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SUMMARY  Accurate estimation of Software Code Size is important
for developing cost-efficient embedded systems. The Code Size affects the
amount of system resources needed, like ROM and RAM memory, and
processing capacity. In our previous work, we have estimated the Code
Size based on CFP (COSMIC Function Points) within 15% accuracy, with
the purpose of deciding how much ROM memory to fit into products with
high cost pressure. Our manual CFP measurement process would require
2.5 man years to estimate the ROM size required in a typical car. In this
paper, we want to investigate how the manual effort involved in estimation
of Code Size can be minimized. We define a UML Profile capturing all
information needed for estimation of Code Size, and develop a tool for
automated estimation of Code Size based on CFP. A case study will show
how UML models save manual effort in a realistic case.

key words: UML Profile, UML components, software components, func-
tional size measurement, code size estimation

1. Introduction

Early and accurate estimation of Software Code Size is im-
portant for developing cost-efficient embedded systems. For
this type of system the software and hardware must be de-
veloped in parallel due to time-to-market constraints. Ex-
amples are cars, cell phones, washing machines, etc. The
Code Size affects the amount of system resources needed,
like ROM and RAM memory, and processing capacity. Sys-
tems containing too much memory or processing capacity
are more expensive than they need to be. Systems contain-
ing too little memory or processing capacity may need a re-
design after only a part of its expected lifetime.

In our previous work, we have estimated the Code Size
based on CFP (COSMIC Function Points) within 15% ac-
curacy [23]-[28]. Our results were obtained using software
implementations developed by the automotive companies
Saab and GM (General Motors). The accuracy of the es-
timated values is important because the purpose was to de-
cide how much ROM memory to fit into ECUs (Electronic
Control Unit, an embedded computer) in products with high
cost pressure. Our manual CFP measurement process used
UML components and textual information from requirement
specifications, which would require up to 2.5 man years of
effort to obtain the CFP value for the application software
embedded in a typical Saab car.
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In this paper, we want to investigate how the manual ef-
fort involved in estimation of Code Size can be minimized.
The UML components provide some (but not all) of the in-
formation needed for estimation of Code Size. Therefore,
we define a UML Profile capturing all information needed
for estimation of Code Size [29], and develop a tool for au-
tomated estimation of Code Size based on CFP[30]. Be-
sides the increased efficiency obtained by our model-based
and automated estimation approach, we expect to increase
repeatability and consistency in the estimation process com-
pared to a manual approach.

In order to investigate if our approach solves our prob-
lem, we formulated the following research questions;

RQI: “How can UML support in modeling all information
needed for automated estimation of Software Code Size?”
RQ2: “How much manual effort can be saved by modeling
all information needed for automated estimation of Software
Code Size?”

We conduct a case study using requirement specifica-
tions and software implementations from the automotive in-
dustry to answer the research questions.

The contribution of this paper is a complete descrip-
tion of our model-based and automated estimation approach,
and an explanation about how the UML Profile [29] and the
CompSize tool [30] fit together. In addition, we aim to pro-
vide enough details to enable other researchers and practi-
tioners to apply our approach.

The rest of this paper is organized as follows: The next
section provides background information about the COS-
MIC method. Section 3 defines the UML Profile, and Sect. 4
presents the tool. Section 5 describes the case study, and
Sect. 6 evaluates threats to validity. Sections 7 and 8 contain
related work, and conclusions.

2. Background

This section presents enough information about Functional
Size Measurement and the COSMIC method to understand
the rest of the paper.

Functional Size is defined as “size of the software de-
rived by quantifying the Functional User Requirements” [1].
FUR (Functional User Requirement) describes what the
software is expected to do for its users. Examples are
data transfer, data transformation, data storage, and data re-
trieval. Functional Size is independent of software language
and development methods.

There are several FSM methods available. The original
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method was described by Albrecht 1979 [2]-[4]. A compre-
hensive literature survey covering several methods is found
in [9]. Some of them are IFPUG FPA (Function Point Anal-
ysis) [12], and COSMIC Function Points (CFP) [1], [19] to
name a few. The typical usage of FSM is development cost
estimation and project planning. In our work, CFP is cho-
sen because it is known to be suitable for real-time software,
like automotive systems [1], and it is a “second generation”
method, complying with the ISO/IEC 14143-1:2007 stan-
dard for FSM methods [13]-[18].

