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PAPER

Class-Based N-Gram Language Model for New Words Using
Out-of-Vocabulary to In-Vocabulary Similarity

Welly NAPTALI†∗a), Nonmember, Masatoshi TSUCHIYA††, Member, and Seiichi NAKAGAWA†, Fellow

SUMMARY Out-of-vocabulary (OOV) words create serious problems
for automatic speech recognition (ASR) systems. Not only are they miss-
recognized as in-vocabulary (IV) words with similar phonetics, but the er-
ror also causes further errors in nearby words. Language models (LMs)
for most open vocabulary ASR systems treat OOV words as a single entity,
ignoring the linguistic information. In this paper we present a class-based
n-gram LM that is able to deal with OOV words by treating each of them
individually without retraining all the LM parameters. OOV words are as-
signed to IV classes consisting of similar semantic meanings for IV words.
The World Wide Web is used to acquire additional data for finding the re-
lation between the OOV and IV words. An evaluation based on adjusted
perplexity and word-error-rate was carried out on the Wall Street Journal
corpus. The result suggests the preference of the use of multiple classes for
OOV words, instead of one unknown class.
key words: out-of-vocabulary, class-based n-gram, language model, ad-
justed perplexity, speech recognition

1. Introduction

An ASR system’s users tend to speak natural sentences that
often contain out-of-vocabulary (OOV) words. OOV words
present a serious problem for automatic speech recognition
(ASR) in that they introduce two error types into the sys-
tem. First, OOV words are substituted with in-vocabulary
(IV) words and second, the error affects other words nearby.
Typically three steps are needed to handle OOV words in an
ASR system [1]. The first step determines whether an utter-
ance contains an OOV word, while the second involves rec-
ognizing sub-word units contained in the OOV word. The fi-
nal step involves the recovery, converting the sub-word unit
into the corresponding OOV word. There is another ap-
proach, that is, registering the OOV words into the ASR’s
vocabulary. In this paper, we focus on estimating the prob-
ability of an OOV word after registering it in the ASR’s vo-
cabulary. We simplify the problem as follows: given an
OOV word, how do we assign a probability to that word
without retraining the whole language model (LM).

Calculating the probability of OOV words is not an
easy task, especially in cases where no data or insufficient
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relevant training data are available. There is always a signif-
icant amount of OOV words even when the vocabulary size
is very large. A common approach to handling OOV words
is to assume a special token <UNK> to represent all un-
known words. This unknown word token is treated the same
as any other IV word in the probability estimation. This
straightforward approach has two shortcomings [7]. First,
there is a mismatch in the frequency of OOV words in the
training and the test data. Second, the approach ignores their
syntactic types and other linguistic information.

Jelinek et al. [8] studied the problem of OOV words by
assigning the word into statistically synonymous classes us-
ing maximum mutual information and maximum likelihood
approach. When encountering a new word during evalua-
tion, the word is added to the vocabulary and the probability
is updated according to class-based n-gram LM. Suhm et
al. [19] built an OOV-aware language model by mapping all
words outside a given vocabulary into the new word class.
The proposed LM is no other than a word-based n-gram with
the OOV words mapped into classes. Gallwitz et al. [7] pro-
posed the similar approach to Jelinek’s but without the need
to update the new word into the vocabulary. They assign
manually the OOV words into a word class. The work is
then followed by Bazzi and Glass [2], suggested multiple
classes for OOV words. They used a small number of OOV
classes (8 − 32 classes) by utilizing parts-of-speech (POS)
and agglomerative clustering. Martins et al. [10] proposed
a method to handle OOV words without the need for ad-
ditional data or LM retraining by using POS information.
Then, recenly, Lecorve et al. [9] proposed a method utiliz-
ing POS and an n-gram similarity to obtain the probability
of OOV words.

To handle the OOV words on ASR system, first we
have to register the OOV words themselves in the ASR sys-
tem’s vocabulary. The registration could be performed au-
tomatically from the related web data of test data domain,
or manually added by the user. After registering the OOV
words, one may re-train the LM and then perform the ASR,
or by making a correction to the ASR’s results. Recovering
OOV words using web data is not something new. Several
approaches have been proposed by some researchers. Meth-
ods that use web data to increase the training data for re-
training/adapting the LM and registering the vocabulary in
the ASR system have been discussed in [14] and [16]. In
[15], web data was used to recover the OOV words, but the
LM probabilities were obtained from their POS. However,
POS has a rather limited number of categories. Furthermore,
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most OOV words are proper nouns.
This paper proposes a framework to estimate the prob-

