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Application of Markov Chain Monte Carlo Random Testing to Test
Case Prioritization in Regression Testing
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SUMMARY This paper proposes the test case prioritization in regres-
sion testing. The large size of a test suite to be executed in regression
testing often causes large amount of testing cost. It is important to reduce
the size of test cases according to prioritized test sequence. In this pa-
per, we apply the Markov chain Monte Carlo random testing (MCMC-RT)
scheme, which is a promising approach to effectively generate test cases
in the framework of random testing. To apply MCMC-RT to the test case
prioritization, we consider the coverage-based distance and develop the al-
gorithm of the MCMC-RT test case prioritization using the coverage-based
distance. Furthermore, the MCMC-RT test case prioritization technique is
consistently comparable to coverage-based adaptive random testing (ART)
prioritization techniques and involves much less time cost.
key words: regression testing, test case prioritization, random testing,
Markov chain Monte Carlo

1. Introduction

Effective software testing schemes are strongly required to
make highly reliable software system. In general, software
testing schemes depend on how to make test cases to find
as-yet-discovered failures. On the other hand, after finding
software bugs in the testing, we carefully fix them without
the risk of adversely affecting system functionality. That is,
in some cases, we make new software faults when remov-
ing the bugs. The regression testing is one of the effective
techniques to reduce such risk [1]. The regression testing
executes a test suite after fixing software bugs. For instance,
the retest-all strategy executes all available test cases [2], [3].

To design the effective regression testing, there are ma-
jor four problems [1]: the regression test selection problem,
the coverage identification problem, the test suite execution
problem and the test suite maintenance problem. The re-
gression test selection problem is to select a subset of all the
test cases to test modified functionality. The coverage iden-
tification problem is to check if additional testing is required
or not. The test suite execution problem is how to execute
the test cases and to check the test results effectively. Fi-
nally, the test suite maintenance is the problem of updating
and storing test information. This paper focuses on the re-
gression test selection problem, and it strongly affects the
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testing cost incurred by the regression testing. Researchers
have proposed various methods for improving the cost ef-
fectiveness of regression testing [4], [5]. Regression test se-
lection techniques reduce testing costs by selecting a subset
of test cases from all the test cases to execute on a specific
functions of the program. These techniques reduce costs by
reducing testing time, but unless they are safe [5], they can
omit test cases that would otherwise have detected faults.
This can raise the costs of software.

Test case prioritization is one of the techniques to re-
duce the test cases to be executed [6], [7], which is to give
priorities to all the cases in a test suite. The test case priori-
tization also offers an alternative solution to improve regres-
sion testing cost effectiveness.

A variety of prioritization techniques have been pro-
posed. Most techniques are based on code coverage in-
formation to give the priority for test cases. Greedy algo-
rithms [8] are a class of coverage-based test case prioritiza-
tion techniques that have been widely studied in the public
literature, which include the total-statement coverage tech-
nique and the additional-statement coverage technique [9].
Also, some of dynamic testing strategies were applied to
test case prioritization in the regression testing. The dy-
namic testing strategy is a technique that changes the proba-
bility distributions to generate test cases at every time when
a test outcome is observed. Although the dynamic testing
strategy is used for test case generation in the ordinary soft-
ware testing like unit testing, Jiang et al. [10] and Zhou [11]
discussed the applicability of the adaptive random testing
(ART), which is a kind of dynamic testing strategies, to the
test case prioritization even in the regression testing. Empir-
ical results in [10], [11] have shown that these prioritization
techniques were useful and could improve the performance
of random ordering drastically.

This paper discusses the applicability of Markov chain
Monte Carlo random testing (MCMC-RT) to the test case
prioritization, which is an alternative random-coverage-
based algorithm. Zhou et al. [12], [13] proposed the con-
cept of MCMC-RT in the framework of random testing for
test case generation. The basic idea of MCMC-RT is to es-
timate the distribution of fault location from the past out-
comes of software test execution, and, as a result, it leads
to test cases as evenly as possible across the input domain.
MCMC-RT improves the fault-detection capability of RT
and ART in terms of using fewer test cases to detect the
first fault (the F-measure) [13]. In particular, this paper pro-
poses an MCMC-RT scheme based on the distance between
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test cases measured by coverage information and conducts
empirical evaluation to investigate the effectiveness of the
proposed method.

