret disclosure by an attacker and ses-
sion key commitment by initiator and responder. Based on
the two basic events, the following combined vulnerability
events can be created.

Definition 3 (Vulnerability events): There are three com-
bined vulnerability events for TMN.

1. The attacker learns Kab and Kaj, and both A and B com-
mit on Kab. [Kab,Kaj][Kab][Kab]

2. The attacker learns Kab and Kaj, and A is fooled to com-
mit on Ki, but B commits on Kab. [Kab,Kaj][Ki][Kab]

3. The attacker learns Kab and Kaj, and A is fooled to com-
mit on MK, but B commits on Kab where MK is a mul-
tiplicative key. [Kab,Kaj][MK][Kab]

We use the notation [KB1][KB2][KB3] to describe each
combined vulnerability event where KB1 stands for keys that
are known by the attacker, and KB2 and KB3 stands for keys
that are committed by users A and B, respectively, at the
completion of the protocol.

In event 1, the attacker learns all later communication
between A and B, because the attacker knows the session
key between A and B. In fact, events 2 and 3 can be seen
as a kind of man-in-the-middle attack in that the attacker
can impersonate B to A by using key Ki or MK, respectively,
while the attacker can impersonate A to B by using key Kab.

Definition 4 (Configuration): A configuration of a decom-
posed state space computation consists of ((S1, S2,. . . ,Sn),
Sch) and Si = (s,I,R,T,K) for 1≤i≤n where n is the number of
concurrent sessions, and

1. Si is a session information for the i-th session which
consists of

a. s is a session identity.
b. I, R and T are identities for an initiator, a respon-

der and a server, respectively.
c. K is a list of keys for each party (including at-

tacker) which consist of a pair of public and pri-
vate keys, and a shared key with a specific party

2. Sch is a multi-session schedule which means a specific
interleaving execution of multiple concurrent sessions
of protocol runs

We consider the following four configurations accord-
ing to our assumptions. Note that K and Sch are omitted for
simplicity.

1) (1,A,B,J) & (2,In,In,J)
2) (1,A,In,J) & (2,In,B,J)
3) (1,In,B,J) & (2,A,In,J)
4) (1,In,In,J) & (2,A,B,J)
Configuration (1,A,In,J) & (2,In,B,J) means that A and

B perform as initiator and responder in the first and second
session, respectively. The attacker In impersonates initiator
and responder in the second and first session, respectively.

In all configurations, we consider the multi-session schedule
for the man-in-the-middle attack [42].

5.3 Our CPN Model for the Modified TMN

Our CPN model extends Al-Azzoni et. al.’s CPN model [9]
to provide the analysis of all attack traces and the analysis
of multiple concurrent sessions. We refer to the work [9]
for the background on the basic structure of protocol and
attacker representation. In the following, we discuss some
main parts of our CPN model only.

Our CPN model consists of three main levels: top, en-
tity and control. The top level shows the interaction between
all parties including the attacker, and the entity level shows
the detailed behaviour of each party. The control level con-
trols the model execution according to an input configura-
tion. Figure 2 shows the top level. There are 4 entities in our
model which are A, B, J and attacker In. Exchanged mes-
sages at all protocol steps pass through the attacker In. Since
there are four steps in TMN, there are four corresponding
paths between relevant parties in the model. For example,
path <A, P1, In, P2, J> corresponds to protocol step 1.

We implement the on-the-fly trace generation in CPN
by recording incrementally into a state each message sent
by users and attackers. In CPN, a state is represented by
tokens at all places. So, to record a trace into a state, we
simply store all sent messages as tokens into a global place,
i.e. place ETrace.

Figure 3 shows the entity level of user A for the first
step of the protocol. Transition T1 is to compose a message
and transition T3 is to send the message to a communication
channel. The global place ETrace, which is adjacent to tran-
sition T3, stores a tuple (lk1, lk2, lk3, tr) where lk1, lk2 and
lk3 stand for [KB1], [KB2] and [KB3], respectively. Also,
tr stands for an attack trace which is represented by a list of
tuples (s, step, sid, rid, msg) where s is a session identity,
step is a protocol step number, sid is sender identity, rid is
receiver identity and msg is the sent message. When a new
message is sent, tr is appended with a new tuple for the new
message. Similarly, in other users’ model and the attacker
model, a transition which sends a message to a communica-
tion channel would record an attack trace tr with appropriate

Fig. 2 Top level.
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Fig. 3 User A.