The COSMIC Method defines a standardized measure
of software Functional Size expressed in CFP units. The
measurement is carried out in three phases; the strategy
phase defines the purpose of the measurement and scope of
the software to be measured, the mapping phase maps the
FUR of the software to be measured onto functional pro-
cesses in the software component of the COSMIC Generic
Software Model (shown in Fig. 1), and the measurement
phase counts the data movements contained in each func-
tional process. By defining the purpose of the measurement
and scope of the software to be measured during the strat-
egy phase, we identify the level of decomposition and level
of granularity of the software to be measured. The level of
decomposition points out a particular level in a software —
component — sub-component hierarchy. The level of granu-
larity concerns the amount of details defined about the FUR.
Both aspects are important when comparing different CFP
values to each-other.

As can be seen in Fig. 1, there are four different data
movement types. Entry types move data across the bound-
ary and into the functional process. Exit types move data
across the boundary to a user. Read types move data from
persistent storage to the functional process. Write types
move data from the functional process to persistent stor-
age. Persistent storage (Storage Hardware in Fig. 1) enables
a functional process to store data from one execution cycle
to another. Each data movement is equivalent to 1 CFP, and
operates on a common set of attributes.

In our previous work [27], we have identified factors
to use for categorization of software in our domain. The
categorization is important to increase the estimation accu-
racy, by using historical data from implementations of sim-
ilar software. This way we can capture algorithmic com-
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Fig.1  The generic software model of COSMIC.
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plexity and manipulation of large amounts of data, although
COSMIC cannot measure this directly.

To summarize this section, we conclude that the main
concepts we need to consider in COSMIC are the Generic
Software Model (containing users, boundary, functional
processes, and data movement types), the level of decompo-
sition, and the level of granularity. In addition, categoriza-
tion of software is important for estimation of Code Size.
How these concepts can be modeled in UML will be de-
scribed in the next section.

3. A UML Profile for Code Size Estimation Based on
COSMIC

Our goal is to define how to model the COSMIC Generic
Software Model using UML. We have chosen UML be-
cause it is commonly used for system architecture and soft-
ware development, and it was already in use at Saab and
GM. UML components [32], [37] have a natural boundary
between the software and its users, in a similar way as in
COSMIC. If we view the UML component as the COSMIC
Generic Software Model (see Fig. 1), then we can view the
Entry data movements as operations in required interfaces
and Exit data movements as operations in provided inter-
faces.

The UML components do not capture the Read and
Write data movements. Our idea is to capture these data
movements by a UML class representing this information
within the components. Each attribute of this class rep-
resents data that can be read, written, or both to/from
memory. To achieve this we extend the Property in the
meta-model [33] with the stereotype CompSizeProperty, see
Fig.2. We give the stereotype CompSizeProperty the at-
tribute “direction” to model Read and Write data move-
ments. The value “in” represents Read data movements and
the value “out” represents Write data movements. The value
“inout” represents a combined Read and Write data move-
ment, which will be counted as 2 CFP.

Now we can represent all the data movements of COS-
MIC using UML components and our extended classes con-
taining attributes with direction. UML components are of-
ten used to model complex systems by decomposing a larger
software system into smaller parts. In this case we only need
to extend the components with a class representing the Read
and Write data movements to obtain software models which
can be measured by COSMIC.

We can represent the COSMIC Generic Software
Model using UML models, and from the models we can ob-
tain CFP values. But how many bytes will 1 CFP represent?

<<stereotype>> ‘
CompSizeProperty direction

<<enumeration>>

<<Metaclass>> l

Property

in
out
inout

Fig.2  The CompSizeProperty stereotype.
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<<Metaclass>> 4 . <<ss'cgre(§)type>>
Component ompSizeComponent
functionality: String
decomposition_level:String
granularity_level:String

Fig.3  The CompSizeComponent stereotype.

This might depend on several factors such as the decompo-
sition level of the component, compilers used, type of func-
tionality, development methods & tools, etc. These factors
can be used to categorize the components into groups con-
taining components of similar type. Here we will consider
two key factors in some detail: level of decomposition and
type of functionality.