The paper is organized as follows. Section 2 presents
our MCMC-RT scheme. Section 3 describes the test
case prioritization and coverage-based distance between test
cases. Furthermore we explain how to use MCMC-RT to the
test prioritization. Section 4 presents our empirical study.
Some remarks and future studies are presented in Sect. 5.

2. MCMC-RT Algorithm

In this section, we introduce the MCMC-RT algorithm used
for test case generation proposed in [12], [13]. The MCMC-
RT is a random testing scheme to generate test cases that can
find latent failures effectively from the information on input
domain and outcomes of the executed test cases. As men-
tioned before, the idea behind MCMC-RT is to estimate the
distribution of fault location based on the Bayes statistics.

Let D denote an input domain that can be regarded
as a metric space with d degrees of dimension. Then x =
(x1, . . . , xd) ∈ D represents a vector of a test case. For ex-
ample, x becomes parameters for a function to be tested.

Define the function representing testing outcomes with
respect to the input domainD:

T (x) =

{
0, x is not a fault-detecting test case,
1, x is a fault-detecting test case.

(1)

Then the software testing activity can be described as the
search of fault-detecting test casesD f = {x ∈ D; T (x) = 1}.

In the MCMC-RT scheme, we consider the posterior
probability that a test case x has a failure after obtaining
m test outcomes. Let τ1 = T (x1), . . . , τm = T (xm) be test
outcomes for already executed m test cases. According to
Bayes rule, we have

P(T (x) = 1|τ1, . . . , τm)

=
p(τ1, . . . , τm|T (x) = 1)P(T (x) = 1)

Z
, (2)

where Z is a normalizing constant. Assuming τ1, . . . , τm are
conditional independence for a test outcome of the test case
x, the numerator of Eq. (2) is given by

p(τ1, . . . , τm|T (x) = 1) =
m∏

i=1

p(τi|T (x) = 1). (3)

The normalizing constant is given by

Z =
m∏

i=1

p(τi|T (x) = 0)P(T (x) = 0)

+

m∏
i=1

p(τi|T (x) = 1)P(T (x) = 1). (4)

In the above equation, the conditional probabilities

p(τi|T (x) = 0) and p(τi|T (x) = 0) are important to estimate
the posterior distribution of fault location. However, it is
impossible to find the true conditional probabilities, because
they strongly depend on source codes and program logic of
the software to be tested. In [13], Zhou et al. provided a
rational and useful assumption to the conditional probabili-
ties. Concretely, the conditional probabilities p(τi|T (x) = 0)
and p(τi|T (x) = 1) are given as the functions of a metric
(distance) on input space, i.e.,

p(T (x′) = 0|T (x) = 0) = exp

(
−D(x, x′)
β0

)
, (5)

p(T (x′) = 1|T (x) = 1) = exp

(
−D(x, x′)
β1

)
, (6)

where D(x, x′) is the distance between two test cases x and
x′. Equations (5) and (6) imply that the correlation between
outcomes of two test cases exponentially decreases as the
distance of the test cases increases. The parameters β0 and
β1 correspond to the strengths of test case correlations. In
[13], we assumed β = β0 = β1. Additionally β was deter-
mined by the maximum distance on the input domain, and
also P(T (x) = 0) and P(T (x) = 1) were given by flat dis-
tributions, i.e., constants. From Eq. (2), the fault location is
given by the following distribution

f f ail(x) =

∏m
i=1 p(τi|T (x) = 1)P(T (x) = 1)∫ ∏m
i=1 p(τi|T (x) = 1)P(T (x) = 1)dx

. (7)

The test case generation of MCMC-RT is to make a
sample drawn from f f ail(x) and is realized by MCMC al-
gorithm. Concretely, the procedure of MCMC-RT until the
first failure is discovered is presented as follows†:
• Step 1: Set an executed set to be empty set; SE ← φ.
• Step 2: Generate an initial test case which is randomly

selected from the input domain and execute it. If no
fault is detected, add this executed test case to SE . Oth-
erwise, stop the procedure.