ability of OOV words without retraining the LM using addi-
tional data (e.g., data from the World Wide Web (WWW)).
Adopting a class-based n-gram LM, we categorize OOV
words as IV word classes with similar meanings, then each
of the IV words is treated as a singleton class. In this way,
for example, a new person’s name (OOV word) can be asso-
ciated with an existing person’s name in the IV words that
is related to a word class for OOV words. First, documents
must be collected to find the class of the OOV word. Then,
we find the relation of this OOV word to the IV words using
a defined similarity measure. To verify the proposed model,
we compare it with the conventional models, in which all
OOV words are treated as a single special token <UNK>,
the increasing IV size method based on retraining, and some
comparable baselines in terms of adjusted perplexity and
WER.

In the remainder of this paper, we first give our basic
consideration in Sect. 2. Then in Sect. 3, we describe details
of the proposed method about how to find the similar IV
words to the OOV on observation using WWW data. Sec-
tion 4 gives the evaluation result on adjusted perplexity, and
Sect. 5 gives the evaluation result on WER for automatic
speech recognition. The paper ends with our conclusions
and future works.

2. Basic Consideration

OOV words can be categorized into two types. The first
type occurs in the training data (and in the test data). In this
case, the new words can be added and the LM is retrained,
although it takes much computation time to recalculate all
the probability distributions. Moreover, the probability of
this new word will likely be unreliable owing to its low fre-
quency of occurrence in the training data. The second type
includes OOV words that do not occur in the training data,
but only in the test data. For this type of OOV word, ad-
ditional data are needed to provide information about the
word. Without any information, there is no way of assign-
ing an appropriate probability to the OOV word. See Fig. 1
for the illustration.

OOV words of the first type are relatively easier to deal
with than those of the second type, since the number of OOV
words is known, whereas the number of OOV words and the
OOV rate in the second type are unknown. Without knowing
the total number of OOV words and OOV rate, it is hard to

Fig. 1 Two kinds of OOV words.

conduct an evaluation. Therefore, we made an assumption
that the second type of OOV words would follow the first
type in terms of evaluation, i.e., the kinds of OOV and OOV
rate. Hence, we investigate the first type of OOV words, and
then do the same for the second type.

2.1 Perplexity and Adjusted Perplexity

To evaluate whether an LM is better or worse, we can per-
form an ASR experiment and compare its word-error-rate
(WER). However, this involves the entire ASR system pro-
cess and consumes computation time. A simpler and more
widely used approach is to calculate its perplexity (PP) [13],

PP = (P(W))−
1
N , (1)

where W is a word sequence W = w1, w2, . . . , wN that in-
cludes OOV words (mapped into a unique unknown symbol
<UNK>), i.e., P(wOOV ) → P(<UNK>), where wOOV is one
of unknown words. Therefore, the perplexity changes ac-
cording to the vocabulary size. Usually perplexity decreases
when the vocabulary size is smaller because of an increased
the number of OOV words or OOV ratio. Thus, the per-
plexity measure should be reported together with the OOV
rate. To compare two LMs with different vocabulary sizes,
another measure, called adjusted perplexity (APP) , is used.
In the APP, P(wOOV ) → P(<UNK>) 1

|wOOV | . In this paper, we
use the APP metric introduced in [20] and [11], defined as
follows:

APP = (P(W)m−o)−
1
N , (2)

where o is the total number of OOV words in the test data,
m is the number of different OOV words in the training
data (m = |wOOV |), and N is the total number of words
(that is, including both IV and OOV words) in the test data.
Therefore, adjusted perplexity normalizes the effect of a re-
duction in OOV rate on the perplexity. In other words,
P(wOOV | <UNK>) = 1

m . For our model, P(wOOVj ) →
P(COOVj )

1
|wOOV∈COOV j | , where COOVj means the word class for

wOOVj .

2.2 Study Case

Handling OOV words using multiple classes is better than
mapping it only to one class. Suppose we have a data set
consisting of 5, 000 OOV words with OOV rate 5%. Then
let us map α of the OOV words (with β occurence) to UNK1
class, and the rest to UNK2 class.

# Words Occurence ratio
UNK1 α × 5000 β
UNK2 (1 − α) × 5000 1 − β

Then the probability of each OOV word can be calculated
as follows:

P(UNK1) =
5

100
· β · 1
α · 5000

,
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P(UNK2) =
5

100
· (1 − β) · 1

(1 − α) · 5000
,

and the expected total probability of OOV words is given by,

P(OOV) = P(UNK1)β · P(UNK2)(1−β).

