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SUMMARY A model-based mutation testing (MBMT) approach en-
ables to perform negative testing where test cases are generated using mu-
tant models containing intentional faults. This paper introduces an alter-
native MBMT framework using pushdown automata (PDA) that relate to
context-free (type-2) languages. There are two key ideas in this study. One
is to gain stronger representational power to capture the features whose be-
havior depends on previous states of software under test (SUT). The other
is to make use of a relatively small test set and concentrate on suspicious
parts of the SUT by using MBMT approach. Thus, the proposed framework
includes (1) a novel usage of PDA for modeling SUT, (2) novel mutation
operators for generating PDA mutants, (3) a novel coverage criterion, and
an algorithm to generate negative test cases from mutant PDA. A case study
validates the approach, and discusses its characteristics and limitations.
key words: model-based testing, mutation testing, pushdown automata,
mutation operator, test coverage criteria

1. Introduction and Related Work

One of the techniques for achieving the required level of
software reliability is software testing. Test engineers at-
tempt to effectively detect faults by applying systematic test-
ing techniques to the software under test (SUT), and then
correct the faults revealed before shipping the SUT. Test
cases are constructed based on models, source codes, etc.
Test techniques based on models are known as model-based
testing (MBT) techniques, and the intensive research efforts
in this area demonstrate their importance in the field of soft-
ware engineering. Most of the MBT techniques operate on
graph-based abstractions and use some coverage criteria for
test generation [1].

MBT is broadly classed as positive testing and nega-
tive testing [2]. In positive testing, test engineers create test
cases from correct models (that is, positive test cases), and
confirm that the SUT runs as specified by the model. In
negative testing, test engineers insert faults into the model,
and create test cases containing faulty behavior from the
faulty models (that is, negative test cases) to confirm that
the SUT does not conform to the undesirable behavior.
The latter is closely related to model-based mutation test-
ing (MBMT) [3], [4] which is a relatively new research area
on software engineering.
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In MBMT, a model is injected with intentional faults
using mutation operators to produce mutant models (simply
called mutants). Later, test cases are generated from these
mutants to reveal actual faults in the SUT. Thus, based on
the selection of mutation operators and test generation meth-
ods, MBMT is used to perform positive and/or negative test-
ing.

MBMT differs radically from conventional mutation
testing [5], [6]. Conventional mutation testing requires in-
sertion of intentional faults by changing the source code. Its
main purpose is to evaluate the adequacy of a given test set,
that is, to check whether this set can reveal the injected faults
or not. On the other hand, MBMT strives for immediate test-
ing of the SUT and enables to perform negative testing. It
is still possible to adapt and use it for adequacy evaluation
by executing the given test cases on mutants, which leads to
model-based mutation analysis.

Previous studies on MBMT generally make use of reg-
ular models such as finite state machines [7], event sequence
graphs [3] and regular grammars [8], which represent reg-
ular (type-3) languages in Chomsky hierarchy. However,
such models can hardly represent the features whose behav-
ior depends on previous states of the software, as exempli-
fied in the following.

• Some software features save interim results and invoke
other features. After completing the invoked features,
they determine their subsequent behavior based on not
only the results returned from the invoked features but
also the interim results.
• Most software includes the feature to cancel recent op-

erations and subsequently go back to the previous state,
which is generally known as undo [9], [10].

In real-life systems, such features are almost always
realized by keeping the track of previous states in memory.
Likewise, representing such features in models also requires
memory, which is absent in regular models.

In this paper, we propose an alternative MBMT
framework using pushdown automata (PDA) that relate to
context-free (type-2) languages. There are two key ideas
in this study: (1) To use the PDA stack as the memory in
order to gain stronger representational power. (2) To make
use of a relatively small test set and concentrate on suspi-
cious parts of the SUT (because a PDA potentially has a
large state space, and a large test set is required to cover it
in positive testing). Thus, to perform negative testing, PDA
mutants with faulty transitions and N-switch faulty transi-
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tion coverage criterion are used, and, to perform positive
testing, the original PDA and N-switch transition coverage
criterion are used (See Sects. 3–4). Therefore, the proposed
MBMT framework includes

• a novel usage of a PDA for modeling SUT,
• novel mutation operators for generating PDA mutants,
• novel coverage criteria and an algorithm to generate neg-

ative/positive test cases from mutant/original PDA.