• Step 3: Generate a new test case x based on the set
of executed test cases SE according to the following
steps:

– Step 3-1: Generate an initial test case x which is
a uniform random variable on the input domain.

– Step 3-2: Generate a new candidate x′ according
to the uniform distribution.

– Step 3-3: If an uniform random number U be-
comes less than or equal to the acceptance proba-
bility Pα, i.e.,

U ≤ Pα = min

(
f f ail(x′)
f f ail(x)

, 1

)
, (8)

x′ is accepted as a new test case; x ← x′. Oth-
erwise, if U becomes more than the acceptance
probability, then the test case is not updated.

– Step 3-4: Execute Step 3-2 through Step 3-3 for
†The original paper proposed two algorithms. This paper fo-

cuses only on MCMC-RT1 in [13] because it was superior to
MCMC-RT2 in terms of the failure-finding ability.
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the fixed number of iterations, and return x as a
generated test case.

• Step 4: Execute the test case x generated in Step 3.
If no fault is detected, add x to SE and go to Step 3.
Otherwise, if a fault is detected, stop the procedure.

3. Test Case Prioritization Using MCMC-RT

3.1 Test Case Prioritization Using Random Strategy

The test case prioritization is to give the priorities of test
cases which are in a test suite, and is effective to reduce test-
ing cost especially incurred by the regression testing. Most
of test case prioritization techniques are based on the in-
formation of coverages such as code and branch coverages.
Generally speaking, these methods require high computa-
tion cost to select the test cases from the test suite, since
they are essentially same as the optimization problem.

On the other hand, the simplest and cost-effective ap-
proach to the test case prioritization is a class of random
strategies, which is to choose a subset of the test cases from
a test suite randomly. The weakness of such the random se-
lection is clearly to choose the useless test cases that are not
related to the modified functions in the regression testing. In
other words, we should consider the coverage information
even in the test case selection according to random strategy.

Jiang et al. [10] and Zhou [11] presented the test case
prioritization with such coverage information based on the
adaptive random testing (ART). ART was originally pro-
posed to generate test cases in the ordinary software testing.
However, the idea behind ART can directly be used for the
random strategy of test case prioritization. In their schemes,
test cases are randomly generated until one of the samples
increases a coverage, and one of the test cases is selected
such that it maximizes a distance function with the already
selected test cases. This distance function can be either the
minimum distance with all executed tests, the maximum dis-
tance, or the average distance. The ART with such distance
function is called distance-based ART (DART). Empiri-
cal results have shown that DART prioritization techniques
were useful and could improve the performance of random
ordering drastically. This paper examines the applicability
of MCMC-RT scheme to the test case prioritization under
the similar manner of ART-based test case prioritization.

3.2 Distance Measure

While applying the MCMC-RT algorithm to the test case
prioritization, we should decide the distance measure be-
tween two test cases based on the coverage information. The
distance used in [13] is based on the metric on input domain.
Since it does not include the information on the coverage, it
cannot be used in the test case prioritization. There are many
ways to measure the distance between two test cases. This
paper uses Coverage Manhattan Distance (CMD) to mea-
sure the difference between any two test cases [11].

Let x = (x1, . . . , xn) and y = (y1, . . . , yn) be cover-
age vectors for elements of two programs. In general, an
element can be defined as a node or an edge in the pro-
gram control flow graph, data flow graph and other types
of graphs. Examples of elements are statements, branches
and conditions. The coverage vector is defined as a vector
whose element takes 0 or 1. In the vector, 0 means that the
corresponding element has not been covered yet, 1 means
that the element has already been covered. Then the CMD
can be obtained as the following equation:

CMD(x, y) =
n∑

i=1

|xi − yi|. (9)

In particular, this paper focuses on the CMD using the
branch coverage.

3.3 Algorithm

Suppose that branch coverage of each test case in a test
suite is measured and that the corresponding branch cov-
erage vectors are given. Then the algorithm for test case
prioritization using MCMC-RT in the regression testing is
written as follows. Although the MCMC-RT with test case
generation [13] is to generate a new test case, the following
algorithm is to select a test case from a test suite.