In domains where components are used at different
levels of decomposition, it has to be clearly marked for
each component which level of decomposition the compo-
nent belongs to. For example, components that describe the
top level architecture can contain several other components
and will therefore in most cases correspond to more code,
compared to components on a lower level only containing
classes. In the case study we will present later in this paper,
all the components are specified at the same level of decom-
position.

Another factor which might be important is the type of
functionality. This factor is of particular importance if the
different types of functionality correspond to different byte
sizes. This factor gives the possibility to take into account
the algorithmic complexity of the components. For the au-
tomotive domain we have shown that categorizing the com-
ponents into groups of similar components is one of the key
factors for our good estimation results [27], [28].

To be able to model the categorization information, we
extend the Metaclass component with the stereotype Comp-
SizeComponent (see Fig. 3). The stereotype has several at-
tributes to be able to assign values to different factors. Ex-
actly which attributes the stereotype should have may dif-
fer between domains, but some factors are probably general
such as decomposition_level and functionality. We have in-
cluded granularity_level which is explained in Sect. 2. Other
factors necessary for categorization of components within
GM and Saab are identified in [27].

Table 1 summarizes the complete mapping between the
main COSMIC concepts and corresponding UML concepts.

With the UML models described so far, we can cap-
ture all information needed for accurate estimation of imple-
mented Code Size in bytes. This bytes value corresponds to
the amount of ROM-type memory needed to store the code
implementation of the component.

The UML Profile defined in this section will be eval-
uated in a case study later in this paper. The case study
will show a concrete example on how to use the Profile (see
Fig. 10). The mapping rules summarized in Table 1 was im-
plemented in a tool, which will be described in the next sec-
tion.
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Table1  Mapping rules between COSMIC concepts and UML profile.

COSMIC concept UML concept
The functional requirements
contained in the component. Must

reside completely within one

Functional process

component.
User Surrounding components.
Boundary Component boundary.

Level of granularity Part of categorization.

Level of decomposition Part of categorization.

Entry data movement Operation in required interface.

Exit data movement Operation in provided interface.

Read data movement CompSizeProperty with direction=in.

Write data movement
Read/Write data

CompSizeProperty with

CompSizeProperty with

4. The CompSize Tool

We have developed a tool based on our results from 3 years
of research. The tool was implemented in Java JDK 1.6
using Eclipse IDE for Java Developers resulting in around
1.7 Mbytes of code, and required 6 man months of effort.

The main functionalities of the tool are; to import in-
formation modeled using the UML Profile described in the
previous section, to store component data needed for CFP
measurement and Code Size estimation, to calculate esti-
mated Code Size using linear regression, and to present es-
timation results.

The main window of the tool is shown in Fig. 4. All the
information about the components and categorization can be
found in the Components Display tab in the upper section of
the window.

Here you find the name of the component, the number
of Entry, Exit, Read, Write data movements, the CFP value,
estimated and real Code Size in bytes, etc. Historical data
containing real Code Size for similar components are used
to estimate the Code Size of new components. The DFP
value in column 6 is defined in [28] as a measure that only
counts the Entry and Exit data movements. The tool also
supports calculation of DataSize (RAM memory size) and
estimation of development effort. For that purpose it can
store estimated and real DataSize, as well as estimated and
real effort. In Fig.4 you see the component named Truck
Bed Cargo Lamp as highlighted. It has the values Entry=5,
Exit=1, Read=1, Write=0, which amounts to CFP=7, and
its Real Code Size=1504 bytes.

In Fig.4 you also see the categorization factor val-
ues for the component. Its categorization factor values are
Team=A, Functionality=Comf & Conv, etc.

Estimations are based on components with the same set
of factor values. From the set of components, the CFP value
and the Code Size are selected and a linear model is created
using linear regression. In the “Scatter Plot” tab of the upper
section of the window in Fig. 4 these values and the linear
model is presented when the user is estimating a component,
see Fig. 5. The scatter plot has CFP on the X axis, and Code
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l/Component{s} Display r Scatter Plot

