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Towards Dynamic and Scalable High-Speed IP Address Lookup
Based on B+ Tree

Gang WANG†a), Yaping LIN†∗b), Rui LI†c), Jinguo LI†d), Xin YAO†e), Nonmembers,
and Peng LIU†f), Student Member

SUMMARY High-speed IP address lookup with fast prefix update is
essential for designing wire-speed packet forwarding routers. The devel-
opments of optical fiber and 100 Gbps interface technologies have placed
IP address lookup as the major bottleneck of high performance networks.
In this paper, we propose a novel structure named Compressed Multi-way
Prefix Tree (CMPT) based on B+ tree to perform dynamic and scalable
high-speed IP address lookup. Our contributions are to design a practi-
cal structure for high-speed IP address lookup suitable for both IPv4 and
IPv6 addresses, and to develop efficient algorithms for dynamic prefix in-
sertion and deletion. By investigating the relationships among routing pre-
fixes, we arrange independent prefixes as the search indexes on internal
nodes of CMPT, and by leveraging a nested prefix compression technique,
we encode all the routing prefixes on the leaf nodes. For any IP address,
the longest prefix matching can be made at leaf nodes without backtrack-
ing. For a forwarding table with u independent prefixes, CMPT requires
O(logm u) search time and O(m logm u) dynamic insert and delete time. Per-
formance evaluations using real life IPv4 forwarding tables show promis-
ing gains in lookup and dynamic update speeds compared with the existing
B-tree structures.
key words: IP address lookup, forwarding table, longest prefix matching,
dynamic update, B+ tree

1. Introduction

1.1 Background and Motivation

The rapid growth of Internet traffic and the growing com-
plexity of packet processing are placing extreme demands
on the design of high performance routers [1]. One of the
core functionalities of router is to compare the destination
IP address of every incoming packet against a set of rules in
forwarding table to determine the next forwarding hop. IP
address lookup is the most time-consuming task in routers
since the incoming packets should be processed in wire-
speed even as the sizes of routing tables and the rates of
packets arrival are dramatically increasing [2].

Currently, IP addresses are divided into two levels of
hierarchy: a network prefix and a host address. To utilize the
address space efficiently, Classless Inter-Domain Routing

Manuscript received December 21, 2011.
Manuscript revised April 5, 2012.
†The authors are with the College of Information Science and

Engineering in Hunan University, P. R. China.
∗Corresponding author

a) E-mail: wg@hnu.edu.cn
b) E-mail: yplin@hnu.edu.cn
c) E-mail: lirui@hnu.edu.cn
d) E-mail: lijg1985@hnu.edu.cn
e) E-mail: xinyao@hnu.edu.cn
f) E-mail: liupeng@hnu.edu.cn

DOI: 10.1587/transinf.E95.D.2277

(CIDR) is used to allocate prefixes in arbitrary length [3].
However, the IP address lookup process requires the lookup
engine searching in variable length prefixes for the longest
prefix matching (LPM).

Due to its importance, IP address lookup with longest
prefix matching has received significant attention by re-
searchers in the past few years [4]–[10]. Recently, with the
rapid growth of internet traffic and IPv6 applications, there
has been much renewed research interest in developing dy-
namic and scalable data structures for high-speed IP address
lookup in a large-scale and dynamic forwarding table [11]–
[13].

There are several driving factors motivating the re-
search on dynamic and scalable high-speed IP address
lookup problem. Firstly, the fiber-optical and high speed in-
terface technologies have been rapidly developed to transmit
packets in the speed of 100 Gbps. Therefore, packets pro-
cessing speed of routers has become the major bottleneck of
high performance networks. To keep up with 100 Gbps net-
works, high-speed IP address lookup is essential for design-
ing wire-speed packet forwarding routers [13]. Secondly,
due to the prevalence of the Internet and lots of new emerg-
ing network applications, the network traffic in backbone
routers is doubling every two months. It’s reported that a
core router has contained more than 350 K routing prefixes
on May 1st of 2011 and the forwarding tables are expending
exponentially [14]. Therefore, it necessitates not only the
high speed performance of IP address lookup but also dy-
namic data structures to support fast prefix update. Thirdly,
the forwarding tables in backbone routers can be updated
hundreds of times every second. It is urgent to develop an
IP address lookup algorithm that supports the update rate of
at least one thousand times every second to pace the update
rate of forwarding tables. Fourthly, the Internet is fetching
in sustained growth of users. More IP addresses are required
to provide global communication. Despite the Network Ad-
dress Translation (NAT) technique is involved as a tempo-
rary scheme to share one IP addresses within several hosts,
the switch to IPv6 address space seems inevitable. There-
fore, the algorithms whose lookup speeds are related to the
IP address length become less attractive. More scalable IP
address lookup technique is imperative.

1.2 Limitation of Prior Art

There are three main categories for the technique of dy-
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namic IP address lookup: schemes based on Ternary Con-
tent Address Memory (TCAM), schemes based on trie tree
and schemes based on range tree. TCAMs have been
implemented in high performance routers for their high-
speed lookup by only one single memory access. How-
ever, TCAMs are very expensive and suffer from high power
consumption. Trie-based schemes are widely used in high-
speed routers and easy to implement. But their lookup
speeds are highly related to the length of IP address and
would decrease dramatically when extending to IPv6 net-
works. Range tree is a promising technique due to its high
matching speed and well-designed scalability.