The rest of this paper is organized as follows. Sec-
tion 2 outlines background information on PDA models.
Section 3 introduces PDA mutation operators, whereas
Sect. 4 discusses coverage criteria and an algorithm for neg-
ative/positive test case generation. Before Sect. 6 concludes
the paper, Sect. 5 performs a comprehensive nontrivial case
study to demonstrate the approach and analyze its character-
istics.

2. Pushdown Automata

This section introduces the PDA models used in the paper.
Definition 1: A pushdown automata (PDA) is a tuple M =
(S , E,G,T, S 0,Z0, F) where

• S is a finite set of states (or state alphabet),
• E is a finite set of events (or event alphabet),
• G is a finite set of stack symbols (or stack alphabet),
• T : S × E ∪ {ε} × G → U (U ⊆ S × G∗ is finite) is the

transition function (ε is the empty string),
• S 0 ∈ S is the initial state,
• Z0 ∈ G is the initial stack symbol, and
• F ⊆ S is the set of final states.

Transition function T receives as input a triple (p, a, X),
where p is the current state, a is the event received in the
current state, and X is the topmost stack symbol. The output
of T is a finite set of pairs (q,w), where q is the new state
and w is the string of stack symbols which replaces X at the
top of the stack. Thus a transition can be represented by 5-
tuple (p, a, X, q,w). A read operation occurs if w = X, a pop
operation is performed if w = ε and Y is pushed onto the
stack if w = YX. Also, a PDA is deterministic, if it satisfies
the following properties:

• |T (p, a, X)| = 1 for each p ∈ S , a ∈ E ∪ {ε} and X ∈ G.
• For each p ∈ S and X ∈ G, if T (p, ε, X) � ∅ then

T (p, a, X) = ∅ for every a ∈ E.

In this paper, we use PDA models which satisfy the
following properties. (1) They are deterministic (with no ε-
transitions). (2) G − {Z0} ⊆ S . (3) Every state is reachable
from S 0 and a final state is reachable from each state.

We use state transition tables to represent PDA. Ta-
ble 1 illustrates an example PDA model with S = {1, 2, 3, 4},
E = {a, b, c, d}, ten transitions, G = {0, 2, 3}, S 0 = 1, Z0 = 0
and F = {4}. In the table, rows and columns correspond
to states and events, respectively, and each cell contains the
transition labels upon occurrence of an event in a state. For

Table 1 Example PDA model - Transition table.

Fig. 1 Example PDA model.

example, when the PDA receives event b in state 3, it per-
forms transition labeled by 2/3 : 2, 2, that is, (3, b, 2, 2, 3 : 2).
This PDA can also be represented as in Fig. 1 [11].

From the modeling point of view, states of a PDA can
be classified as historic states and non-historic states. A
historic state relates to a main feature of SUT and affects
the transitions in other states as a stack symbol. In Table 1,
state 2 and 3 correspond to historic states and the others cor-
respond to non-historic states. Likewise, events of a PDA
can be classified into the following three types:

• A read event triggers only transitions that perform read
operations, such as events a and c in Table 1.
• A pop event triggers only transitions that perform pop op-

erations, such as event d in Table 1. This type relates to
undo or cancel operations in SUT.
• A push event triggers only transitions that perform push

operations, such as event b in Table 1. Events of this type
are acceptable in historic states, and keep track of the his-
toric states for future references.