Fig. 4 Attacker for step 1.

Fig. 5 Sub-attacker for step 1.

KB1, KB2 and KB3 into place ETrace.
For the attacker model, we create a CPN graph for each

protocol step. The attacker graph aims to intercept a mes-
sage at each step and to send a modified message instead.
Figure 4 shows a CPN graph for step 1. Transition T1 is to
intercept the message at step 1 from A, and transition T4 is
to send a modified message to J. Since the message can be

divided into two parts which are initiator identity and a pair
of responder identity and a cipher text, the attacker graph
for step 1 employs two attacker sub-graphs which are in-
tru i mi and intru m mi, respectively. Figure 5 shows the
graph for intru m mi. In the figure, transition T1 is to de-
compose the pair of messages, and transition T2 is to de-
crypt the cipher text. Note that the detail of transition T2
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is omitted here. Transitions T3 and T4 shows two ways to
compose a modified message at step 1 by using the homo-
morphic property. While T3 takes two existing cipher texts
from attacker’s database and multiplies them, T4 takes two
plain texts and a key from attacker’s database, multiplies the
plain texts and encrypts the result by the key.

The homomorphic property of RSA is modeled in our
CPN method by using the list data structure and some user-
defined functions. Both plain text and cipher text are rep-
resented by lists [M] and [(M,P)], respectively, where M is
the original plain text in the protocol, P is a public key, and
then [(M,P)] is a cipher text of message M by key P. The
multiplication modulo public modulus is represented by the
list concatenation (ˆˆ). The encryption function is defined as
follows.

EP([M1,. . . ,Mn]) = [(M1,P),. . . ,(Mn,P)] where n ≥ 1.
When n=1, we obtain a cipher text [(M,P)]. When n>1,

we obtain the list [(M1,P),. . . ,(Mn,P)] which represents the
multiplication of cipher texts.

The homomorphic property discussed in 2.1 is obtained
in our method as follows.

EP([M1])ˆˆEP([M2]) = EP([M1]ˆˆ[M2])
It should be noted that the commutative of the multi-

plication holds due to the commutative of elements in the
list.

It is assumed that plain text M cannot be extracted di-
rectly from cipher text [(M,P)]. But M can be obtained from
the cipher text if the corresponding private key is given to a
decryption function.

In our model shown in Fig. 5, we use two user-defined
functions modf and en which represent the multiplication
and encryption function E, respectively. Also, t stands for
the number of terms taken for the multiplication.

To specify a configuration, we use four tokens: fss, ak,
bk and a multi-session schedule token. Tokens fss, ak and
bk are stored in place Conf in Figs. 3 and 4, but the multi-
session schedule is stored in place Sche in Fig. 6. Token
fss(s,i1,i2,i3,i4) contains information about actual initiator
identity i1, actual responder identity i2, impersonated ini-
tiator identity i3 and impersonated responder identity i4 in
session s. Tokens ak(i1,k1) and bk(i2,k2) contain initiator’s
secret key k1 for responder i1 and responder’s session key
k2 for initiator i2, respectively. The multi-session schedule
is represented by list of session identities [s1, s2, . . . , sn]
which stands for a specific interleaving execution of a pro-
tocol step between multiple sessions in the order specified
by the list.

To compute a decomposed state space by a configura-
tion, we employ the control level. The control level shown in
Fig. 6 schedules the interleaving execution of multiple ses-
sions according to the input schedule. When session s is
scheduled for execution of a single protocol step, the control
graph would inform all other graphs by creating in place S
session state token (s,sp,st), where st is a session status and
sp is the current protocol step number to be executed, with
ready status. The execution of a protocol step involves three
graph models which represent the sender, the attacker and

Fig. 6 Control level.

the receiver of the step. After the receiver has stored the
received message from the sender into her database, the ses-
sion state token is set to inactive status. Then, the control is
passed back to the control graph to perform further schedul-
ing.

5.4 Searching for Attack States in a State Space

The state space computation is done by using state space
tools provided by CPNTools. After a decomposed state
space is obtained, we search for attack states in the state
space by running CPN-ML programs which extract speci-
fied nodes from the state space. In fact, our programs com-
pute attack states for each vulnerability event.