Component Name Entry Exit Read Write DFF CFP Est. CodeSize Real CodeSize Est. DataSize
lIdle Boost 7 1 17 0 8 25 0 1002 0
|[Dear Defrost 16 5 11 0 21 32 0 1772 0
Illgnition Switch Lamp 11 1 1 0 12 13 0 2202 0
|[Tonneau release 11 1 2 0 12 14 0 2460 0
|[Dedicated DRL 6 3 5 0 9 14 0 2530 0
|[Manual Liftgate 11 4] 11 0 15 26 0 4530 0
\[Panic Alarm 5 2 1 0 7 3 1570 1612 0
|[Power Sounder 7 3 1 0 10 11 0 1968 0
|[Remote PRNDL llumination 2 2 0 0 4] 4] 0 932 0
\[Interior Dimming 19 5 0 0 25 25 471 4124 0
|[ILS Inadvertant Load Protection 9 4 3 0 13 16 2502 0
Interior Lights 15 4 4 0 19 23 3865 3834 0
ruck Bed Cargo Lamp 5 1 1 0 3] 7 0 1504 0
Trunk Lamp 4 2 1 0 i} 7 0 1492 0
Rear Closure Cargo Lamp 7 2 1 0 g 10 0 1908 0
\[Front Zone Interior Lights 5 2 1 0 7 B 0 1614] 0
[Horn 10 1 8 0 11 19 0 3218 0
IA'.’! ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Component Name Factors
Truck Bed Cargo Lamp
Team A
Functionality CE&C
Constraints Frame
Method&tool Rhapsody
Fig.4 Components display tab.
Component(s) Display | Scatter Plot
Scatter Plot Series
Category = Series1
4500 . RA2=0,99186
#Data =14
4250 y=153=x+ 346,1
4 000 (click to remove)
3750
3500
3250
3000
= 2750
2500 8
2250 n
2000
1730
1500
1230 ./
1000
3 4 5 6 7 B8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
X
Estimation Results
Component Category | DFP | CFP | Est. CodeSize (bytes) [_Est Effort (man hours) |
!TruckEed Cargo Lamp |series1 | 6| 7 1417 EIII
Fig.5  Scatter plot tab.

Size in bytes on the Y axis. The squares in the plot show
historical data for component implementations, and the line
shows the linear model calculated using linear regression on
the historical data. To the right in the Scatter Plot Tab, the
category name (Category=Series 1 in this case) of the histor-
ical data is shown. As many components as possible should
be filled with historical data as more values will result in a
better linear model. The absolute minimum is 2 valid com-
ponents in a set for estimation. This would most likely re-
sult in estimation with an unsatisfying margin of error, so
to guide the user the estimation results contains informa-
tion about the R? value (R?=0.99186) of the linear regres-

sion and the number of valid components used (#Data=14).
With experience the engineer should be able to tell by these
values if the margin of error of the estimation is within ac-
ceptable borders for the current task. The equation of the
linear model is also shown (y=153xx+346.1). In the lower
part of the Scatter Plot Tab we see that the Truck Bed Cargo
Lamp component has been estimated, that Category=Series
1 has been used for the estimation, that CFP=7, and that
the estimated Code Size=1417 bytes. If the user is satisfied
with the result it can be copied to the component by using
the button in the bottom of the Scatter Plot Tab.

The Components Display Tab and the Scatter Plot Tab
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are the main windows in the tool. Other windows in the tool
are designed to guide the user how to perform a certain task.
Examples are the Factors Manager Tab (where categoriza-
tion factors can be added or removed), the Estimation Setup
Tab (where estimations are initialized by selecting a compo-
nent in the “Component Display” and then the Category and
type of estimation (Code Size or Effort) can be selected),
and the Add Category Tab (where categories can be defined
as a list of factors and corresponding factor values).

The tool was validated during development to make
sure that the different parts work as expected. Demo work-
shops were conducted to get feedback about the user inter-
face from potential users of the tool. In the next section we
will describe a case study we conducted to evaluate the tool.

5. Case Study

A case study consisting of several parts was defined, in order
to evaluate our model-based and automated approach and to
answer the research questions defined in Sect. 1. The case
study was conducted at Saab using requirement specifica-
tions and software implementations developed by Saab and
GM.

5.1 Definition and Planning

Saab and GM use UML Component Diagrams to show
how the customer feature is divided into its smallest en-
tities called “distributable components”, and the interfaces
between them. The distributable components are defined at
a fixed level of decomposition. A distributable component
must never be split up into more components, but can be
used by several features. The UML Component Diagram is
modeled in the Rhapsody tool [11], as part of the system ar-
chitecture development activities within Saab and GM. This
is described further in [5].