A PDA has a stronger expressive power when com-
pared to many other formal models. For example, a regular
model, that is, a model which represents a regular (type-3)
language in Chomsky hierarchy, results in an infinite state
space while modeling a behavior represented by a PDA,
unless the stack size is restricted (Since the states need to
be defined as elements in S × G∗ in order to represent the
equivalent behavior). Even if the stack size is strictly re-
stricted, the model may become too large to work with. Of
course, models like UML state machine diagrams [12] and
UML profiles with action languages also have stronger rep-
resentational powers. However, they include informal repre-
sentations or specific issues of programming languages, and
thus need further formalizations and/or abstractions, respec-
tively. More importantly, in their informal representation,
they do not enable to use results of automata theory, which
are very useful for test generation.
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MBT aims to use simple models and increase the ef-
ficiency of the test process. Our modeling technique us-
ing PDA is indeed simple in structure. Nevertheless, it can
be applied to complex, real-life systems. This is feasible,
because we simplify some of the real-life features, that is,
we abstract from irrelevant to focus on relevant, which is
common in MBT [4] and explains the success of the widely
accepted MBT techniques using simple, easy-to-understand
approaches to be applied to practical systems. Here, we cap-
ture more intrinsic features using stronger, context-free PDA
models, making the approach even more powerful than and
preferable to the use of regular models of simpler structure
which are already applied to actual software system [3], [7],
[8].

3. Mutation Operators

Mutation operators are applied to the original model. This
section includes basic mutations (whose combined and re-
peated applications can be used to transform a given PDA
to any other PDA with the same event and stack alphabets),
transition corruptions (which are applied to modify the ex-
isting transitions keeping the state, event and stack alphabets
fixed), and important testing aspects.

3.1 Basic Mutations

As partially introduced in [3], basic mutation operators are
insertion (I), omission (O), and marking (M) operators.

In general, insertion operators are used to generate mu-
tants that have additional functionality when compared to
the original model, omission operators are used to gener-
ate (correct) sub models and marking operators are used to
change the type of certain model elements.

A PDA can simply be represented by a multi-directed
graph. Nodes of this graph are the states of the PDA, and
edges represent the transitions. Therefore, based on its
multi-directed graph, a PDA can be mutated or transformed
into another one using transition mutation, state mutation,
and marking operators.
Definition 2: Transition mutation operators. Given a PDA
M = (S , E,G,T, S 0,Z0, F):

• Transition insertion (It) operator adds a new transition t
to M. If t = (q, a, X, p,w). It is assumed that q, p ∈ S ,
a ∈ E ∪ {ε}, X ∈ G, w ∈ G∗ and (p,w) � T (q, a, X). An
insertion may also generate a non-deterministic PDA.
• Transition omission (Ot) operator deletes an existing

transition t from M. If t = (q, a, X, p,w), it is assumed
that q, p ∈ S , a ∈ E ∪ {ε}, X ∈ G, w ∈ G∗ and
(p,w) ∈ T (q, a, X). It is possible that an omission may
leave some states with no incoming or outgoing transi-
tions.

Definition 3: State mutation operators. Given a PDA M =
(S , E,G,T, S 0,Z0, F):

• State insertion (Is) operator adds a new state q to M to-
gether with transitions t1, . . . , tk. State q is not reachable

from another state in M if no incoming non-loop transi-
tion to q is inserted. Furthermore, no state in M is reach-
able from state q if no outgoing non-loop transition from
q is inserted.
• State omission (Os) operator deletes an existing state q

together with all the transition ingoing to and outgoing
from q. After the deletion, some states in M may lose all
their incoming or outgoing transitions.

Definition 4: Marking operators. Given a PDA M =

(S , E,G,T, S 0,Z0, F):

• Mark start (Ms) operator marks an existing state in M as
the start state and the old start as a non-start.
• Mark final (M f ) operator marks an existing state in M as

a final state.
• Mark non-final (Mn) operator marks an existing final

state in M as a non-final state.
• Mark initial (Mi) operator marks an existing stack sym-

bol in M as the initial stack symbol. Old initial symbol is
marked as non-initial.