The following program finds states where the attacker
knows some key. In other words, it finds states for [KB1].

val LeafNodes=ListDeadMarkings();
fun SecrecyViolation1(k:LK) :
Node list
= PredNodes(LeafNodes,

fn n => (cf(cK(k), Mark.SymDec’P3 1 n) > 0),
NoLimit);

SecrecyViolation1(Kab) produces a set of all terminal
states in the state space where the key Kab is in the attacker’s
database. The terminal states are states which do not have
any further computation, and they mean states at the end of
protocol execution. The end of protocol execution means
either the normal termination after the last protocol step or
an abnormal termination where the latter is caused by the at-
tacker who may drop or tamper with messages during trans-
mission. It is sufficient to consider terminal states instead of
all states, since the attacker’s database on keys is never de-
creased and likewise for user A’s database on an exchanged
session key. Therefore, there is no loss of data at terminal
states. Also, in many cases we obtain full details of attack
traces at terminal states.

Function (Mark.SymDec’P3 1 n) returns a multi-set of
tokens at place P3 in page SymDec in state n, and they mean
data in attacker’s database. cK is a constructor used to indi-
cate a key in attacker’s database. Function cf(c,ms) produces
the number of appearance of token colour c in multi-set ms.
Also, function PredNodes(a,p,l) searches area a with search
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limit l and produces a list of all nodes that satisfy boolean
function p. Further details about functions used in this pro-
gram can be found at CPNTools [33].

There is a similar program to the above program, but
it computes states where user A accepts some key as a ses-
sion key at the last protocol step. By taking the intersection
between the results from the two programs, we obtain at-
tack states for our vulnerability events. Note that there is no
need to compute states where user B accepts a key as a ses-
sion key, since B accepts only her own generated key which
is Kab.

Due to reasons of space, we omit the details on the ex-
traction of all attack traces from states and the attack classi-
fication.

5.5 New Attacks in TMN

We argue that the analysis of all attack traces is important in
that it helps us to discover all possible ways to attack proto-
cols. In the modified TMN, the analysis shows all possible
ways that the attacker can modify messages using the homo-
morphic property to evade the detection of the replay attack
by the server and compromise the protocol. We found two
new kinds of attacks. While Simmons’s attack exploits the
homomorphic property at step 1, our two new attacks ex-
ploit the homomorphic property at step 3 and at steps 1 and
3, respectively.

In the first kind of our new attacks, there are two cate-
gories. The first category is the attack at step 3 in one session
while the second category is the attack at step 3 in two ses-
sions. Below, attacks 1.1.1 - 1.1.3 and 1.2.1 - 1.2.3 are in
the first and second categories, respectively, of the first kind
of attacks. Also, in the following, we describe all attacks
in two multiple sessions of protocols where, in the first ses-
sion, A communicates with B, but in the second session, the
attacker impersonates both A and B to server J.

There are three vulnerability events for attacks in the
first category of the first kind. In the following, we show an
attack for vulnerability event 2.

Attack 1.1.1
1) A→ J : (B, {Kaj}PK-J), A
1’) In(A)→ J : (B, {Ki}PK-J), A
2’) J→ In(B) : A
2) J→ B : A
3) B→ In(J) : (A, {Kab}PK-J), B

In(J)→ J : (A, {Ki}PK-J), B
3’) In(B)→ J : (A, {Kab×Ki}PK-J), B
4’) J→ In(A) : B, EKi(Kab×Ki)
4) J→ A : B, EKaj(Ki)
In step 3), the cipher text {Kab}PK-J that is sent by

B is intercepted by attacker, and it is replaced by cipher
text {Ki}PK-J which is delivered to J. Since {Kaj}PK-J and
{Ki}PK-J are delivered to J at steps (1) and (3), respectively,
then cipher text EKaj(Ki) is created and sent to A. As a re-
sult, A is fooled to commit on a fake session key Ki. It can
be seen that the attack exploits the homomorphic property
at step 3’) of the second session.

In the following, we show an attack for vulnerability
event 1 for the first category of the first kind.

Attack 1.1.2
1) A→ In(J) : (B, {Kaj}PK-J), A

In(J)→ J : (B, {Ki}PK-J), A
1’) In(A)→ J : (B, {Kaj}PK-J), A
2’) J→ In(B) : A
2) J→ B : A
3) B→ In(J) : (A, {Kab}PK-J), B

In(J)→ J : (A, {Kaj}PK-J), B
3’) In(B)→ J : (A, {Kab×Kaj}PK-J), B
4’) J→ In(A) : B, EKaj(Kab×Kaj)
4) J→ In(A) : B, EKi(Kaj)

In(A)→ A : B, EKaj(Kab)
This attack also demonstrates another way to modify

message at step 3’) by using the homomorphic property.
After steps (4) and (4’), the attacker learns all secrets Kaj

and Kab. Then, the attacker can create cipher text EKaj(Kab)
which is sent to A at step (4). So, A commits on the correct
session key.