The case study will use existing Component Diagrams
of the type shown in Fig. 6. In this diagram, we see that the
distributable components are modeled as component stereo-
types denoted “Distributable” followed by the name of the
component. As we can see from the diagram, the Truck Bed
Cargo Lamp component has three required interfaces and
one provided interface. The Truck Bed Cargo Lamp com-
ponent is taken from a real Component Diagram and will be
used as an example throughout this paper.

The Component Diagrams do not contain all the infor-
mation we need to measure the Functional Size. We also
need the requirement specifications related to the compo-
nents. In the requirement specification we find in textual
form the information needed such as: calibration parame-
ters (used for tuning of a general software component to a
certain type of product), persistent storage of variables in
RAM-type memory, etc. The textual requirements for the
Truck Bed Cargo Lamp component in Fig. 6 are shown in
Fig.7.

Next we describe the process for estimating the imple-
mented size of software components. The main activities
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InteriorLightStatus_rsp E IndvLoadProtectionILS_rsp
'
«use» i «use» «use»
:
«Distributable» ]

LGT_ControlTruckBedCargoLamp

<------1

«Interface»
IPickupBedCargoLamp_osg

<<Signal>>
PickupBedCargoLamp_osg

Fig.6  Component diagram of the truck bed cargo lamp component.

The feature Shall be enabled when the calibration CARGO LAMP
PRESENT s set true. <END>

If the vehicle power mode is “OFF”, and the cargo lights are illuminated,
the SYSTEM Shall keep the cargo lamps active as long as Inadvertent
Load Control power is active. <END>

CUSTOMER CUSTOMER MAXIMUM LATENCY
“ACTION” PERCEIVABLE “ACTION” to
“OuTPUT” “OuTPUT”
INTERIOR Cargo Lamp Illuminates 100 ms

ILLUMINATION Lamps
Switch On and Vehicle
Parked.

Fig.7  Extract from the requirement specification for the truck bed cargo
lamp component.

(grey boxes) and artifacts (white boxes) involved in the pro-
cess for estimation of software component size are shown in
Fig. 8. The first activity is the definition of the functional re-
quirements from a user perspective and the non-functional
requirements, resulting in a textual specification. This is
typically performed by an expert in the particular functional
domain, e.g. a door locking expert rather than a software
engineer. The textual specification is used by the architect
to decompose the functional requirements into distributable
components, which are modeled in UML Component Di-
agrams. The Component Diagrams are used for software
design and implementation, as well as for serial data com-
munication definition and implementation. These activities
are left out in this description, since they are not important
in this work. Instead, we will continue describing the activ-
ities performed by the measurement engineer, shown at the
bottom of Fig. 8.

The Component Diagram is used to identify the inter-
faces, and the textual specification is used to identify the
calibration parameters and the information needed for cate-
gorization of the distributable component. The interfaces,
parameters, and categorization constitute the information
needed by the COSMIC method. The mapping between the
information and COSMIC is illustrated in [28]. The result
from the COSMIC method is a CFP measure. Historical
data containing CFP and implemented Code Size in bytes
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Fig.8  Main activities and artifacts for estimation of software component size.
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Fig.9 Main activities and artifacts for the proposed model-based and

automated approach to estimation of software component size.

for similar distributable components are used to convert the
CFP value into bytes, and thereby estimate the implemented
Code Size.

In our previous work, we have estimated 46 dis-
tributable components manually according to this proce-
dure. The first author of this paper acted as measurement
engineer, and spent 2-4 hours per distributable component
for the activities “Identify input for COSMIC”, “Functional
Size measurement”, and “Code Size estimation”. To put this
in a practical perspective, we estimate that a typical Saab car
contains around 1200 distributable components. This means
that it would take up to 4800 man hours (roughly 2.5 man
years) to estimate the complete application Code Size of a
car. Hence, manual estimation of Code Size is not feasi-
ble in this context. Instead we propose a model-based and
automated approach, as described in Fig. 9.