The most related work to this paper is [13]. The authors
in [13] proposed an improved dynamic IP lookup algorithm
named MMSPT based on the work in [10]. MMSPT per-
forms with a high speed for dynamic update and scalability
in processing IP address lookup. However, there are still
two shortcomings of MMSPT: (1) The lookup speed suf-
fers from backtracking on MMSPT for the prefixes which
are not the most specific prefixes defined in [13]. Especially
with the rapid growth of Internet traffic, the times of back-
tracking lookup could increase, and this would dramatically
decrease the throughput of routers. (2) MMSPT stores all
the rules of a forwarding table without compressing. The
exponentially expending of forwarding table size may lead
to space explosion.

1.3 Our Approach and Contributions

In this paper, we focus on developing a dynamic and high-
speed IP address lookup algorithm with good scalability. We
are interested in B+ tree to resolve this problem, since for
any search keys, the matching operation on B+ tree can be
hit on leaf nodes without any backtracking. Furthermore,
B+ tree can be constructed with ranges and therefore can be
easily extended to IPv6 addresses with good scalability.

Therefore, we firstly build the forwarding table as a
Multi-way Prefix Tree (MPT) based on B+ tree whose leaf
nodes store all the routing rules and internal nodes store
independent prefixes as search indexes. The longest pre-
fix matching operation is performed in multi-way only once
and matched in leaf nodes without backtracking. The MPT
structure improves the lookup speed, but it is not efficient
in memory usage because the independent prefixes are re-
peatedly stored in the B+ tree. To reduce the memory usage
of this structure, we then construct the data structure as a
Compressed Multi-Way Prefix Tree (CMPT) by proposing
a prefixes compression technique based on the observation
that prefixes are nested to each other. To compress prefixes,
we design a nested prefix mask for several nested prefixes.
Therefore, the leaf nodes of CMPT only store independent
prefixes and masks instead of all the routing prefixes. To
support the longest prefix matching on CMPT, we propose
an IP lookup technique to calculate the longest matching
prefix. To support dynamic IP lookup, the dynamic prefix
insertion and deletion algorithms are proposed, which can
effectively support the dynamic update of routing table. Be-

cause the data structure is not related to the length of IP ad-
dress, it’s also suitable for IPv6 addresses and can be easily
extended to IPv6 networks.

The key contributions of this paper can be summarized
as follows: (1) We propose a dynamic IP lookup algorithm
based on B+ tree which improves the IP lookup speed ef-
fectively. (2) We propose a compact data structure to store
prefixes which increases the space usage rate dramatically.
(3) We propose a dynamic prefix update algorithm on B+
tree which can efficiently support the dynamic IP lookup.
(4) The data structure we proposed can be easily extended
to IPv6 networks.

The rest of this paper is organized as follows. Section 2
briefly summarizes the related work on dynamic IP lookup.
Section 3 presents the formulations of routing rules and pre-
fixes. The proposed CMPT structure is described in Sect. 4.
Section 5 elaborates the IP address lookup algorithm with
longest prefix matching. Section 6 introduces the dynamic
update algorithms. Experimental results using our proposed
method are reported in Sect. 7 and the paper is concluded in
Sect. 8.

2. Related Work

Dynamic IP address lookup has received significant atten-
tions in the past few years. Both hardware based and soft-
ware based schemes are proposed [15]. However, although
TCAMs perform high speed for IP lookup [12], they suf-
fer from high cost and power consumption. The shortcom-
ings are even more serious when extended to IPv6 networks.
Therefore, software based solutions are still popular alterna-
tives [1], [2], [4]–[8], [10], [11], [13], [16]–[19].

The trie is a tree-based data structure for IP address
lookup applying linear search on prefix length [1], [2], [7],
[8], [11]. The routing prefixes are stored in the nodes of trie.
The level of a node storing prefix corresponds to the length
of the prefix. The search operation proceeds to the right
or left at each node according to the sequentially inspected
bit of the IP address. The binary trie is widely used as IP
address lookup data structure for its easiness to implement
and good scalability for large forwarding tables. However,
the binary tire is not a memory efficient data structure since
there are lots of empty nodes not involving prefixes. Fur-
thermore, since the shorter prefixes are stored higher than
longer prefixes, shorter prefixes are compared earlier than
longer prefixes when performing the longest prefix match-
ing operation [1]. Lastly, the lookup speed of binary tire
which is highly related to the prefix length would decrease
dramatically when extends to IPv6 address.

Multi-way range search is a promising way for high-
speed IP address lookup due to its good dynamics and scal-
ability. Warkhede et al. firstly proposed a B-tree based data
structure for IP address lookup named Multi-Way Range
Tree (MRT) [17]. MRT performs the longest prefix match-
ing operation in the time of O(logm n), and dynamically in-
serts or deletes a rule in O(m logm n). MRT is suitable for
both ranges and prefixes. However, the endpoints of a range
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are stored repeatedly in internal nodes. A prefix is stored at
most in m − 1 nodes in each level. This property greatly
increases the update complexity and memory usage. To
resolve this problem, Lu et al. proposed a structure called
Range in B-Tree (RIBT) [10]. RIBT stores each prefix only
once at each level. In [10], the authors conducted experi-
ments to compare RIBT with MRT and found out that the
performance of the two algorithms were almost the same
except that RIBT was more memory efficient than MRT.

Kim et al. proposed a dynamic structure called Col-
lection of Red-Black Trees (CRBT) based on the endpoints
of each range in [5]. CRBT performs IP lookup, dynamic
prefix insertion and deletion in O(log n) time for a routing
table with n rules. In [6], the authors proposed a dynamic IP
lookup algorithm called Priority Search Tree (PST) which
can find the longest matching prefix and dynamic update in
O(log n). Lu et al. conducted experiments to compare the
performance of CRBT and PST [18]. The experimental re-
sults show that CRBT outperforms PST in lookup speed.
But PST performs much better than CRBT in update speed
and memory usage. Lu and Sahni also proposed a dynamic
algorithm called Binary Tree on Binary Tree (BOB) in [19].
For real forwarding tables, the time complexity of BOB
and Prefix BOB (PBOB) are both O(log n) in prefix search,
insertion and deletion. Furthermore, BOB and LMPBOB
(Longest Matching Prefix BOB) outperform PST in prefix
search, dynamic update and memory usage.