In the following, we show an attack for vulnerability
event 3 for the first category of the first kind of attacks. In
this attack, the attacker fools A to commit on a multiplicative
key (MK). There are many possible multiplicative keys and
in the following, we show the third attack for multiplicative
key (Kaj×Kab).

Attack 1.1.3
1) A→ J : (B, {Kaj}PK-J), A
1’) In(A)→ J : (B, {Ki}PK-J), A
2’) J→ In(B) : A
2) J→ B : A
3) B→ J : (A, {Kab}PK-J), B
3’) In(B)→ J : (A, {Kaj×Ki}PK-J), B
4’) J→ In(A) : B, EKi(Kaj×Ki)
4) J→ In(A) : B, EKaj(Kab)

In(A)→ A : B, EKaj(Kaj×Kab)
This attack demonstrates another way to modify mes-

sage at step 3’) by using the homomorphic property. Af-
ter steps (4) and (4’), the attacker learns all secrets Kaj and
Kab. Then, the attacker can create cipher text EKaj(Kaj×Kab)
which is sent to A at step (4). So, A commits on a fake ses-
sion key. This attack is different from attack 1.1.1 in that the
attacker does not have to disclose his own secret Ki to A.

For the second category of the first kind of attacks,
there are also three vulnerability events. In the following,
we discuss an attack for vulnerability event 2.

Attack 1.2.1
1) A→ J : (B, {Kaj}PK-J), A
1’) In(A)→ J : (B, {Ki}PK-J), A
2’) J→ In(B) : A
2) J→ B : A
3) B→ In(J) : (A, {Kab}PK-J), B

In(J)→ J : (A, {Kab×Ki}PK-J), B
3’) In(B)→ J : (A, {Kaj×Ki}PK-J), B
4’) J→ In(A) : B, EKi(Kaj×Ki)
4) J→ In(A) : B, EKaj(Kab×Ki)

In(A)→ A : B, EKaj(Ki)
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It is important to note that the attacker modifies mes-
sages at step 3 in two sessions by using the homomorphic
property. We also find a variant of Simmons’s attack where
the homomorphic modification occurs at step 1) in two ses-
sions.

We show an attack for vulnerability event 1 of the sec-
ond category of the first kind in the following. All steps in
the attack are identical to attack 1.2.1, except for the follow-
ing step 4.

Attack 1.2.2
4) J→ In(A) : B, EKaj(Kab×Ki)

In(A)→ A : B, EKaj(Kab)
In the following, we show an attack for vulnerability

event 3 in the second category. All steps in the attack are
identical to attack 1.2.1, except for the following step 4.

Attack 1.2.3
4) J→ In(A) : B, EKaj(Kab×Ki)

In(A)→ A : B, EKaj(Kaj×Kab)
There are many possible multiplicative keys that the

attacker can fool A to commit. But in this attack, we show
for multiplicative key (Kaj×Kab).

Next, we discuss attacks in the second kind which ex-
ploits the homomorphic property at steps 1 and 3. Also,
there are two categories of the second kind of attacks. The
first category is the attack at steps (1) and (3) in the same
session while the second is the attack at steps (1) and (3) in
two different sessions. However, both categories lead to the
three vulnerability events. Below, attacks 2.1.1 - 2.1.3 and
2.2.1 - 2.2.4 are in the first and second categories, respec-
tively, of the second kind of attacks.

The following shows an attack for vulnerability event
2 of the first category.

Attack 2.1.1
1) A→ J : (B, {Kaj}PK-J), A
1’) In(A)→ J : (B, {Kaj×Ki}PK-J), A
2’) J→ In(B) : A
2) J→ B : A
3) B→ In(J) : (A, {Kab}PK-J), B

In(J)→ J : (A, {Ki}PK-J), B
3’) In(B)→ J : (A, {Kab×Kaj}PK-J), B
4’) J→ In(A) : B, E(Kaj×Ki)(Kab×Kaj)
4) J→ A : B, EKaj(Ki)
It should be noted that the attacker modifies messages

at steps (1’) and (3’) in the second session by using the ho-
momorphic property. Since {Kaj}PK-J and {Ki}PK-J are de-
livered to J at steps (1) and (3), respectively, A is fooled to
commit on fake session key Ki by cipher text EKaj(Ki) at step
(4).