• Step 1: Set an executed set to be empty set; SE ← φ.
• Step 2: Select an initial test case from the test suite

randomly and execute it. If no fault is detected, add
this executed test case to SE . Otherwise, stop the pro-
cedure.

• Step 3: Select a new test case x from the test suite
based on the set of executed test cases SE :

– Step 3-1: Select a new test case x from the test
suite according to the uniform distribution.

– Step 3-2: Select a new candidate (test case) x′
from the test suite according to the uniform distri-
bution.

– Step 3-3: If an uniform random number U be-
comes less than or equal to the acceptance proba-
bility Pα, i.e.,

U ≤ Pα = min

(
f f ail(x′)
f f ail(x)

, 1

)
, (10)

x′ is accepted as a new test case; x ← x′. Oth-
erwise, if U becomes more than the acceptance
probability, then the test case is not updated.

– Step 3-4: Execute Step 3-2 through Step 3-3 for
the fixed number of iterations, and return x as a
selected test case.

• Step 4: Execute the test case x selected in Step 3. If no
fault is detected, add x to SE and go to Step 3. Other-
wise, if a fault is detected, stop the procedure.

In the calculation of f f ail(x), the CMD of branch coverage
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is used. The advantage of this scheme is to choose less test
cases that cover all the branches than in the case of random
strategy. In the MCMC-RT scheme, if one test case is cho-
sen and is executed without a failure, the probability that
one or more faults are located around the already executed
test cases is expected to be small. Then the next selection is
a test case that is far from the previous one in terms of the
branch coverage distance.

4. Empirical Study

4.1 Subject Programs

To assess the fault-detection capability of the proposed
method, five well-known subject programs were used to
conduct empirical experiments. Table 1 provides the infor-
mation about the programs used in our experiments. In the
table, LOC indicates the lines-of-code of non-faulty version.

The first four programs in Table 1 are the Siemens
suite of programs downloaded from the Software-artifact In-
frastructure Repository (http://sir.unl.edu). These programs,
with faulty versions and test cases, were assembled by re-
searchers at Siemens Corporate Research for a study of
the fault detection capabilities of control-flow and data-flow
coverage criteria [2]. The Siemens programs perform vari-
ous tasks: replace performs pattern matching and substitu-
tion, print tokens2 is lexical analyzer, schedule2 is a priority
scheduler and tot info computes statistics.

Each version of these programs contains a single fault.
In this context, the use of single-fault versions is an im-
portant experiment design that allows experimenters to pre-
cisely determine whether a test case reveals a particular fault
simply by determining whether the version containing that
fault fails. In the absence of this methodology, it may be
difficult or impossible to associate test cases with particular
faults.

The fifth program space is a program developed for
the European Space Agency [14], downloaded from the
Software-artifact Infrastructure Repository (http://sir.unl.
edu). space consists of 5905 lines of code, and functions as
an interpreter for an array definition language (ADL). The
program reads a file that contains several ADL statements,
and checks the contents of the file for adherence to the ADL
grammar and to specific consistency rules. If the ADL file
is correct, space outputs an array data file containing a list
of array elements, positions, and excitations; otherwise the
program outputs error messages. space has 38 associated

Table 1 Subject programs.

Program Faulty Number of
Name Versions LOC Test Cases
replace 32 513 5542
print tokens2 10 355 4115
schedule2 10 266 2710
tot info 23 297 1052
space 38 5905 13585

versions, each containing a single fault that had been dis-
covered during the program’s development.

4.2 Experiment Procedure

As introduced above, each subject program package in-
cludes a base version (non-faulty version), associated faulty
versions, and a suite of test cases. For each subject program,
the experiment was conducted as follows: we first run the
base version using all the provided test cases. During each
test case execution of the base version, the Linux utility gcov
(a standard test coverage tool in concert with gcc) was used
to collect branch coverage data. Outputs of the base version
were also recorded as the test oracle. By comparing the test
oracle with outputs of the faulty versions, we detect the error
occurrence.

Table 2 Results of F-measure.

RT DART MCMCRT
β = M/2 β = M/4

replace 249.61 133.29 141.48 144.39
print tokens2 64.08 14.70 10.64 16.85
schedule2 115.93 54.55 48.43 56.15
tot info 25.38 11.60 12.63 15.06
space 172.75 46.52 36.33 37.64

average 125.55 52.13 49.90 54.02

Table 3 Results of observed mean F-measure with program replace.