If we map the OOV words into one class, then α = β, re-
sulting P(OOV) = 10−5. Note that mapping the OOV words
randomly will also cause α = β. In the other side, mapping
the OOV words (non-random) into multiple classes makes
α � β, and P(OOV) > 10−5. The larger or smaller the ra-
tio of α and β is, the larger P(OOV) becomes. To prove
this statement, let γ be an OOV rate, M is the number of
OOV words, N is the number of clusters, pi (i = 1, 2, . . . ,N)
is the kind rate of OOV words in each cluster, and qi

(i = 1, 2, . . . ,N) is the occurance rate of OOV words in each
cluster. The probability of OOV words is given by:

P(OOVi) = γqi
1

M · pi
.

The expected value of P(OOVi) is given by

logP(OOV) = log
γ

M
+

∑
qilogqi −

∑
qilogpi.

Note that the following expression of inequality is satisfied:

−
∑

qilogpi � −
∑

qilogqi.

Therefore, P(OOV for multi-classes) � P(OOV for a single
class). This leads to decrease APP.

3. The Proposed Method

A word-based n-gram language model is not adequate for
modeling OOV words that are very rare. A class-based n-
gram language model is more suitable, since the rare words
can rely on other frequent words in the same class. For a
given history hi = wi−n+1 . . . wi−1, a class-based n-gram lan-
guage model is defined as follows:

P(wi|hi) = P(Ci|Ci−n+1, . . . ,Ci−1)P(wi|Ci), (3)

where Ci is the class of word wi. Since the IV words are
frequent words, we map these words into singleton classes.
Then each of the OOV words is mapped into the correspond-
ing class of IV classes. There are two problems to be solved.
The first problem is how to find the class of an OOV word
(COOV ). We solve this problem by mapping a word into a
word vector and using a similarity measure to find the clos-
est word in IV words. The second problem is how to cal-
culate P(wi|Ci) for OOV words. We assume that all OOV
classes are known, and then we calculate P(wOOV |COOV )
based on a uniform model:

P(wOOV |COOV ) =
1

|#Kind of OOV words in COOV | . (4)

Note that since IV words use singleton classes, the value of
P(wi|Ci) for IV words is 1.0.

Fig. 2 Training procedure of Proposed Method.

Fig. 3 Word to class mapping process.

The overall training procedure is illustrated by the chart
in Fig. 2. In this phase, a web data is required to make OOV
classes. The mapping process of IV words and OOV words
are illustrated by Fig. 3. Where n is the number of IV words,
m + k is the total number of OOV words, m is the num-
ber of registered OOV words that have additional data, k is
the total number of OOV words that is not registered to the
recognition vocabulary (without any additional information,
there is no way to assign an appropriate probability to the
OOV word. Therefore, for such OOVs, we use the unknown
class.), and corr{} means “corresponds to one of the classes
of”.

3.1 Clustering of IV Words

Before we find the classes of OOV words, first we need to
make classes of IV words. Note that these classes will not
be used to map the IV words in Eq. (3), but to be used to map
the OOV words through the similar IV words. In this paper,
we classify IV words based on the semantic similarity using
latent semantic analysis (LSA) [3]. LSA extracts semantic
relations from a corpus, and maps them on a low dimen-
sion vector space. The discrete indexed words are projected
into an LSA space by applying singular value decomposi-
tion (SVD) to a matrix that representing a corpus (represen-
tation matrix). In the LSA space, any familiar clustering
method could be applied to make semantic classes. In this
paper, we used vector quantization with cosine distance.

3.2 Clustering of OOV Words

Each word wi can be represented by the following word vec-
tor:

wi = AT ci, (5)

where A is the matrix representation and ci is the discrete
vector of word wi, where the i-th element of the vector is
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(a) Term-document matrix.

(b) Bigram matrix.

Fig. 4 Representation matrix A.

set to 1 and all other elements are set to 0. We use a term-
document matrix and a word co-occurrence matrix such as
bigram or 1-4 distant bigram matrix [12] as matrix represen-
tation to model the relation between words. Term-document
matrix A is a matrix where its cell ai j contains frequency of
word wi in the document d j. The observed OOV word wOOV

is inserted in the last row of this matrix (see Fig. 4 (a)). Word
co-occurrence matrix cell ai j records how many times word
wi occurs after w j. In other words, its row corresponds with
the current words and its column with the preceding words.
Unlike the term-document matrix, the OOV word wOOV is
also inserted in the last column of the matrix (see Fig. 4 (b)).
We normalize the matrix according to a term frequency (t f ):

t f (i, j) =
ai j∑
k ak j

. (6)