The following attack leads to vulnerability event 1 of
the first category.

Attack 2.1.2
1) A→ In(J) : (B, {Kaj}PK-J), A

In(J)→ J : (B, {Ki}PK-J), A
1’) In(A)→ J : (B, {Kaj×Ki}PK-J), A
2’) J→ In(B) : A
2) J→ B : A
3) B→ In(J) : (A, {Kab}PK-J), B

In(J)→ J : (A, {Kaj}PK-J), B
3’) In(B)→ J : (A, {Kab×Ki}PK-J), B
4’) J→ In(A) : B, E(Kaj×Ki)(Kab×Ki)
4) J→ In(A) : B, EKi(Kaj)

In(A)→ A : B, EKaj(Kab)
This attack also demonstrates another way to modify

messages at steps (1’) and (3’) by using the homomorphic
property. After steps (4) and (4’), the attacker learns all se-
crets Kaj and Kab. Then, the attacker can create cipher text
EKaj(Kab) which is sent to A at step (4). Then A commits on
the correct session key.

In the following, we show an attack for vulnerability
event 3 in the second category. All steps in the attack are
identical to attack 2.1.2, except for the following step 4.

Attack 2.1.3
4) J→ In(A) : B, EKi(Kaj)

In(A)→ A : B, EKaj(Kaj×Kab)
For the second category of the second kind of attacks,

there are also three vulnerability events. In the following,
we discuss an attack for vulnerability event 2.

Attack 2.2.1
1) A→ In(J) : (B, {Kaj}PK-J), A

In(J)→ J : (B, {Ki}PK-J), A
1’) In(A)→ J : (B, {Kaj×Ki}PK-J), A
2’) J→ In(B) : A
2) J→ B : A
3) B→ In(J) : (A, {Kab}PK-J), B

In(J)→ J : (A, {Kaj×Ki}PK-J), B
3’) In(B)→ J : (A, {Kab}PK-J), B
4’) J→ In(A) : B, E(Kaj×Ki)(Kab)
4) J→ In(A) : B, EKi(Kaj×Ki)

In(A)→ A : B, EKaj(Ki)
It should be noted that the attacker modifies the mes-

sage at steps (1’) in the second session and message at step
(3) in the first session by using the homomorphic property.

In the following, we show an attack for vulnerability
event 1.

Attack 2.2.2
1) A→ In(J) : (B, {Kaj}PK-J), A

In(J)→ J : (B, {Kaj×Ki}PK-J), A
1’) In(A)→ J : (B, {Ki}PK-J), A
2’) J→ In(B) : A
2) J→ B : A
3) B→ J : (A, {Kab}PK-J), B
3’) In(B)→ J : (A, {Kab×Ki}PK-J), B
4’) J→ In(A) : B, EKi(Kab×Ki)
4) J→ In(A) : B, E(Kaj×Ki)(Kab)

In(A)→ A : B, EKaj(Kab)
This attack also demonstrates another way to modify

messages at steps (1) and (3) in two different sessions by
using the homomorphic property. In this attack, the message
at step (1) is modified in the first session, and the message
at step (3’) is modified in the second session.

In the following, we show an attack for vulnerability
event 3.

Attack 2.2.3
1) A→ J : (B, {Kaj}PK-J), A
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1’) In(A)→ J : (B, {Kaj×Ki}PK-J), A
2’) J→ In(B) : A
2) J→ B : A
3) B→ In(J) : (A, {Kab}PK-J), B

In(J)→ J : (A, {Kaj×Kab}PK-J), B
3’) In(B)→ J : (A, {Ki}PK-J), B
4’) J→ In(A) : B, E(Kaj×Ki)(Ki)
4) J→ In(A) : B, EKaj(Kaj × Kab)
Since {Kaj}PK-J and {Kaj×Kab}PK-J are delivered to J

at step 1 and 3, respectively, then A commit to multiplicative
key Kaj×Kab as a session key by cipher text EKaj(Kaj×Kab)
at step 4.

There is another interesting variant of attack 2.2.1
where the attacker modifies message at step (1) in a session
and also modifies messages at step (3) in two sessions. This
variant belongs to the second category of the second attack
since the message modification at steps (1) and (3) occurs in
two different sessions.