Chang et al. proposed a Multi-Way Most Specific Pre-
fix Tree (MMSPT) based on B-tree [13]. MMSPT classi-
fies the prefixes of a forwarding table into two categories:
Specific Prefix and Cover Prefix. MMSPT stores each pre-
fix only once in its nodes and performs the longest prefix
matching operation in O(logm n) time and performs dynamic
prefix insertion and deletion in O(m logm n) time. For a rout-
ing table with n prefixes, the memory usage of MMSPT is
O(n). However, for some prefixes, MMSPT needs to back-
track along the search path to find the longest matching pre-
fix. Note that the probability of backtracking may increase
and should not be ignored since the internet traffic is grow-
ing rapidly. More backtracking means more time cost. Fur-
thermore, MMSPT still needs to store all the prefixes of
routing tables. Since the size of forwarding tables are in-
creasing exponentially, it’s urgent to develop more memory
efficient data structure for large forwarding tables.

3. Formulations

This section presents the formally definitions for the con-
cepts of forwarding table, rule, prefix, interval, independent
prefix and the relationships among prefixes. A forwarding
table RT is made of n rules. Each rule r can be repre-
sented as r : p → NH where NH is the next hop. p is
a set of IP addresses and can be denoted either a prefix or
a nonempty nonnegative integer interval. A prefix is a bi-
nary string in the form of {0, 1}k {0}w−k , where k is the pre-
fix length and w is the length of IP address (e.g. for IPv4,
w = 32, for IPv6, w = 128). The expression {0, 1}k de-

Table 1 A forwarding table with 18 prefixes, w = 6.

# prefix interval NH # prefix interval NH
p1 0100** [16,19] N1 p10 000*** [0,7] N2

p2 00010* [4,5] N3 p11 100*** [32,39] N1

p3 11010* [52,53] N4 p12 10110* [44,45] N4

p4 00**** [0,15] N1 p13 10**** [32,47] N3

p5 01001* [18,19] N2 p14 101*** [40,47] N2

p6 10010* [36,37] N3 p15 110101 [53,53] N1

p7 11**** [48,63] N4 p16 010*** [16,23] N3

p8 01**** [16,31] N2 p17 1101** [52,55] N3

p9 110*** [48,55] N2 p18 1001** [36,39] N1

notes a string with k 0 s or 1 s. ’*’ denotes a wildcard or
the “don’t care” bit which means ’*’ can be matched by
both 0 and 1. The prefix {0, 1}k {∗}w−k , is equal to the inter-
val
[
{0, 1}k {0}w−k , {0, 1}k {1}w−k

]
which means {0, 1}k {0}w−k

is the beginning IP address and {0, 1}k {1}w−k is the ending
IP address that the interval can match. For a prefix p, we use
len(p), start(p) and finish(p) to denote the length, starting IP
address and ending IP address of p respectively.

start(p) =
len(p)∑

i=1

bi2
w−i (1)

f inish(p) =
len(p)∑

i=1

bi2
w−i +

w∑

i=len(p)+1

2w−i (2)

where bi is the ith bit of prefix p. For example, when w=6,
the prefix 110*** denotes the interval [110000, 110111]
(which means the integer interval [48, 55]). And for this
prefix, len(p) = 3, start(p) = 48, and finish(p) = 55.

Table 1 shows an example of a forwarding table. Using
the concepts of prefix and interval, we define the relation-
ships between two prefixes as follows.

Definition 1: For two prefixes p1 and p2, p1 is disjoint with
p2 if and only if p1

⋂
p2 = φ. Otherwise, p1 is related to p2.

As shown in Table 1, p2 is related to p4, but p2 is disjoint
with p5.

Definition 2: For two disjointed prefixes p1and p2, define
p1 < p2 if and only if f inish(p1) < start(p2). For example,
in Table 1, p2 < p1, p8 < p7.

Definition 3: For two prefixes p1 and p2, define p1 covers
p2 (denoted as p1 ⊃ p2), if and only if start(p1) ≤ start(p2)
and f inish(p1) ≥ f inish(p2). For example, in Table 1, p7 ⊃
p9, p13 ⊃ p18.

Definition 4: In the prefix set P of routing table RT, for any
prefix p ∈ P, we say prefix p is an independent prefix if and
only if there is no prefix q in the set P-{p} satisfying q ⊂ p.
Therefore, there is no prefix in P-{p} can be covered by p.
For example, in Table 1, p2, p6, and p15 are all independent
prefixes.

Theorem 1: For two prefixes p1 and p2, if p1 � p2 and
len(p1) = len(p2), then p1

⋂
p2 = φ.

Proof: Let the first l bits of p1 and p2 are the same, p1 and



2280
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.9 SEPTEMBER 2012

p2 are different from the l+1 bit. Since each bit is either o or
1, we may assume that the l+ 1 bit of p1 is 0 and the l+ 1 bit
of p2 is 1. Therefore

f inish(p1) =
l∑

i=1

bi.12w−i + 0 · 2w−(l+1)

+

len(p1)∑

i=l+2

bi.12w−i +

w∑

i=len(p1)

2w−i

start(p2)=
l∑

i=1

bi.22w−i+1 · 2w−(l+1) +

len(p2)∑

i=l+2

bi.22w−i

Where bi.1 is ith bit of p1, bi.2 is the ith bit of p2. Since

len(p1)∑

i=l+2

bi.12w−i+

w∑

i=len(p1)

2w−i<

len(p1)∑

i=l+2

2w−i+

w∑

i=len(p1)

2w−i

=

w∑

i=l+2

2w−i

< 2w−(l+1)

Therefore, f inish(p1) < start(p2). According to definition
2, we know p1 is disjoint with p2. And according to defini-
tion 1, p1

⋂
p2 = φ.