After each word has been represented by a word vector, a
similarity measure between an OOV word and any IV word
is obtained to find out which IV word can represent the ob-
served OOV word. Here, we used cosine similarity:

cos(wi,wOOV) =
wi.wOOV

|wi||wOOV| . (7)

By sorting these scores in descending order for all wi ∈ IV ,
we can determine the class to represent wOOV . However, we
found that several functional words appeared as the clos-
est matching words to these OOV words. To avoid this, an
inverse document frequency (id f ) weight is applied to (7).
The id f weight used in this work is defined as follows:

id f (wi) = log

(
dimension(wi)
#Nonzero cell

)
. (8)

This id f weight is calculated from the training corpus (using

the same type of matrix representation), not from the corpus
retrieved from the WWW. A small web corpus will be only
resulting unreliable id f weight, and will not be effective on
eliminating the functional words. Thus, the similarity be-
tween an IV word wi and an OOV word wOOVj is defined
by:

S im(wi,wOOVj ) = cosW (wi,wOOVj ) ∗ id fT (wi), (9)

where subscripts W and T indicate that the values are cal-
culated using data collected from the WWW and from the
available training set, respectively. Finally, the class of OOV
word wOOVj can be decided using the following criterion:

COOVj = Carg maxwi∈IV S im(wi,wOOVj ), (10)

where Cwi denotes the word class of wi to classify OOV.
After obtaining the OOV word classes for all OOV words in
the training data, we mapped all the words to their classes
and build a class-based n-gram model. Note that each of IV
words is mapped to its singleton class.

4. Experiments on Adjusted Perplexity

The experiment was conducted on WSJ corpus from year
1987 to 1989. The training corpus contains 39, 962, 779
words from 85, 445 documents (WSJTRAIN) and the
test corpus contains 365, 730 words from 809 documents
(WSJTEST). We made a reasonal assumption that any
OOV or the same context appears at any additional web data.
Therefore, the web data used is not necessarily the same.
The main point is to get an additional information about the
OOV and its relation to the IV words from resources other
than training data. First, we conducted a preliminary exper-
iment to validate our proposed method using WWW to find
the similar OOV words from IV words. Then we perform
evaluation on OOV words that occur in the training data.

4.1 World Wide Web as Additional Data

Using the most frequent 19, 981 words as vocabulary, the
OOV rate for training and testing corpus are 2.47% and
2.57%, respectively. There are 144, 599 OOV kinds in the
training set, and 6, 102 OOV kinds in the test set. We col-
lected at most 100 web page addresses for each OOV (us-
ing the OOV word itself as a keyword) from search engine
Google† collected from December 2008 to February 2009.
Note that not all OOV words exist in the WWW. We re-
quire at least one occurrence for the class estimation of OOV
word. A common stemming procedure to remove affix may
solve some of the problem.

From the collected addresses, we retrieve the web page
with the depth of 1. Some web pages could not be retrieved
for some reasons (e.g., request time out), and some web
pages are not parseable (e.g., flash, AJAX). However, these
problems could easily be solved using a programming tech-

†http://www.google.com
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Table 1 Similarity results. The bold type face means semantically related IV word to the correspond-
ing OOV word.

����������OOV
Representation matrix

term-doc bigram 1-4dbigram

fogelman (proper name) cantor, philanthropy, armenians,
diablo, lifestyle, yu, accredited, po-
lar, ne, partisans

mcdonough, hello, stimulation,
lyrics, awesome, undertake, hi, do-
nation, transforming, whoever

interestingly, stimulation, believer,
fatigue, strangers, meridian, im,
gentle, oaks, mcdonough

troll (proper name) denim, russ, dragon, caves, wow,
sailor, im, ne, coloring, brad

statue, blade, hassle, virtual, pot,
sexes, caretaker, wreckage, breath,
chair

cave, tribes, finnish, edit, creature,
im, capitals, preacher, thread, ah

kurokawa (proper name) pavilion, empires, earthquakes, flats,
ashes, organisms, gogh, ecology,
prix, classmate

retrospect, alexandria, acutely, gen-
eralized, molded, sorted, catherine,
roses, purposely, villain

browns, comics, chapel, acutely,
roses, picasso, retrospect, oracle,
refreshing, residency

sharer (proper name) softball, retarded, preacher, sprayed,
quincy, raped, motorcycles, unan-
nounced, starving, gravel

partnership, stranger, agent, greene,
midst, telescope, ensuing, safest,
narrator, steward

steward, narrator, shave, mates,
flashed, telescope, sails, tug, ladder,
essay

Table 2 Baseline PP and APP on WSJTRAIN for various vocabulary sizes.