In our proposed approach, the architect adds infor-
mation about calibration parameters and the information
needed for categorization of the distributable component
into “Enhanced Component Diagrams”. The Enhanced
Component Diagrams was defined as a UML Profile in
Sect. 3 of this paper. The Enhanced Component Diagrams

are exported into an XML file containing all the information
needed for COSMIC. Hence, the activity “Identify input for
COSMIC” that was performed manually by reading the tex-
tual specification before, is performed by the architect who
is already familiar with the requirements. The anticipated
saving in manual effort is that the measurement engineer
does not have to read the textual specification. The next step
in Fig. 9 is that the XML file is imported to the CompSize
tool that automates the “Functional Size measurement” and
“Code Size estimation” activities in Fig. 8. The CompSize
tool was described in Sect. 4 of this paper.

The case study was conducted in two steps. The first
step of the case study concerns estimation of distributable
components with given Component Diagrams. The man-
ual measurements and estimations obtained in our previous
work [28] according to Fig. 8 are replicated using the UML
Profile and the CompSize tool according to Fig. 9. The pur-
pose is to evaluate the UML Profile and XML import to the
tool, and hence answer RQ1.

The second step of the case study concerns estimation
of distributable components with unknown Component Dia-
grams. The manual measurements and estimations obtained
in our previous work [25] according to Fig. 8 are replicated
according to the complete process described in Fig. 9. Rela-
tive effort data are compared to absolute effort data obtained
from interviews with architects. The purpose is to answer
RQ2.

5.2 Operation and Data Analysis

The case study was defined, planned, supervised, and ana-
lyzed by the authors of this paper, but it was conducted by
two Master students with no prior experience from the COS-
MIC method and with limited knowledge about the automo-
tive domain. The reason that we let students conduct the
case study instead of architects is that students are equally
inexperienced with each phase of the estimation process as
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<<Interface>>
linteriorLightStatus rsp
<<Signal>>
InteriorLightStatus_rsp
ON

<<CompSizeComponent>>
functionality = Comf & Conv
| decomposition_level = Distributable
/| granularity_level =Textual spec.

1
| <<use>> .
L <<CompSizeProperty>>

<<CompSizeComponent>> £l Directiop =in
LGT_ControlTruckBedCargoLamp| <<ByteSizeProperty>>
- - Size=1
BRLERY
] Variables

<<CompSizeProperty,ByteSizeProperty>>
CARGO LAMP PRESENT:Boolean

<<Interface>>
IPickupBedCargoLamp_osg
<<Signal>>
PickupBedCargolamp osg |

Fig.10  Mapping of a distributable component onto the UML profile.

well as with different components. An architect on the other
hand, is familiar with the Component Diagrams and can
model that faster than the rest of the UML Profile. Therefore
we can obtain effort measures that are less biased from the
students. The students were given lectures about the COS-
MIC method, the format and structure of the textual spec-
ifications, and the UML Profile. The CompSize tool was
implemented by the students, so they were already familiar
with the tool before the case study.

Next, we describe the first step of the case study by go-
ing through an example. The software component we want
to measure is the distributable component, like the Truck
Bed Cargo Lamp component shown in Fig. 6 and Fig. 7. The
boundary, the users, the surrounding software, and any en-
gineered devices in Fig. 1 are clearly defined by the com-
ponent diagram. The distributable components are always
defined at the same level of granularity and level of decom-
position, which is important to be able to compare CFP val-
ues to each-other. To illustrate the usage of the UML Profile
we explain how the distributable component in Fig. 6 and
Fig. 7 is modeled. The result is shown in Fig. 10.

The maximum latency requirement in Fig. 7 is modeled
as a required interface, because it will be implemented as a
periodic invocation of the component with a maximum al-
lowed period time. The vehicle power mode requirement
in Fig. 7 is in fact a required interface, and it is modeled ac-
cordingly. The other interfaces are modeled as in Fig. 6. The
CARGO LAMP PRESENT requirement in Fig.7 is mod-
eled as a CompSizeProperty with Direction=in. This is the
needed information for COSMIC, so we can directly use the
mapping rules defined in Table 1 to obtain the CFP value.
The result is CFP=7, i.e. 5 Entry data movements+1 Exit
data movement+1 Read data movement.

In Fig. 10 it is also shown that the CompSizeCompo-
nent stereotype has attributes to store categorization factor
values, like functionality=Comf & Conv, and decomposi-
tion_level=Distributable. This information is important in
order to identify groups of similar components.