3.2 Transition Corrupting Mutations

Sometimes basic mutations are too vague to use. To gener-
ate some specific faulty behaviors, one needs only to mod-
ify or corrupt the existing transitions. In this way, the use of
higher order mutations, which results in a huge number of
mutants, can also be avoided.

Here, more precise mutation operators that are rela-
tively more suitable for PDA-based mutation testing or neg-
ative testing are defined. The operators can also be seen as
the controlled combinations of basic mutations. They in-
troduce specific faults into PDA models by corrupting the
transitions without modifying the sets of states, events and
stack symbols.
Definition 5: Write replacement operators. Given a PDA
M = (S , E,G,T, S 0,Z0, F), write replacement (Rw) op-
erator replaces the string to be put into the stack by the
given string w′, that is, for t = (p, a, X, q,w), Rw(t,w′) =
(p, a, X, q,w′) where w′ ∈ G∗ − {w}. This operator can be
performed in 4 different ways.

• Replace with read (Rw-read) operator replaces the stack
operation associated to transition t with a read operation;
that is, for t = (p, a, X, q,w), Rw-read(t) = (p, a, X, q, X).
Note that the operator has no effect if w = X, that is,
the operation is already a read operation. Therefore, this
operator should only be performed on transitions where a
non-read operation occurs.
• Replace with push (Rw-push) operator replaces the stack

operation associated to transition t with a push opera-
tion. If the operation is already a push operation, a dif-
ferent string is pushed onto the stack. In other words, if
t = (p, a, X, q,wX) and w ∈ G∗ − {ε}, Rw-push(t,w′) =
(p, a, X, q,w′X) for some given w′ ∈ G∗ − {ε,w}. Oth-
erwise, Rw-push(t,w′) = (p, a, X, q,w′X) for some given
w′ ∈ G∗ − {ε}.
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• Replace with pop (Rw-pop) operator replaces the stack
operation associated to transition t with a pop operation;
that is, for t = (p, a, X, q,w), Rw-pop(t) = (p, a, X, q, ε).
Note that this operator has no effect if w = ε, that is, the
operation is already a pop operation.
• Replace with pop-push (Rw-poppush) operator replaces

the stack operation associated to transition t with a pop
followed by a push operation. More precisely, for t =
(p, a, X, q,w), Rw-poppush(t,w′) = (p, a, X, q,w′) for
some given w′ ∈ G∗, where w′ � {ε,w′′X} for some
w′′ ∈ G∗. Note that if w′ = ε, only a pop operation is
performed, and if w′ = w′′X for some w′′ ∈ G∗, either a
read or a push operation is performed.

Definition 6: Read replacement operators. Given a PDA
M = (S , E,G,T, S 0,Z0, F), read replacement (Rr) oper-
ator replaces the symbol on the top of the stack by the
given symbol X′; that is, for t = (p, a, X, q,w), Rr(t, X′) =
(p, a, X′, q,w) where X′ ∈ G − {X}. This operator can also
be performed in different ways.

• Replace with initial stack symbol (Rr-init) operator re-
places the symbol read from stack in transition t with the
initial stack symbol Z0; that is, for t = (p, a, X, q,w),
Rr-init(t) = (p, a,Z0, q,w). Note that the operator has
no effect if X = Z0; that is, top symbol is already initial
stack symbol.
• Replace with new stack top (Rr-top) operator replaces

the symbol read from stack in transition t with the new
stack top; that is, for t = (p, a, X, q,w), where w = Yw′,
w′ ∈ G∗ and Y ∈ G, Rr-top(t) = (p, a,Y, q,w). This oper-
ator converts the operation in transition t to a push opera-
tion. Therefore, it is not applicable when a pop operation
occurs; that is, w = ε, and has no effect if a push operation
is performed, that is, Y = X.
• Replace with another stack symbol (Rr-another) operator

replaces the symbol read from stack in transition t with a
stack symbol other than initial stack symbol or the new
stack top. More precisely, let t = (p, a, X, q,w): If w = ε,
Rr-another(t, X′) = (p, a, X′, q, ε) for some given X′ ∈
G − {Z0}. Otherwise, w = Yw′ for some w′ ∈ G∗ and Y ∈
G, Rr-another(t, X′) = (p, a, X′, q,w′Y) for some given
X′ ∈ G − ({Z0} ∪ {Y}).