RT DART MCMCRT
β = M/2 β = M/4

v1 82.25 38.41 27.30 60.26
v2 173.92 80.23 31.17 100.13
v3 42.40 12.34 14.28 36.41
v4 39.45 11.43 14.01 34.64
v5 19.04 14.56 13.18 18.93
v6 56.62 52.55 73.66 49.09
v7 72.24 24.59 24.13 54.10
v8 108.82 44.08 23.48 78.88
v9 159.33 169.93 360.41 137.82
v10 177.00 154.43 216.41 151.94
v11 159.33 169.93 360.41 137.82
v12 17.21 16.64 18.36 16.91
v14 33.40 18.84 21.12 35.97
v15 95.38 81.35 21.96 69.28
v16 72.24 24.59 24.13 54.10
v17 252.04 222.65 84.76 141.55
v18 24.19 17.39 31.00 24.78
v19 1476.68 589.12 262.42 763.25
v20 286.09 244.70 87.09 151.86
v21 1607.62 696.07 1322.68 831.57
v22 275.51 251.39 654.62 175.67
v24 29.66 13.81 11.68 27.05
v25 1535.30 710.18 177.23 733.00
v27 19.71 9.52 9.09 18.17
v28 42.80 12.23 13.47 32.87
v29 85.75 26.11 23.04 66.63
v30 21.03 7.69 9.27 15.37
v31 24.19 17.39 31.00 24.78
average 249.61 133.29 141.48 144.39
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Table 4 Results of observed mean F-measure with program
print tokens2.

RT DART MCMCRT
β = M/2 β = M/4

v1 33.51 10.06 6.71 8.40
v2 32.08 9.66 6.49 8.24
v3 149.09 23.72 18.37 38.16
v4 38.52 10.42 7.29 9.73
v5 82.67 14.40 12.75 21.89
v6 12.35 4.46 4.41 5.01
v7 33.51 16.97 12.31 18.47
v8 29.52 8.45 6.93 8.66
v9 146.92 34.50 18.37 28.08
v10 82.67 14.40 12.75 21.89
average 64.08 14.70 10.64 16.85

Table 5 Results of observed mean F-measure with program schedule2.

RT DART MCMCRT
β = M/2 β = M/4

v1 40.55 44.33 24.95 38.27
v2 90.68 71.35 73.40 80.74
v3 69.71 89.48 74.21 50.97
v5 78.04 59.40 71.71 52.68
v6 436.43 70.94 47.42 97.40
v7 90.68 71.35 73.40 80.74
v8 60.68 14.32 11.08 24.13
v10 60.68 15.19 11.29 24.23
average 115.93 54.55 48.43 56.15

Table 6 Results of observed mean F-measure with program tot info.

RT DART MCMCRT
β = M/2 β = M/4

v1 7.26 4.47 4.57 5.56
v2 96.18 27.79 33.93 43.33
v4 26.89 17.12 19.23 17.59
v5 34.55 14.90 17.57 21.75
v6 23.04 18.48 19.50 19.76
v7 8.85 4.62 6.10 7.71
v8 5.91 3.58 3.94 4.14
v9 28.31 13.01 15.77 18.23
v10 121.39 33.90 27.88 50.77
v11 5.91 3.58 3.94 4.14
v12 36.81 17.70 21.66 18.89
v13 8.52 4.47 5.91 7.42
v15 5.91 3.58 3.94 4.14
v16 6.37 3.98 4.98 5.98
v17 20.23 15.55 17.07 16.22
v18 9.84 5.03 5.73 6.93
v19 11.64 12.36 11.23 13.36
v20 14.53 6.70 7.84 9.67
v21 11.66 6.37 8.36 9.84
v22 37.79 18.73 17.30 20.07
v23 11.48 7.69 8.77 10.75
average 25.38 11.60 12.63 15.06

Then, for each faulty version, we consider three test
case sequences (permutations) of all the test cases. The three
test case sequences are generated by the following random
strategies: the ordinary random testing (RT), the distance-

Table 7 Results of observed mean F-measure with program space.