The information in Fig. 10 was modeled in Rhapsody,
and an XML file containing the information was exported
from Rhapsody. In [30] we show a concrete example how
the information in Fig. 10 was modeled in Rhapsody. The
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Fig.11  Scatter plot showing CFP values measured by the first author and
the students for the same components.

CompSize tool imported the information, identified the data
movements, calculated the CFP value to 7, and identified the
categorization values. This is shown in Fig.4. The catego-
rization factor values in Fig. 10 are used to select the proper
linear regression model to convert the CFP value into bytes,
and hence estimate the implemented Code Size of the dis-
tributable component. For the Truck Bed Cargo Lamp com-
ponent the resulting estimated Code Size is 1417 bytes, as
shown in Fig. 5. Hence, we conclude that the UML Profile
can capture the information needed for COSMIC, and that
the tool can import this information from an XML file.

The second step of the case study modeled 10 compo-
nents based on requirement specifications, as described in
Fig. 9. The purpose is to collect timing data. The time was
measured for each of the following activities; reading the
textual specification to understand the requirements and to
identify the distributable component and its interfaces, mod-
eling the distributable component and its interfaces, reading
the textual specification a second time to identify the addi-
tional information needed for COSMIC, modeling the ad-
ditional information in the UML Profile, feeding the infor-
mation into the CompSize tool and obtaining the estimated
bytes value.

In addition, the measured CFP values were compared
to our previous measurements of the same components. The
purpose is to assess whether the students have identified the
majority of the data movements, and to make sure that the
timing data is relevant. A scatter plot comparing the CFP
values obtained in the case study and our previous CFP val-
ues from [25], is shown in Fig. 11. As can be seen, the re-
sulting CFP values from the student measurements deviate
from ours, but in general the students seem to have identi-
fied the majority of the data movements. The R? value from
the student measurement is high (R>=0.80), which confirms
the strong correlation between CFP and bytes we have found
in our measurements. We expected some deviation between
the measurements performed by the students and our own
measurements, because published experiments show good
repeatability in CFP measured by experienced engineers,
but poor repeatability in CFP measured by inexperienced
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Table 2  Statistics for the relative effort for the UML profile.
Mean value Std deviation Min value Max value
% % % %
13 4.3 5.3 20

engineers [7]. Therefore, we concluded that the timing data
is obtained from realistic estimations.

5.3 Interpretation of Results

The time for each step in the estimation process was mea-
sured and collected during the case study. The time needed
for reading the textual specification to identify the additional
information for COSMIC and modeling that in the UML
Profile was converted into percentage of the total time.

The time for one of the components was identified as an
outlier, because it was significantly larger than for the other
components and the student was in fact sick at the time. The
statistics of the resulting data for the remaining 9 compo-
nents is presented in Table 2. Here we see the amount of
added effort for the UML Profile compared to the total ef-
fort.

From interviews with architects at Saab we have ob-
tained the manual effort involved in creating the standard
Component Diagrams according to Fig. 6, to around 6 man
hours for a typical distributable component. This effort in-
cludes reading of textual specification, modeling the com-
ponent diagram, having review meetings with the domain
expert, etc.

So if we add an additional 13% (mean value from Ta-
ble 2) of effort to the 6 man hours, we would burden the
architect with an additional 47 minutes (0.13x6 hours) for
modeling the UML Profile. The additional 47 minutes are
much less than the 2-4 hours needed for manual measure-
ment and estimation. For the complete application software
of a typical Saab car it would require around 900 man hours
(0.5 man years) with our model-based and automated ap-
proach, instead of up to 4800 man hours (2.5 man years). In
addition, we expect that the effort needed in our approach
will decrease even further in a practical case. The reason is
that an architect knows from the beginning what information
to look for, and will normally read and model everything for
a component at the same time. In the case study, the stu-
dents were instructed to identify and model the distributable
component with its interfaces first, and then the rest of the
Profile in a second run.

A natural question at this point is why the architect
would be willing to model the additional information for the
purpose of estimating Code Size. The motivating factor is
that the architect needs the estimated values as support for
allocation decisions, architecture studies in early develop-
ment phases, etc.