Definition 5: For two prefixes p1 and p2, l1 = len(p1), l2 =
len(p2), and l1 ≤ l2, if the first l1 bits of p2 are the same as
p1, we define p1 is a sub string of p2. As shown in Table 1,
p9 is a sub string of p15.

Theorem 2: For two prefixes p1 and p2, if len(p1) <
len(p2) and p1 is not a sub string of p2, then p1

⋂
p2 = φ.

Proof: Since len(p1)< len(p2) and p1 is not a sub string of
p2, the first l bits of p1 are different from the first l bits of p2,
according to Theorem 1, p1 is disjoint with the sub string of
the first l bits of p2. Therefore, the proof process is similar
to the proof of Theorem 1.

Theorem 3: For two prefixes p1 and p2, if len(p1) <
len(p2), and p1 is a sub string of p2, then p1

⋂
p2 = p2.

Proof: p1 is a sub string of p2, therefore, the first l bits of
p2 is the same as p1, so l = len(p1), and bi,1 = bi.2, where
1 ≤ i ≤ l. Therefore,

start(p1) =
l∑

i=1

bi,12w−i

f inish(p1) =
l∑

i=1

bi,12w−i +

w∑

i=l+1

2w−i

start(p2) =
len(p2)∑

i=1

bi,22w−i

=

l∑

i=1

bi,22w−i +

len(p2)∑

i=l+1

bi,22w−i

=

l∑

i=1

bi,12w−i +

len(p2)∑

i=l+1

bi,22w−i

≥
l∑

i=1

bi,12w−i = start(p1)

f inish(p2) =
l∑

i=1

bi,22w−i+

len(p2)∑

i=l+1

bi,22w−i+

w∑

i=len(p2)+1

2w−i

=

l∑

i=1

bi,12w−i+

len(p2)∑

i=l+1

bi,22w−i+

w∑

i=len(p2)+1

2w−i

≤
l∑

i=1

bi,12w−i+

w)∑

i=l+1

2w−i

= f inish(p1)

According to definition 3, p1 ⊃ p2, so p1
⋂

p2 = p2.

4. Proposed Data Structure

This section presents the proposed data structure which we
call Compressed Multi-Way Prefix Tree (CMPT). The ob-
jective of CMPT is to design a structure satisfying: (1) the
search operation on the structure should be able to hit at leaf
node without backtracking. (2) The structure should be able
to support dynamic prefix update. (3) The structure should
be not related to address length. (4) The structure should be
able to store forwarding rules compressively.

We first present our MPT structure based on B+ tree,
and then introduce the compression technique for prefixes
on the leaf nodes of MPT to construct CMPT.

4.1 Multi-Way Prefix Tree

MPT is an m-way search tree built with B+ tree in the order
of m. For a given prefix set P of a forwarding table, we
convert each prefix to a range, and then construct P as a
MPT based on B+ tree. Like the traditional B+ tree, our
MPT is defined as follows.

1. Each node x contains the following information:

• n(x), the number of keys stored in node x;
• lea f (x), defined in bool. If x is a leaf node, it is

set to TRUE. If x is an internal node, it is FALSE.
• The n(x) keys keyi(x), where 1 ≤ i ≤ n(x). If

lea f (x) is FALSE, the n(x) keys follow

key1(x) < key2(x) < · · · < keyn(x)(x)

If lea f (x) is TRUE, the n(x) keys follow

key1(x) ⊂ key2(x) ⊂ · · · ⊂ keyn(x)(x)

2. If x is an internal node, x contains n(x) pointers point-
ing to its n(x) children. A leaf node do not have child.

3. The first key of each node (except the root) is repeat-
edly stored in its parent node as the search index.

4. All the leaf nodes are in the same layer, the depth is h.
5. The number of keys stored in internal node can be ex-
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Fig. 1 An example of MPT tree constructed from Table 1.

pressed with the integer m as follows:

• There are at least m/2 keys stored in each internal
node (except the root), and at least m/2 children
pointed by m/2 pointers. If the tree is non-empty,
there is at least one key stored in the root.

• There are at most m keys stored in each internal
node and m pointers pointing to the conrrespond-
ing children. A internal node is full if there are m
keys stored in it.

6. There are at most w (w is the length of IP address) keys
stored in each leaf node, and at least one key.

Figure 1 shows an example of MPT tree constructed
from Table 1, where m is 4. As illustrated in Fig. 1, the keys
in n1, n2 and n3 are all independent prefixes and stored in
increasing order. In the leaf nodes of n4, n5, n6, n7 and n8,
only the first key in each node is independent prefix, the
other keys in each node all cover the keys above them. For
example, the first key in n4 is 00010* which is an indepen-
dent prefix. The other two keys are 000*** and 00****. The
second key 000*** covers the first key 00010*, and the third
key 00**** covers both 00010* and 000***. The internal
node n2 stores two keys 00010* and 01001*. Therefore, n2

contains two pointers pointing to its children n4 and n5.
According to the definition of MPT, the routing pre-

fixes are all stored in leaf nodes sequentially in coverage in-
creasing order. As search indexes, independent prefixes are
stored repeatedly in internal nodes. This property ensures
the longest prefix matching can be hit at leaf node for ev-
ery IP address. However, the repeatedly stored independent
prefixes increase the memory usage. To reduce the memory
usage of MPT, we develop a nested prefixes compression
technique to construct a Compressed Multi-way Prefix Tree
(CMPT).