Attack 2.2.4
1) A→ In(J) : (B, {Kaj}PK-J), A

In(J)→ J : (B, {Kaj×Ki}PK-J), A
1’) In(A)→ J : (B, {Ki}PK-J), A
2’) J→ In(B) : A
2) J→ B : A
3) B→ In(J) : (A, {Kab}PK-J), B

In(J)→ J : (A, {Kaj×Kab}PK-J), B
3’) In(B)→ J : (A, {Kaj×Ki}PK-J), B
4’) J→ In(A) : B, EKi(Kaj×Ki)
4) J→ In(A) : B, E(Kaj×Ki)(Kaj×Kab)

In(A)→ A : B, EKaj(Ki)
It can be seen that the attacker modifies the message at

step (1) in the first session, but modifies messages at step (3)
in two sessions.

In fact, there are many variants of attacks discussed
above, but those variants are slightly different from the at-
tacks shown. We omit them for reasons of space.

5.6 Performance

In this section, we compare the results between our on-the-
fly and the off-the-fly trace generation methods both of which
are implemented in CPNTools model checker. The experi-
ment is done by using CPNTools version 3.0 and a PC with
Intel Core2 Duo 2.33 Ghz and 2 GB of RAM.

In Table 1, we show the comparison of the sizes of the
state spaces between the two methods for the four configu-
rations. The four configurations are discussed in Sect. 5.2.
In the worst case, the number of states and arcs in the on-
the-fly method are increased for 39% and 33%, respectively.

Table 1 The comparison of the sizes of state spaces.

Config On-the-fly Off-the-fly Inc %
nodes arcs nodes arcs n a

1) 175,691 187,986 126,536 141,171 39 33
2) 95,513 102,990 70,319 78,807 36 31
3) 47,979 51,188 40,830 44,840 18 14
4) 24,755 26,905 21,197 23,707 17 13

However, in the best case the number of states and arcs are
increased for only 17% and 13%, respectively. In the table,
n and a mean the increment percentage (Inc%) of nodes and
arcs, respectively, in the on-the-fly method when comparing
with the off-the-fly method.

In Table 2, we compare the computation times for state
spaces between the two methods for the two configurations
which are for the largest and the smallest number of states.
Also, we compare the computation times for attack traces
(tr) and for both state spaces and traces (total) in Tables 3
and 4. In Tables 3 and 4, events (ev) 1 and 2 correspond to
vulnerability events 1 and 2, respectively. But events (ev)
4, 5 and 6 are events other than vulnerability events 1 and
2 where the attacker learns Kab, Kaj and both Kab and Kaj,
respectively. Note that vulnerability event 3 is included in
event 6. Also, in Tables 3 and 4, Imp% stands for the im-
provement or reduced percentage of the total computation
times in the on-the-fly method when comparing with the off-
the-fly method.

It is clear that our on-the-fly method improves the over-
all computation times tremendously. When the numbers of
states and traces are large, for example in event 5 of Ta-
ble 3, it takes about 29 minutes (1,749 sec.) in our method,
but about 25 hours (89,960 sec.) in the off-the-fly method. It
should be noted that the off-the-fly trace generation method
requires a large amount of time, because it searches all paths
between an initial state and each attack state. As discussed
in Sect. 3.1, the search of all paths can be considered as a
main part of the solutions to the traveling salesman problem
which is known to be NP-complete. When the numbers of
states and traces are small, for example in event 1 of Ta-
ble 3, it takes about 37 seconds in our method, but about 49

Table 2 The comparison of the computation times in seconds for state
spaces for two configurations.

Config On-the-fly Off-the-fly
1) (1,A,B,J)&(2,In,In,J) 1,737 655
4) (1,In,In,J)&(2,A,B,J) 37 21

Table 3 The comparison of the total computation times in seconds for
configuration (1,A,B,J)&(2,In,In,J).

Ev Attack On-the-fly Off-the-fly Imp %
Traces tr total tr total

1 1,068 1 1,738 8,541 9,196 429
2 1,068 1 1,738 8,860 9,515 447
4 8,460 7 1,744 65,499 66,154 3,693
5 11,676 12 1,749 89,305 89,960 5,043
6 7,668 6 1,743 59,670 60,325 3,360

Table 4 The comparison of the total computation times in seconds for
configuration (1,In,In,J)&(2,A,B,J).