A significant difference in our model-based and auto-
mated approach compared to the manual approach, is that
much of the COSMIC measurement knowledge is needed
when the architect models the UML Profile for the compo-

IEICE TRANS. INF. & SYST., VOL.E95-D, NO.9 SEPTEMBER 2012

nent. This is the step where the actual measurement takes
place. Therefore it is crucial that the architect receives COS-
MIC knowledge support, either directly from a measure-
ment engineer or from written guidelines. Our recommen-
dation is the latter, and that is the way we plan to implement
the approach at Saab. The guidelines are important to obtain
high repeatability and consistency in the process.

6. Evaluation of Validity Threats

Our case study was conducted by two Master students with
no prior experience about the COSMIC method and limited
knowledge about the automotive domain. This fact is likely
to affect the accuracy of the estimates, as well as the ab-
solute effort to obtain the estimate. However, in this paper
we focus on the relative effort required in each phase of the
estimation process. Since the students are equally inexpe-
rienced in each phase, we expect effort data that are less
biased than if an architect who is familiar with parts of the
process would conduct the case study. Moreover, the case
study was defined, planned, supervised, and analyzed by the
authors of this paper. The first author has 15 years of experi-
ence from software development activities, of which 6 years
were spent managing Architecture teams at Saab and GM.
This experience is important in order to obtain and analyze
the results of the study.

The UML Profile is tailored to capture the information
needed for the COSMIC method. We regard this as a minor
limitation, because COSMIC is an approved ISO standard
for measuring the Functional Size of software and much of
the current publications concerning software size measure-
ment apply COSMIC.

We have only used requirement specifications, Com-
ponent Diagrams and software implementations from two
automotive companies. This means we can only make con-
clusions that are valid in this particular domain. Therefore
we plan to evaluate our approach with data from other do-
mains.

7. Related Work

Marin et al. [31] presents a survey of existing literature re-
lated to measurement procedures based on COSMIC FP.
Eleven procedures are presented of which two applies to
the real-time systems domain. Of these two, the most rel-
evant one [6] uses models developed in the ROOM (Real-
time Object Oriented Modeling) language as input to the
MCcROSE tool [7]. Their work is similar to ours, but they
use another modeling language as input for COSMIC mea-
surement. They conduct a case study to validate the tool, but
they do not report on the efficiency obtained using the tool
compared to manual measurement.

Soubra et al. [36] designed an FSM procedure based on
COSMIC FP to measure the functional size of requirements
modeled in the Simulink tool.

Other works use UML diagrams like use case, class,
component, and sequence diagrams as input for COSMIC
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measurement [20]-[22]. The purpose is to improve the prac-
tice of COSMIC measurement and to automate the measure-
ment process using a tool, but the tool remains to be devel-
oped.

Another group of publications report on how to use
UML models as input for IFPUG FPA measurement [8],
[38]. In [38], it is shown that UML class diagrams and se-
quence diagrams can be used as input for a software tool
that automatically calculates the IFPUG FP.

Stern [34] reports on lessons learned from using COS-
MIC FP for effort estimation purposes at Renault automotive
company. Very strong correlation (R?=0.93) were found be-
tween CFP and supplier effort invoice data. Stern and Gen-
cel [35] investigate the relationship between COSMIC FP
and memory size of functions using data from the automo-
tive industry. They found very strong correlation (R>=0.99)
in a range of Functional Sizes from CFP=7 to CFP=748.
This confirms our own results reported in [23]-[28].

8. Conclusion and Future Work

The goal of this paper was to investigate how the manual ef-
fort involved in estimation of Code Size can be minimized.
We defined a UML Profile capturing all information needed
for estimation of Code Size, and developed a tool for auto-
mated estimation of Code Size based on CFP.

We conducted a case study using requirement specifi-
cations and software implementations from the automotive
industry to answer the research questions. The case study
showed that the UML Profile can capture all the informa-
tion needed by the COSMIC method. The case study also
showed that the effort for estimating the implemented Code
Size of a component is reduced from 2-4 hours to well below
1 hour. So this work illustrates how the use of UML models
can save manual effort (and hence money) in a realistic case.

As future work we plan to develop written guidelines
to the architects about how they are supposed to model
the UML Profile to obtain accurate estimation results. The
guidelines and our model-based estimation approach will be
further evaluated in a case study conducted by the actual ar-
chitects.
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