4.2 Prefixes Compression

We present a prefixes compression technique in this subsec-
tion to resolve the memory usage problem of MPT. The
technique is mainly based on the coverage relationship of
prefixes. According to the definition of MPT, the prefixes in

Fig. 2 An example of generating PNMs for leaf nodes.

each leaf node of MPT have the following theorems.

Theorem 4: For any two prefixes p1 and p2 in the leaf
node x of MPT, assume their lengths are l1 and l2, if p1 � p2,
then l1 � l2.

Proof: From the definition of MPT, we know that the pre-
fixes in leaf nodes are stored in increasing order of coverage.
Since p1 � p2, suppose p1 covers p2 in leaf node x, that’s
to say, p1 ⊃ p2, according to Theorem 3, p1

⋂
p2 = p2 and

l1 � l2.

Theorem 5: For any two prefixes p1 and p2 in the leaf
node x of MPT, assume their lengths are l1 and l2, if p1 is
stored before p2 in x, which means p1 ⊂ p2, then l1 > l2.

Theorem 5 can be proved in the similar way as the
proof of Theorem 4.

Based on Theorem 4 and Theorem 5, we generate a
Prefixes Nested Mask (PNM) to replace several prefixes
stored in each leaf node to reduce the memory usage. The
PNM of leaf node x, denoted as Mask(x), can be generated
as the following definition.

Definition 6: The Mask(x) of leaf node x is a prefix with
the length w (for IPv4, w = 32, for IPv6, w = 128). All
bits of Mask(x) are originally set to 0 s. When the key set of
node x includes a prefix with length l, the lth bit of Mask(x)
is set to 1. For example, in Fig. 2, Mask(n6) = 011110,
Mask(n7) = 011010.

After we generate the PNMs, each leaf node only stores
one PNM prefix. For the convenience of IP lookup, we com-
bine the PNMs in leaf nodes with the corresponding nodes
of the last internal layer. After combination, we build our
Compressed Multi-Way Prefix Tree (CMPT). Therefore,
each leaf node of CMPT stores n(x) keys and PNMs.

Figure 2 illustrates the process of generating PNMs for
n6, n7 and n8. The node n6 stores four prefixes which are
10010*, 1001**, 100*** and 10****. According to defi-
nition 6, 011110 would be the PNM for n6. Therefore, the
PNM 011110 is used to replace the four prefixes in n6.

IP lookup structure has to store the next hop for each
routing prefix. Note that we can’t use pointers pointing to
each next hop for each prefix since CMPT stores the inde-
pendent prefixes and PNMs instead of all the routing pre-
fixes. Therefore, we design a next hop table (NH table) for
each key in leaf nodes to ensure the correct IP lookup re-
sult. The next hops stored in NH table are in the same order
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Fig. 3 A CMPT constructed from Table 1.

of corresponding prefixes stored in the leaf nodes of MPT.
Figure 3 (a) shows the mapping structure of NH table. In
the leaf node, there are three prefixes, 00010*, 000*** and
00****, stored in the decreasing order according to their
length. The next hops of each prefix are stored in the same
order in NH table. Figure 3 (b) shows the CMPT structure
constructed from Table 1. As shown in Fig. 3 (b), there are
only 3 nodes in CMPT after compression and the 26 prefixes
stored in MPT are reduced to 12 prefixes in CMPT.

5. Longest Prefix Matching

This section presents the IP address lookup algorithm
with longest prefix matching on CMPT. The search pro-
cess for an IP address p begins at the root of CMPT.
For each internal node x that p encounters, p makes a
comparison with each element in the prefix set P(x) =
{key1(x), key2(x) . . . keyn(x)(x)} of x and trances the path
downward to a leaf node. In the comparison process, firstly,
we make an XOR operation between p and keyi(x). Then,
the search process trance downward to the sub tree that
keyi(x) points to, where the result of XOR between p and
keyi(x) addresses the maximum number of sequential 0 s
starting from the left. If p encounters a leaf node x, the
longest matching prefix for p is calculated using keyi(x) and
the corresponding Maski(x), where the result of XOR be-
tween p and keyi(x) addresses the maximum number of se-
quential 0 s from the left. This technique addresses the cor-
rect longest prefix matching in leaf node.

To calculate the longest matching prefix by keyi(x) and
Maski(x), as shown in Algorithm 1, firstly, let lmp to be the
minimal value of the range that the prefix keyi(x) involves.
Then, we construct a Prefix Matching Model (PMM), de-
noted as Model. Model is calculated as the Eq. (3). Note
that the first l bits of Model are resulted as 1 s where l is the
length of the longest matching prefix. All the other bits are
resulted as 0 s.

Model =∼ ((∼ Maski(x))&(Maski(x) − 1) (3)

As shown in Algorithm 1, if the result of Model&lmp
is equal to the result of Model&p, lp is the longest matching
prefix and the algorithm returns the corresponding next hop.
Otherwise, Maski(x) is updated using Eq. (4), and then up-
date Model using Eq. (3). The updated Model drops the 1 at

Algorithm 1 Longest Prefix Matching in leaf node
index← 0
lmp← the smallest value of keyi(x)
pl← Maski(x)
while (pl) do

m←∼ ((∼ pl)&(pl − 1)
if (m&lmp == m&p) then

return NH[index]
end if
pl← pl&(pl − 1)
index + +

end while
return default NH

Fig. 4 Longest prefix matching on CMPT.

Fig. 5 An example of calculating the longest prefix matching.

its last bit. So the producer becomes the second longest pre-
fix matching. Therefore, we continue to compare the value
of Model&lmp and Model&p. By this way, we can always
find the longest matching prefix for an IP address.