RT DART MCMCRT
β = M/2 β = M/4

v3 19.53 25.31 23.10 21.02
v4 1.16 1.23 1.23 1.24
v5 3.28 3.54 4.07 4.26
v6 1.13 1.19 1.18 1.18
v7 76.93 22.21 16.76 19.83
v8 109.71 46.30 49.87 53.48
v9 3.40 2.97 3.22 3.22
v10 9.99 7.49 8.27 8.44
v11 13.49 9.94 11.13 10.35
v12 928.16 204.44 134.47 130.36
v13 17.87 8.18 9.96 10.63
v14 7.31 4.61 5.38 5.74
v15 4.51 3.05 3.79 3.94
v16 30.69 8.30 8.39 9.77
v17 70.54 78.40 49.93 43.73
v18 928.16 204.44 134.47 130.36
v19 9.57 9.71 10.14 10.13
v20 66.50 21.82 22.72 23.78
v21 66.50 21.82 22.72 23.78
v22 365.55 61.82 34.61 41.13
v23 42.51 16.28 13.74 14.83
v24 20.19 6.62 7.48 8.29
v25 3.42 2.95 3.27 3.28
v26 8.75 5.10 5.67 5.74
v27 680.74 117.55 36.77 49.13
v28 2.17 2.09 2.25 2.26
v29 18.69 10.87 12.04 12.47
v30 1.31 1.45 1.51 1.52
v31 8.63 5.93 6.52 6.77
v33 1692.08 399.67 104.28 135.25
v35 65.01 19.50 69.79 68.71
v36 131.15 135.22 34.98 36.17
v37 112.57 38.49 24.26 28.38
v38 352.21 73.21 357.24 350.43
average 172.75 46.52 36.33 37.64

based ART (DART) and MCMC-RT. The last two strate-
gies use the branch coverage Manhattan distance as the dif-
ference measure between test cases. Note that the coverage
data were collected from the base version. The F-measures
under the test case sequences of RT, DART and MCMC-RT
were recorded, where the F-measure is defined as the num-
ber of executed test cases until an error is detected. For each
faulty version, this process was repeated 100 times. Also,
according to the experiment in [13], we set the parameter β
in MCMC-RT as β = M/2 and β = M/4, where M is the
maximum distance. In our experiment, M can be given by
the number of branches (length of coverage vectors). The
numbers of branches for replace, print tokens2, schedule2,
tot info and space are 180, 162, 88, 88 and 1,190, respec-
tively.

We carry out the experiment on a Dell Power Edge
T605 server serving a CentOS 5.3 Linux OS. The server
is equipped with AMD Opteron 6276 (2.3 GHz, 8 core) pro-
cessor with 16 GB physical memory.
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Fig. 1 F-measure distributions for each program and all the programs. A, B, C, D represent RT,
DART, MCMC-RT(β = M/2) and MCMC-RT(β = M/4) respectively.

4.3 Results and Discussion

Results of all experiments are shown in Table 2. Table 2
shows that MCMC-RT (β = M/2 or β = M/4) outperformed
RT and DART in the case of print token2, schedule2, space.
The highest saving occurs for program print tokens2, for
which the ratios of MCMC-RT(β = M/2)/RT and MCMC-
RT(β = M/2)/DART are 16.6% and 72.4%, which means
that MCMC-RT used about 83.4% and 27.6% fewer test
cases than RT and DART to detect the first fault, re-
spectively. Furthermore, in the average of five programs,
MCMC-RT with β = M/2 is superior to the other strategies.

Detailed results of experiments for each program are
shown in Tables 3–7. In these tables, we give the average
F-measure value for each version of each program after 100
times execution.

The replace package includes 32 faulty versions. Ver-
sion 32 is excluded from the experiments because it gener-
ated identical outputs as the base version on all the 5,542 test
cases. Furthermore, versions 13, 23, and 26 are not stable
as each of them produced different outputs (hence differ-
ent sets of fault-detecting test cases) when run at different
times or under different environments. We therefore also
excluded these versions from the experiments. For program
print tokens2 shown in Table 4, we use all the 10 faulty ver-
sions. Also, we excluded the version 4 of program sched-

ule2 given in Table 5 and versions 3 and 14 of program
tot info given by Table 6 from the simulation since they
cannot execute properly under our experiment environment.
Furthermore, version 9 of program schedule2 is excluded
from the experiments since it produced the same output as
the base version. For the space program shown in Table 7,
versions 1, 2, 32, and 34 are excluded from the experiments
because they produced identical outputs as the base version.