Definition 7: Event replacement operator. Given a PDA
M = (S , E,G,T, S 0,Z0, F), event replacement (Re) opera-
tor replaces the event in a transition by another event, that
is, for t = (p, a, X, q,w), Re(t, b) = (p, b, X, q,w) where
b ∈ (E ∪ {ε}) − {a}.
Definition 8: Source replacement operator. Given a PDA
M = (S , E,G,T, S 0,Z0, F), source replacement (Rs) opera-
tor replaces the source state in a transition by another state,
that is, for t = (p, a, X, q,w), Rs(t, s) = (s, a, X, q,w) where
s ∈ S − {p}.
Definition 9: Destination replacement operator. Given a
PDA M = (S , E,G,T, S 0,Z0, F), destination replacement
(Rd) operator replaces the destination state in a transition
by another state, that is, for t = (p, a, X, q,w), Rd(t, s) =

Fig. 2 Example PDA mutant.

(p, a, X, s,w) where s ∈ S − {q}.
Note that to induce a faulty behavior by performing a

transition corrupting mutation, the mutated transition should
not be already in the original model.

3.3 Testing Aspects

For (model-based) mutation testing of a system, generally
small changes are inserted by using first (or small) order mu-
tations. Although, the use of higher order mutants is some-
times quite beneficial [7], [13], [14].

Using (combinations of) the mutations, one can gener-
ate 3 types of mutants: (1) Mutants which do not contain any
faulty behavior. (2) Mutants which contain faulty behavior
that can be detected by some positive test case. (3) Mutants
which contain faulty behavior that cannot be detected by any
positive test case. For example, considering first order mu-
tants, all omission mutants are type 1, transition corrupting
mutants and insertion mutants are either type 2 or type 3.

All these different types have their uses in practice, and
their performances depend on the test generation and exe-
cution strategies used. For example, type 1 mutants can be
used to generate positive test cases by leaving out some parts
of the system, whereas type 2 mutants can be used when
covering the whole system is not preferred or only specific
types of faults need to be tested, and type 3 mutants can be
used to perform ‘pure’ negative testing.

Nevertheless, the use of some mutations is generally
avoided since they are in general less useful (for exam-
ple, omission mutants, which do not contain any faults, and
marking mutants, which are mostly useful for validation or
testing of the model) or quite hard to use (for example, state
insertions, which contain relatively larger changes).

Also, in practice, it is usual to discard (mutant) models
that do not satisfy some certain properties, or further process
them so that they satisfy the intended properties. Examples
of such properties are determinism and usefulness (or reach-
ability) of model elements.

Figure 2 shows an example mutant of the PDA in
Fig. 1. The mutant is a type 2 mutant and can be generated
in different ways. One can insert (3, c, 2, 4, 2) and then omit
(3, c, 2, 2, 2) to remove non-determinism, or one can replace
the destination of (3, c, 2, 2, 2) by 4.

4. Coverage Criterion

This section defines a coverage criterion for faulty PDA
models, that is mutants, and an algorithm for generating
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negative test cases based on this criterion. Related positive
testing aspects are also briefly discussed.

4.1 N-switch Faulty Transition Coverage Criterion

Coverage rates the portion of the system that is covered by
the given test set. This ratio is usually used as a decisive
factor in determining the point in time at which to stop test-
ing, that is, to release SUT, or to improve it and enhance
the test set to continue testing [15]. To be more precise, the
coverage C is defined as C = |O′|/|O|, where O is a finite
set of measuring objects, O′ is a subset of O that has been
tested, and |O| represents the number of elements of O. The
definition of the measuring objects depends on the coverage
criterion used.