Maski(x) = Maski(x)&(Maski(x) − 1) (4)

Figure 4 depicts an example of longest prefix matching
process on a CMPT. When searching the address 100110,
we firstly search in the root n1. The XOR result of 100110
and 00010* is 10001*, the XOR result of 100110 and
10010* is 00001*. 00001* begins with four 0 s and 10001*
begins with 1. Therefore, we continue to search in the child
that 10010* points to. The same operation is performed in
n3. Therefore, the longest matching prefix is calculated by
the prefix 10010* and its Mask 011110. The calculation
process is depicted in Fig. 5. For simple, in Fig. 5, we use
a, b and c to denote keyi(x), Maski(x) and the IP address for
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search respectively.
Assume there are u independent rules in a routing table

with totally n rules. The search speed highly depends on the
number of memory access since memory access is the most
time-consuming operation in search process. In CMPT, IP
lookup operation needs to access memory at one node of
each layer. Therefore, the search speed is highly based on
the height of CMPT.

Theorem 6: For a CMPT tree constructed from a forward-
ing table with u independent prefixes in totally n prefixes, in
the worst case, the height h satisfies

h = logm/2 u (5)

Proof: There is at least one key in the root and m/2 keys
in other nodes of CMPT. At the height of 1, there are at
least m/2 nodes, at the height of 2, there are at least (m/2)2

nodes, at the height of h, there are at least (m/2)h nodes.
Therefore, in the worst case, the number of independent pre-
fixes stored in leaf nodes satisfying u = (m/2)h. Solve the
equation would be h = logm/2 u.

Search Complexity: CMPT is an m-way search tree
built from routing table with u independent prefixes in n pre-
fixes. Known from Theorem 6, CMPT height in the worst
case is logm/2 u. To ensure the least utilization, every node
except the root in CMPT stores at least m/2 keys. We use
binary search in each node since m is not very large, the
complexity of binary search is O(log2 m) and the total search
layer is logm/2 u. Since the worst case matching times to per-
form the longest prefix matching in a leaf node is a constant
w, the worst case search time would be O(logm u).

6. Dynamic Update

Since the forwarding tables of core routers can be updated
hundreds of times per second. To stabilize the routing, the
data structure for IP address lookup has to support a thou-
sand times of dynamic prefix update every second. This sec-
tion presents the dynamic update algorithms for our CMPT
structure.

6.1 Dynamic Prefix Insert

Since CMPT stores independent prefixes and PLMs instead
of all the routing prefixes, to insert a prefix p into CMPT,
the prefix can be inserted as the following two forms.

1. If p is not an independent key, p should be inserted into
the Maski(x) of leaf node x.

2. If p is an independent key, p should be inserted as a
new key of CMPT.

Note that whether p is an independent prefix can be
decided in the process for searching p on CMPT. For any
keys encountered in the search path, if p covers a key, p is
not an independent prefix. Otherwise, p is an independent
prefix.

For the first case, p is not an independent prefix. Firstly,

Fig. 6 Node splitting.

we locate to the leaf node x along the search path where p
should be inserted. Then in the node x, we compare p with
each keyi(x). If p covers keyi(x), p should be inserted into
Maski(x) which is the PNM of keyi(x). Finally, insert p into
Maski(x) is to set a bit of Maski(x) from 0 to 1 according
to the length of p. Note that there may be one or more keys
to be covered by p, to ensure the efficiency of longest pre-
fix matching, we insert p to each Maski(x) that the corre-
sponding keyi(x) is covered by p. Since the presentation of
Maski(x) is a binary string of length w and inserting a prefix
to Maski(x) doesn’t change its length. Therefore, inserting
p to any other Maski(x) doesn’t increase the memory usage.

For the second case, p is an independent prefix. When
we insert p into CMPT, some other independent keys may
cover p. Therefore, if p is disjoint with all the other keys on
the search path, p should be inserted as a new key of node
x. If p is covered by another key keyi(x), we replace each
keyi(x) with p in the search path and update the correspond-
ing Maski(x).

When p is inserted as a new key of node x, n(x) is
counted and may be larger than m. If it does, we need to split
x into two nodes (shown in Fig. 6) as the following steps:

Step1: Split x into two nodes x and y at the place of
the (m/2)th key. Each node stores at least m/2 keys.

Step2: Insert key1(y) into the parent node of x (denoted
as z) and save it as a new key of z and make a pointer point-
ing to y.

Step3: Check if n(z) is larger than m (z is the parent
node of x), the node z should be spitted in the same way.

Step4: Repeat this process till the key number of a
node is less than m.

6.2 Dynamic Prefix Delete

This sub section presents the dynamic prefix deletion tech-
nique on CMPT.

For a forwarding table, all the routing prefixes are
stored as keys or PNMs in leaf nodes of CMPT. If the pre-
fix p is involved in PNM of leaf node x, to delete p is to
change the corresponding bit of Maski(x) from 1 to 0 and
delete the corresponding next hop in the NH table. If p is
stored as a key of leaf node x, p is also stored in other in-
ternal nodes. So we have to delete every p stored in internal
nodes along the search path. Note that deleting a key from
node x could change the value of n(x). If n(x) is less than
m/2 after deleting p, CMPT has to be adjusted based on the
neighbour node of x as the following two cases.
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1. If the number of keys in neighbour(x) is larger than
m/2, x borrows a key from neighbour(x). Therefore,
the number of keys in x and neighbour(x) are not less
than m/2.