According to Tables 3–7, we find that our MCMC-
RT scheme can provide better fault detection performance
than both RT and DART in many cases. Only for program
tot info and some versions of replace and space, MCMC-
RT is worse performed than RT or DART, but the difference
between MCMC-RT and DART in this program is marginal.
The reason is that the fault detection rate in such program is
too high and it causes the decrease of fault detection capa-
bility.

Figure 1 shows the box-whisker plots† of F-measure
distributions for each and overall programs. We observe that
MCMC-RT prioritization performs better than both random
ordering and comparable with the ART techniques.

†Boxplots provide a concise display of a distribution. The
central line in each box marks the median value. The edges of
the box mark the first and third quartiles. The whiskers extend
from the quartiles to the farthest observation lying within 1.5 times
the distance between the quartiles. Individual markers beyond the
whiskers are outliers.
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Table 8 Comparing difference between F-measures.
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Table 9 Results of computation time (in seconds).

RT DART MCMCRT
β = M/2 β = M/4

replace 0.028 6.43 20.56 15.56
print tokens2 0.005 0.39 2.23 1.29
schedule2 0.005 0.25 0.86 1.70
tot info 0.005 0.059 0.61 1.06
space 0.026 5.46 12.24 14.34

Next we conduct signed tests to compare the perfor-
mance of RT, DART and MCMC-RT. The signed test is one
of the non-parametric statistical tests to reveal whether there
is a difference between two experimental outcomes. Table 8
presents the results of signed tests. We perform the signed
tests to two experimental outcomes. For example, the first
row indicates the results for comparison of F-measures of
RT and DART. If the null hypothesis; F-measures of RT
and DART are same, under the alternative hypothesis; F-
measures of DART are less than that of RT, is rejected, we
put “<” to the corresponding result. On the other hand, If the
null hypothesis under the alternative hypothesis; F-measures
of RT are less than that of DART, is rejected, we put “>” to
the corresponding result. Also, “=” indicates that the null
hypothesis is not rejected. In our experiment, the signifi-
cant level is set as 0.01. Additionally, to avoid the statistical
problem that the rejection of null hypothesis occurs opti-
mistically in the case of multiple comparisons, we used the
Bonferroni method which divides the significant level by the
number of statistical tests.

From Table 8, it is clear that MCMC-RT and DART
always perform better than or equal to random testing. Also,
we can find that for all the five programs and the overall
results, the performance of our MCMC-RT and DART are
generally comparable to each other.

As a matter of fact, we further analyze the time cost
of MCMC-RT prioritization techniques and compare them
with RT and DART techniques to help guide practical use.
Table 9 presents the time cost (user time in seconds with
a single thread) of prioritization techniques in five subject

programs. We calculate the mean prioritization time across
all techniques for every subject program. The computation
time is a sum of generating and executing 100 test cases,
which excludes the time for measuring the coverage. We
observe that the MCMC-RT spends more time cost than RT
and DART.

5. Conclusion

In this paper, we have proposed an MCMC-RT algorithm for
the test case prioritization. In particular, we have discussed
the distance measure based on the coverage and how to in-
corporate it into the MCMC-RT scheme. Empirical studies
were further conducted for the branch coverage Manhattan
distance measure. The experimental results show that, the
proposed method improves the fault-detection capability of
random testing significantly.

The proposed method can directly be used to prioritize
regression test cases. Future research should study the use-
fulness of other types of coverage information for MCMC-
RT, including coverage of elements in function call graphs
and in other types of graphs/models used in modeling sys-
tems, such as state diagrams and other unified modeling lan-
guage (UML) diagrams. Furthermore, we plan to apply our
MCMC-RT technique to test suite augmentation [15] based
on program dependence graph (PDG) [16].
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