As software testing proceeds, the coverage increases
and test engineers can have higher confidence in the soft-
ware quality. When all the measuring objects of a specific
coverage criterion have been executed, it is said that the cov-
erage criterion is satisfied.

In order to generate negative test cases from PDA mu-
tants, we propose a novel coverage criterion called N-switch
faulty transition coverage (fixed N ≥ 0), which is developed
based on the coverage for finite state machines [16]. Its mea-
suring object is a sequence of N + 1 successive transitions
containing stack top part (that is, some symbols on the top
of the stack). More precisely:

A) The length of the transition sequences to be covered is
N + 1 (or less if the transition sequences start from an
initial state).

B) The length of the stack top part to be covered is N.
C) At least one faulty transition appears in each transition

sequence.

When this criterion is satisfied, a test engineer can have
the confidence that not only a suspicious operation is itself
working correctly but also it is working correctly in the con-
texts induced by transition sequences where previous and
following operations are also included. As the value of N
gets larger, test engineers tend to have higher confidence in
software quality, but then the size of the measuring objects
(that is, the size of the test cases) also becomes larger.

In Fig. 2, measuring objects for 1-switch faulty tran-
sition coverage are three transition sequences of length
2: (2, b, 3, 3, 2 : 3) → (3, c, 2, 4, 2) with stack top 2,
(2, b, 0, 3, 2 : 0) → (3, c, 2, 4, 2) with stack top 2, and
(2, d, 3, 3, ε) → (3, c, 2, 4, 2) with stack top 2. When a test
case (1, a, 0, 2, 0) → (2, b, 0, 3, 2 : 0) → (3, c, 2, 4, 2) is exe-
cuted, its coverage is about 33% (1/3) since it contains only
transition sequence (2, b, 0, 3, 2 : 0) → (3, c, 2, 4, 2) with
stack top 2.

4.2 Algorithm for Negative/Positive Test Case Generation

After completing the construction of a PDA model and gen-
eration of mutant PDAs containing faults, test process pro-
ceeds to test case generation. Test cases satisfying N-switch

faulty transition coverage for a given mutant can systemati-
cally be generated by using Algorithm 1.
Algorithm 1: PDA-based negative test case generation al-
gorithm consists of the following steps.

Step 1. Set the initial state as the current state, and begin to
search the PDA.

Step 2. Select an executable outgoing transition in the cur-
rent state.

- If the execution of the selected transition results in
the execution of a new search object, it is executed
and is added to the test case under construction. Here
a search object is a sequence of successive transi-
tions with the stack top part that satisfies A) and B)
given in Sect. 4.1.

- If the selected transition does not result in a new
search object, select another transition.

Step 3. Repeat Step 2 until no new search object can be
found.

Step 4. If there is a transition that is not selected in Step 2
(that is, a transition that has a possibility of deriving a
new search object), backtrack to a previous state that
has such a transition.

Step 5. Repeat from Step 2 to Step 5 similarly.
Step 6. If there is a test case that includes no measuring ob-

ject, or there is a test case in which all the measuring
objects are included in another test case, eliminate such
a test case in order to derive a final set of test cases.

An example of test case generation from Fig. 2 is
shown in Fig. 3. The nodes of the search path are search
objects. Also, (1), (2), (3), (4) and (5) correspond to Steps
1, 2, 3, 4 and 5 of Algorithm 1, respectively.

Algorithm 1 is developed based on depth-first search
in directed graphs. It is obvious that a set of measuring ob-
jects is a subset of search objects. When a search object
includes a faulty transition, it is identified as a measuring
object. Covering all the search objects is indispensable for
finding all the measuring objects since some measuring ob-
jects do not become executable unless specific search ob-
jects are previously executed.

Consequently, our implementation of Algorithm 1 runs

Fig. 3 Example of a test case generation from Fig. 2.
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Table 2 Overview of test case generation.

in O(|S |(|T |/|S |)(N+1)) worst-case time, where |S | is the num-
ber of states, |T | is the number of transitions and N is from
N-switch coverage. Also, it has a space complexity of
O(|S |(|T |/|S |)N).