2. If the number of keys in neighbour(x) is equal to m/2,
we merge x and neighbour(x) to a new node and delete
the key in their parent that points to neighbour(x). Note
that this process may cause the number of keys in their
parent less than m/2, the technique should be repeated
in the parent node till CMPT is adjusted to correct.

For the first case, assume that the nearest right neigh-
bour of x is y and n(y) is larger than m/2. As shown in Fig. 7,
key1(y) is the first key of y, keyi(z) is a key of node z (z is the
parent of x and y). Childi(z) = x, Childi+1(z) = y. x borrows
a key from y is shown as the following steps:

Step1: Make a copy of key1(y) and insert it after
key(m/2)−1(x) in x to be the key(m/2)(x) of x. Move the corre-
sponding Mask1(y) and NH table to x along with key(m/2)(x).

Step2: Replace keyi+1(z) in z with key2(y) of y.
Step3: Delete key1(y) in y as well as Mask1(y) and NH

table. Then move all the other keys of y one step left.
For the second case, assume that the nearest right

neighbour of x is y and n(y) is equal to m/2. As shown in
Fig. 8, keyi(z) and keyi+1(z) are the keys of node z (z is the
parent of x and y). Childi(z) = x, Childi+1(z) = y. x and y
will be merged as the following steps:

Step1: Make a copy of all the keyi(y) (1≤ i≤n(y)) and
insert them at the end of x. If x and y are leaf nodes, copy the
corresponding Maski(y) and NH table to insert them into x.

Step2: Delete the node y;
Step3: Delete the key keyi+1(z) and the corresponding

pointer that points to y. Change n(z) to n(z) − 1.
Step4: Inspect the value of n(z). If n(z) is less than

m/2, the node z should be adjusted by borrowing a key or
merging z with its neighbour.

Step5: Repeat this process till the key number of a
node is not less than m/2.

To insert a prefix p in CMPT, firstly a search operation

Fig. 7 Moving a key form node y to node x.

Fig. 8 Merging node x and y.

for p is performed. Then, p has to be inserted into every
PNMs of the keys that p covers. Therefore, the insert com-
plexity is O(m logm u). When deleting a prefix, since p may
be included in more than one PNMs, Therefore, the delete
complexity is O(m logm u).

7. Experimental Results

7.1 Evaluation Setup

We conduct our experiments on a PC with 2.0 GHz Inter(R)
Core(TM)2 CPU and 2.0 GB memory running Windows XP
Sp3. The program is written in C++ and simulated in Visual
Studio 2008.

We obtain 5 real life routing tables from [14]. In [14],
the website records many kinds of statistical information of
the BGP routing table of AS6447. We obtain 5 routing ta-
bles in different time from 2007 to 2011, denoted as Router1
to Router5 (shown in Table 2). Furthermore, we generate IP
traces for every routing table using the technique of [20].

We conduct experiments to contrast our CMPT with
MRT of [17], PBOB of [18], POBT of [19] and MMSPT of
[13] in the metric of IP lookup speed, dynamic prefix insert
and delete speed, and memory usage. MMSPT, MRT and
PIBT are all built on m-way search tree (m is 32 in [13]).
PBOB is built on a red-black tree and our CMPT is built on
an m-way B+ tree. Experiments in [19] illustrated that the
best value of m is 32. Since B+ tree and B-Tree are similar
in their structure, m is also evaluated as 32 in our CMPT.

7.2 IP Lookup Speed

To evaluate the IP lookup speed, we generate 1000000 IP
traces for each routing table from Router1 to Router5 using
the technique of [20]. We record the IP lookup time of the
1000000 IP traces for the five different algorithms of MM-
SPT, MRT, PIBT, PBOB and our CMPT. The recorded time
dividing 1000000 would be the average IP lookup time for
every IP address. Using this method, we repeat 10 times
on each routing table with the 5 algorithms respectively
to record the average IP lookup time of each algorithm.
Note that it is difficult to record the search time of single
lookup [10], we record the search time of 1000000 IP traces
to get the average search time [13].

Table 3 and Fig. 9 show the experimental results of
IP lookup speed for each algorithm. Note that PBOB re-
quires much more time to perform IP lookup than any other
schemes since PBOB is performed as a binary search which
is more time consuming than multi-way search. For a rout-
ing table with n routing rules, PIBT and MRT stores 2n keys
while MMSPT stores n keys. Therefore, the IP lookup speed

Table 2 Five real routing tables for experiments.

Name Router1 Router2 Router3 Router4 Router5
Source AS6447 AS6447 AS6447 AS6447 AS6447
Time 5/1/2007 5/1/2008 5/1/2009 5/1/2010 5/1/2011

Number 179368 234963 278147 326479 367158
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Table 3 IP lookup time of each scheme (μ sec).

Algorithm Router1 Router2 Router3 Router4 Router5
CMPT 0.27 0.28 0.29 0.3 0.31

MMSPT 0.36 0.39 0.41 0.44 0.48
PIBT 0.41 0.43 0.47 0.51 0.54
MRT 0.46 0.48 0.51 0.53 0.56

PBOB 0.75 0.96 1.1 1.3 1.53

Fig. 9 Figure of IP lookup time for each scheme.

Table 4 Search complexity on CMPT.

Router1 Router2 Router3 Router4 Router5
n 179368 234963 278147 326479 367158
u 85796 108748 135284 168625 194739
h 4 4 4 4 4

Table 5 Memory usage of each scheme (KB).

Algorithm Router1 Router2 Router3 Router4 Router5
CMPT 4375 4962 5617 6374 6983

MMSPT 3276 4667 5869 7198 8269
PIBT 7053 9754 13308 16828 19676
MRT 6587 9161 12752 16198 18876

PBOB 3035 4672 5637 6806 7748

is faster in MMSPT than in PIBT and MRT. MMSPT needs
to backtrack for some IP addresses while CMPT hits the
longest matching prefix at leaf node every time. Further-
more, CMPT only stores independent prefixes in the search
path and therefore reduces the times for comparing. There-
fore, CMPT is more time efficient than MMSPT.