Ev Attack On-the-fly Off-the-fly Imp %
Traces tr total tr total

1 18 0 37 28 49 32
2 0 - - - - -
4 342 1 38 392 413 986
5 1,056 1 38 1,380 1,401 3,586
6 342 1 38 394 415 992
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seconds in the off-the-fly method.
Indeed, our on-the-fly method requires more times for

state space computation, but the off-the-fly method requires
much more times for trace generation. It should be no-
ticed that in Tables 3 and 4, when the number of traces
is increased, the time for trace generation in the off-the-fly
method grows greatly, but the time for trace generation in
our method is almost constant. Even though our on-the-
fly method requires a larger state space than the off-the-fly
method, our method offers a much faster trace computation.
In particular, the size of a state space in our method is in-
creased at most 39%, but the total computation times in our
method are reduced, at best, 5,043%.

5.7 Analysis

As discussed in Sect. 5.1, our on-the-fly trace generation
method requires a greater number of states than the off-
the-fly method, when there are states that can be reached
by different attack traces in the off-the-fly method. Those
states are called merging states. Recall that each state in our
method stores only one attack trace. Thus, a merging state
reachable by multiple attack traces is divided into multiple
states in our method. In fact, the more merging states there
are in the off-the-fly method, the larger number of states the
on-the-fly method has. From here on, merging states refer to
the off-the-fly method, but the division of the states refers to
the on-the-fly method.

Merging states are caused by the removal of differ-
ent information in previous states, which results in identical
states. For example, if two states are different on some data
and a transition which occurs at the states removes the data,
then two states are merged into the same next state. On the
other hand, if the information in states is added with vari-
ous possibilities after some transitions, then those states are
split into multiple next states according to the possibilities.
In general, a state contains two main kinds of information:
messages exchanged between all entities and data stored at
each entity’s database where an entity means a user or an at-
tacker. Since sent messages are usually stored at receivers’
databases, the information in a state can be characterized
mainly by data at all entities’ databases. Therefore, the re-
moval of such data that cause the difference between states
is responsible for merging states. We assume below that any
removal of the data will result in merging states.

Data at attacker’s database are never removed, since
the attacker always keeps those data for attacking protocols
subsequently. However, data at users’ databases may be re-
moved, since those users want to minimize their resources
as soon as they finish their tasks in the protocol. For exam-
ple, in a general authenticated key exchange protocol, while
a server does not keep any data in a session after the com-
pletion of its tasks in the session, initiators and responders
keep exchanged session keys and related session informa-
tion within their databases for further communications be-
tween them.

If the information in users’ databases is removed at an

earlier protocol step, then the on-the-fly method requires a
larger number of states. This is because the removal at an
earlier step results in merging states nearer to the top of the
state space. Then, the division of the merging states requires
a large number of additional states, because states below the
merging states need to be copied in order to store different
attack traces. Thus, the higher position the merging state is,
the larger number of additional states the on-the-fly method
requires. However, the division of merging states near to the
bottom of the state space does not require many additional
states, since there are not many states at the bottom.

In general, the protocol step in which data in users’
databases are removed can be determined by the last step
that a server is involved in a protocol. If the last step is
near to the end of a protocol, then the number of additional
states required in the on-the-fly method is small due to the
occurrence of merging states near to the bottom of a state
space. Otherwise, the number of additional states required
can be very large.

In TMN, initiator A and responder B keep their data
after the end of session execution, but server J removes ses-
sion data after J sends the message at step 4. During the
session execution, server maintains session information (src,
dest, k1, k2, s) where src is an initiator identity, dest is a re-
sponder identity, k1 is initiator’s secret sent at step 1 and k2
is a session key sent by the responder at step 3 and s is a
session identity. Before the session information is removed
from J’s database, the message at step 4, which contains
dest and a cipher text generated by k1 and k2, is sent to and
stored at A. Thus, only some session information such as
src and s is removed from users’ databases. Note that the
removed session information causes the difference between
states. Since the removal occurs at the last step, the number
of additional states required is not too much.

We have examined protocols in the Clark/Jacob li-
brary [1] to discuss the generality of our method. We found
that there is no removal of the data in 23 protocols, but there
is some removal in 18 protocols. In the latter, the removal
takes place at either the last step or the next-to-the last step
for 8 protocols, and the removal occurs between the first
step and step n/2, where n is the total number of steps in
each protocol, for 4 protocols. Thus, in 31 out of 41 proto-
cols the number of additional states required in the on-the-fly
method should be acceptable. Also, it is in only 4 protocols
that the number of additional states in our method would be
very high.