Also, when Algorithm 1 is applied without Step 6 to an
original PDA model, one can obtain positive test cases that
satisfy a novel criterion, called N-switch transition coverage
(fixed N ≥ 0), where its measuring object is a sequence of
N + 1 successive transitions with stack top part; more pre-
cisely, defined by A) and B) in Sect. 4.1.

A positive or negative test case reveals a fault when the
observed behavior does not match the expected one. The
expected behavior is derived by executing the test case on
the original (correct) model and the observed behavior is
obtained by executing it on the SUT. The only difference
between a positive and a negative test case is that a negative
test case contains a faulty transition.

Table 2 shows the overview of positive and negative
test case generation from Fig. 1 and Fig. 2, respectively. As
N becomes larger, the number of test cases increases signif-
icantly. For positive test cases, this increase is in general
exponential. Therefore, in testing practice, N-switch based
coverage criteria are used by selecting relatively small val-
ues for N (like N ≤ 1) in order to keep the overall testing
process efficient and scalable.

5. Case Study

This section includes a nontrivial case study which shows
the testing process. Positive and negative testing approaches
are compared using a realistic example and the results are
used to discuss the effectiveness, threats to validity, and lim-
itations.

5.1 System under Test

In the case study, new message creation function in typical
e-mail software of a mobile phone is used as the SUT. Its
behavior is as follows.

• When “Create a new message” is selected from the menu,
the SUT is invoked. Initially, address, title and body fields
are void, and edit menu is displayed. If “Cancel” is se-
lected, the SUT is terminated.
• When either “Edit the address”, “Edit the title” or “Edit

the body” is selected, the SUT starts a corresponding edit

Table 3 Simplified PDA model of a new message creation function.

mode. Upon selection of “Cancel”, the edit mode is can-
celed. In edit mode, the user can fill out or delete the
contents of the fields in arbitrary order.
• A recent edit operation is canceled by selecting “Undo”.
• When the address field is not void, the user can select

“Send” to send the message. If the user selects “Cancel”
or a time-out occurs, sending the message is interrupted.
After the message is successfully sent, the SUT is termi-
nated.

The complete PDA model is quite large, consisting of
14 states, 12 events, 265 transitions and 9 stack symbols
(See [17]). Due to lack of space, only a simplified model is
given here in Table 3.

5.2 Experiment Details

The main purpose of this case study is to compare our ap-
proach against positive testing, and to confirm that it works
well on such realistic systems. To do this, this case study
makes use of model-based mutation testing, and the follow-
ing steps are performed.

Step 1. The original PDA model is constructed based on the
above specifications (It requires about four man-hours).

Step 2. To create a faulty SUT, 11 faults are injected using
the mutation operators defined in Sect. 3. Later, to gen-
erate negative test cases mutants which contain similar
faulty behaviors are generated.

Step 3. Positive test cases that satisfy the N-switch cover-
age and negative test cases that satisfy the N-switch
faulty transition coverage (N = 0, 1) are generated
from the original and mutants using Algorithm 1.

Step 4. Tests are executed on the faulty SUT to detect the
injected faults and to collect data.

Step 5. Test generation and execution data are used to make
realistic comparisons and analysis.

In Step 2, when a mutant does not satisfy the prop-
erties (1)–(3) discussed in Sect. 2, additional mutations are
performed to convert it into a mutant that satisfies all the
properties. Also, in the light of the discussion in Sect. 3.3,
only It, Rw-read, Rw-push, Rw-pop, Rw-poppush, Rr-init,
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Table 4 Overview of test generation and execution results.

Rr-top, Rr-another, Re, Rs and Rd operators are used.
In Step 4, test cases are executed using the following

strategy: Each test case is executed until its completion.
When a fault is detected by a test case, first the fault is cor-
rected, and then the test case is executed again. This process
is repeated until all test cases are completed. To measure
the performance, the number of revealed faults and number
of executed events are counted (incrementally). Also, dur-
ing test execution, states, events and stack top elements are
assumed to be observable.