To further evaluate the search complexity of CMPT, we
record the height of each CMPT structure built from Router1
to Router5. The results are shown in Table 4. As an exam-
ple, the recorded search depth of Router5 is 4. According
to Theorem 6, the worst case search height for Router5 on
CMPT is h = logm/2 u = log16 194739 = 4.39. The experi-
ment result coincides with Theorem 6.

7.3 Memory Usage

To evaluate the memory usage, we construct CMPT, MRT,
PBOB, POBT and MMSPT using the five real life routing
tables from Router1 to Router5 respectively. The results are
shown in Table 5 and Fig. 10. As illustrated, MMSPT and
PBOB use about 50% less memory than PIBT and MRT.

Fig. 10 Memory usage of each scheme of five routing tables.

Since for each prefix of a forwarding table, PIBT and MRT
store the prefix in duplicate in constant nodes, while MM-
SPT and PBOB store the prefix only in one node.Therefore,
MMSPT and PBOB are more memory efficient than PIBT
and MRT.

For Router1 and Router2, CMPT uses 33.5% and 6%
more memory than MMSPT uses. However, For Router3,
Router4 and Router5, CMPT uses 4%, 11.4% and 15.5%
less memory than MMSPT uses. Therefore, CMPT is more
memory efficient for today’s large forwarding tables.Note
that although CMPT stores independent prefixes on inter-
nal nodes repeatedly, the nested prefixes are stored compres-
sively on its leaf nodes. Furthermore, CMPT reduced a layer
by combining leaf nodes with their parent nodes. Therefore,
CMPT is more memory consuming when the forwarding ta-
ble is not too large, but it is more memory efficient than
MMSPT with the increase of forwarding table size. The
prefixes compression algorithm leads to the result that the
memory utilization rate of CMPT is higher than other algo-
rithms.

7.4 Insert and Delete Speed

To measure the prefix insertion and deletion speed, we
first construct each scheme of MMSPT, PIBT, MRT, POBO
and our CMPT using the five real life routing tables from
Router1 to Router5. For each scheme, we randomly delete
10% prefixes and record the deletion time. Then the total
elapsed time is divided by the number of these 10% prefixes
to get the average deletion time for single prefix. Next, the
deleted 10% prefixes are inserted back into the correspond-
ing structure consecutively. The total elapsed time is divided
by the number of these 10% prefixes to get the average in-
sertion time for each prefix.

Table 6 shows the measured insertion and deletion
times. These times are histogrammed in Fig. 11. It can be
seen that the update time of PIBT and MRT are much more
than that of other schemes, since PIBT and MRT partition
the range of a prefix into two endpoints which are inserted
or deleted respectively, and then insert or delete the prefix
itself. While MMSPT, PBOB and our CMPT only insert or
delete a prefix itself. Therefore, PIBT and MRT are more
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Table 6 Dynamic prefix update time of each scheme (μ sec).

Router1 Router2 Router3 Router4 Router5
Insert Delete Insert Delete Insert Delete Insert Delete Insert Delete

CMPT 0.55 0.61 0.55 0.62 0.56 0.62 0.57 0.63 0.56 0.62
MMSPT 0.61 0.75 0.63 0.75 0.63 0.78 0.64 0.79 0.65 0.81

PIBT 1.81 2.14 1.82 2.14 1.82 2.15 1.83 2.14 1.82 2.15
MRT 1.24 2.25 1.25 2.25 1.26 2.26 1.27 2.25 1.26 2.24

PBOB 0.82 0.84 0.83 0.85 0.84 0.86 0.82 0.84 0.83 0.85

Fig. 11 Figure of dynamic prefix update speed for each scheme.

time consuming than other algorithms.
PBOB is built on a binary tree which may be unbal-

anced after insert and delete prefixes many times. The ad-
ditional operation for balancing the binary tree is regarded
as reducing the update speed of PBOB. Although MM-
SPT and CMPT have to split or merge nodes, the proba-
bilities of splitting and merging are very small since m is
large enough. Therefore, the updating speeds of MMSPT
and CMPT are faster than PBOB. As shown in Fig. 11, the
insert speed of CMPT is about 13% faster than MMSPT, and
the delete speed is about 18% faster than MMSPT. Since
MMSPT needs backtracking search in the lookup process
while CMPT does not. Therefore, MMSPT is more time
consuming than CMPT in prefix update.

8. Conclusion

In this paper, the authors propose a dynamic and scalable IP
address lookup algorithm based on B+ tree. The algorithm
builds the forwarding table as a compressed multi-way pre-
fix tree named CMPT to perform IP address lookup. Us-
ing CMPT, the lookup speed is improved by finishing every
longest prefix matching operation at leaf node without back-
tracking. The authors also propose a prefixes compression
technique to store some of instead of all the routing prefixes
on CMPT to improve the memory utilization rate. Based
on the CMPT structure, the authors make further efforts to
propose dynamic prefix insert and delete algorithm to sup-
port dynamic prefix update. Exhaustive experiments on real
life forwarding tables show promising gains of the proposed
algorithm in IP address lookup speed and dynamic prefixes
update speed than the existing B- tree algorithms. Further-

more, since CMPT is unrelated to the length of IP address,
it is also suitable for IPv6 networks.

There is still room to improve IP lookup speed. Future
work will investigate new approach based on our proposed
method. Furthermore, it will be very practical to consider
parallel algorithm for independent prefix to further improve
search speed.
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