6. Discussion

We do not claim that our tool is the fastest. But we would
like to point out the advantage of the on-the-fly trace gen-
eration over the off-the-fly trace generation in terms of the
computation times. Note that the off-the-fly trace genera-
tion can be considered as a conventional method to compute
all attack traces. In addition, we believe that many existing
model checking methods can be extended to deal with the
analysis of all attack traces. But, currently, most of them
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provide only the analysis of a single attack trace. So it is
our objective in this paper to point out the importance of the
analysis of all attack traces and to show the practical use of
this method as discussed above.

As a future work, we aim to optimize the memory re-
quirement for the state space in the on-the-fly trace genera-
tion. Also, we aim to explore other algebraic properties of
encryption algorithms in other protocols.

7. Conclusion

The comprehensive analysis of all attack traces for crypto-
graphic protocols has not received adequate attention in the
literature. In this paper, therefore, we would like to empha-
size the importance of the analysis and show its use when
analyzing algebraic properties of the underlying encryption
algorithm in protocols. In particular, in this paper, we ex-
tend our previous method to analyze some algebraic proper-
ties of the underlying encryption algorithm in cryptographic
protocols. Then we apply it to TMN protocol. As a result,
we found two new attacks. The result also shows that our
method improves over the conventional method with respect
to the total computation times, by 5,043% in the best case.
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Appendix: Detailed Comparison between Our Method
and Scyther

In the following, we discuss the comparison between our
method and Scyther for analyzing TMN with black box en-
cryption. Also, we deal with the situation of the man-in-the-
middle attack [42] where there is 1 instance of initiator, 1
instance of responder and 2 instances of server. In Scyther,
we chose 4 runs and computed for all attacks in the search
pruning option. We found 10 attacks for vulnerability event
1, but Scyther found 3 attacks only. The 3 attacks can be
found by our method by using two configurations: one with
the schedule for the man-in-the-middle attack [37] and the
other with the schedule for two sequential sessions. The fol-
lowing is one of the attacks that is not found by Scyther, but
found by our method.

1) A→ In(J) : (B, {Kaj}PK-J), A
In(J)→ J : (B, {Ki}PK-J), A

1’) In(A)→ J : (B, {Kaj}PK-J), A
2’) J→ In(B) : A
2) J→ In(B) : A

In(B)→ B : A
3) B→ J : (A, {Kab}PK-J), B
3’) In(B)→ J : (A, {Ki}PK-J), B
4’) J→ In(A) : B, EKaj(Ki)
4) J→ In(A) : B, EKi(Kab)

In(A)→ A : B, EKaj(Kab)
where Ki is attacker’s secret key.

In the first session, Ki and Kab are encrypted at steps
1 and 3, respectively, and in the second session, Kaj and
Ki are encrypted at steps 1 and 3, respectively. This can
be represented by (<Ki,Kab>,<Kaj,Ki>) where the notation
(<k1,k3>,<k1’,k3’>) means that k1 and k3 are keys en-
crypted by J’s public key at steps 1 and 3, respectively, in
the 1st session, and k1’ and k3’ are those keys in the 2nd
session. Indeed, the 10 attacks found by us are all possi-
ble attacks in the setting of the man-in-the-middle attack
and the bounded execution. The 3 attacks found by Scyther
can be represented in general by (<Kaj,Kab>,<Ki,Kaj>),
(<Kaj,Kab>,<Ki,Kab>) and (<Ki,Kaj>,<Kaj,Kab>) where the
first two attacks occur in the schedule for the man-in-the-
middle attack, and the last attack occurs in the schedule for
two sequential sessions.

Also, we found 10 attacks for vulnerability event
2, but Scyther found only 1 attack. In addition, we
found 10 attacks for the vulnerability event described by
[Kaj,Kab][Kaj][Kab] where the attacker fools A to commit
on fake key Kaj. But Scyther found none. The following
shows one of the attacks.

1) A→ In(J) : (B, {Kaj}PK-J), A
In(J)→ J : (B, {Ki}PK-J), A

1’) In(A)→ J : (B, {Ki}PK-J), A
2’) J→ In(B) : A
2) J→ In(B) : A

In(B)→ B : A
3) B→ J : (A, {Kab}PK-J), B
3’) In(B)→ J : (A, {Kaj}PK-J), B
4’) J→ In(A) : B, EKi(Kaj)
4) J→ In(A) : B, EKi(Kab)

In(A)→ A : B, EKaj(Kaj)
The detail of our attacks for TMN with black box en-

cryption can be found in [37].
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