5.3 Test Generation and Execution Results

After test generation, test cases are executed on the faulty
system. Various data are collected to give some insights on
the respective performances of positive and negative testing
approaches. Table 4 outlines the overall test generation and
execution results, where fault detection performance is cal-
culated by the ratio of number of faults revealed to number
of events executed.

Furthermore, to observe the fault detection trend, the
plots of “number of revealed faults vs. number of executed
events” for 0-switch and 1-switch coverage are given in
Fig. 4 and Fig. 5, respectively. Note that we select N ≤ 1
to avoid from generating too many test cases and keep the
process efficient/practical (See Sect. 4.2).

5.4 Discussion of the Results

Table 4 suggests that positive testing fails to detect one of the
faults (in both cases). For both cases, this fault is the same
one and it represents an additional unexpected behavior.
Thus, positive test cases cannot detect such faults, whereas
negative test cases are quite useful when correct mutants are
used. These types of faulty behaviors are demonstrated by
type 3 mutants.

Also, since fewer test cases are generated, fewer events
are executed in total and 1 extra fault is detected using neg-
ative testing approach, there is a significant difference be-
tween fault detection performances. Thus, when correct
mutants are selected, negative testing contributes to cost-
efficiency positively and greatly.

Surprisingly, for both positive and negative testing, in-
creasing switch value (N) decreases the fault detection per-
formances, since the same faults are already revealed by 0-
switch test cases by using fewer test cases.

As Fig. 4 and Fig. 5 demonstrate, in positive testing,
there are long sequences of event executions which reveal

Fig. 4 Fault data for 0-switch criteria.

Fig. 5 Fault data for 1-switch criteria.

no additional faults, because positive tests cover the sys-
tem in general and do not focus on specific faults. Thus,
when one identifies the mutants properly and generate nega-
tive test cases, these long sequences of event executions can
be shortened to a great extent.

5.5 Threats to the Validity

The case study demonstrates that negative testing approach
is very capable of increasing the efficiency of testing pro-
cess. However, the following issues remain.

The generated mutants are identified based on the in-
jected faults. Therefore, a best case scenario is created for
the faulty system. It would make sense to devise further ex-
periments to identify the average and the worst cases, or in-
troduce fault-prone analysis techniques and meta-heuristics
for (approximate) mutant selection.

Also, a single application is used in the case study.
While devising further experiments, including various dif-
ferent types of applications would increase the reliability of
the results from a practical point of view.

Finally, all the obtained results are valid with respect to
the discussion made in Sects. 3, 4 and 5.1, and most impor-
tantly, Sect. 5.2. In principle, changing one of these param-
eters may yield different outcomes.

6. Conclusion and Future Work

In this paper, a new model-based mutation testing frame-
work is introduced. The use of pushdown automata in this
framework increases the modeling power. Furthermore,
with the definition of novel mutation operators, coverage
criteria and related test generation, pushdown automata can
be used for mutation testing.
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A non-trivial case study is also performed to outline
the advantages of the discussed framework by comparing
positive and negative testing approaches. The results show
that negative testing approach considerably contributes to
the efficiency and, surprisingly, stronger coverage does not
necessarily result in a higher fault detection performance.

Still, already mentioned in Sect. 5.5, there are addi-
tional issues to consider. For one thing, further experiments
can be performed to investigate worst case and average case
scenarios over multiple systems having different properties.
The obtained results can be used to derive and evaluate fea-
ture analysis techniques or meta-heuristics to approximate
best case scenarios.

In addition, different test execution strategies consider-
ing the properties of generated test cases and new test gen-
erations can be developed to further increase the efficiency
of the process. The strategies can be evaluated using the test
generation methods.

Also, further experimental results can be obtained us-
ing different test oracles (depending on different application
areas) and effectiveness of mutation operators can be com-
pared using different oracles to determine respective target
application areas.
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