IV PP APP APP #OOVs #Kind OOV
vocab size (OOV only) OOVs rate (%)

1k 25.0 488.4 533,707 9,502,909 163,580 23.78
5k 37.8 110.9 1,139,373 3,444,977 159,580 8.62

20k 38.9 51.5 2,371,657 903,782 144,580 2.26
21k 38.9 50.6 2,419,397 854,171 143,580 2.14
25k 38.8 48.0 2,616,946 693,520 139,580 1.74
30k 38.7 45.8 2,822,796 550,975 134,580 1.38
40k 38.5 43.1 3,163,710 372,152 124,581 0.93
60k 38.3 40.7 3,601,489 198,550 104,580 0.50
100k 38.2 39.0 3,733,217 71,972 64,580 0.18
165k 38.1 38.1 - 0 0 0

nique. The retrieved web page can not be used for a lan-
guage model directly. Several steps are necessary; clean-
ing HTML tags, removing boilerplate (e.g., canned text, in-
cludes navigation bars, page headers, link list, disclaimers
and copyright statements, and advertisement) and other un-
wanted material. NCleaner toolkit [4] does this task auto-
matically. After cleaning the web data, we can build ma-
trix representation. The resulting matrix will be very sparse,
since it was built only based on a web corpus. Thus, the
similarity measure calculation will not be a burden for com-
putational resources. Table 1 shows the 10-closest IV words
for 4 OOV words using similarity measure defined in Eq. (9)
with a term-document matrix, bigram matrix, and 1-4 dis-
tance bigram matrix, respectively.

We can assume that the class of the 1st closest word is
not always suitable to represent the class of the OOV word.
In this case, we take the N-closest words and vote for the
classes of these words based on their occurrence to repre-
sent the class of the OOV word. Another approach is to use
the averaged word vectors to represent each class, and then
to calculate the similarity between each of these classes (in-
stead of the IV words) and the OOV word. In this paper, we
will use the 1st candidate or 1st closest word as the suitable
closest word.

4.2 OOV Words that Occurs in the Training Data

In this section, we experimented with the training data us-
ing a limited vocabulary size and made an evaluation on the

same data. An ideal source for additional data is to use
WWW. However, we used an English Wikipedia† dump
data on the 30th of January 2010, because the number of
OOV words is larger, and since there is a day limitation
when requesting search results from a public search en-
gine. The data is 5.6 GB file consisting of 9, 541, 307 pages
of articles or documents. For the rest of this section, this
Wikipedia data will be referred as web data.

4.2.1 WSJTRAIN

We begin the experiment using the same training and test
data, i.e., WSJTRAIN, to avoid the effect of backoff for un-
seen event. The baseline perplexity and adjusted perplexity
on the training data for various vocabulary sizes are given
in Table 2. The baseline is a class-based 3-gram LM where
each of IV words is mapped into a singleton class and OOV
words are mapped into <UNK>. The proposed model is a
class-based 3-gram where each IV word is mapped into a
singleton class, and OOV word is mapped into a similar IV
word class, while the rest of words (UNK words) is mapped
to <UNK> class.

In this research, we only take into consideration using
20, 000 IV words and 1k, 5k, 10k, and 20k OOV words (first
type). While the rest follows the traditional approach, i.e.,
by mapping into a special token <UNK>, and we will refer
to these as UNK words. The numbers of classes for OOV

†http://en.wikipedia.com
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Table 3 Statistics of OOV, and UNK on WSJTRAIN for the Proposed
Method (+20k IV).

OOV vocab size #OOVs #Kind OOVs #UNKs #Kind UNKs
1k 47,622 960 856,160 143,620
5k 199,342 4,736 704,440 139,844
10k 333,206 9,431 570,576 135,149
20k 488,152 18,008 415,630 126,572

words are 100 and 200. Note that these numbers should be
optimized in the future. Table 3 shows the statistics for this
model. Note that there is the difference between OOV vocab
size and the number of kind OOVs, it is caused by the OOV
words without additional data (i.e., it does not appear on the
web) and it is mapped to the unknown class.

Table 4 (a) gives the adjusted perplexity of the pro-
posed model for each parameter. Compared to the base-
line with 20, 000 vocabulary, the adjusted perplexity is get-
ting better when we treat OOV words in multiple classes,
instead of one class. A small differences on adjusted per-
plexity is caused by the large number of IV words in the
calculation, compared to the number of OOV words. There-
fore, we also calculated the adjusted perplexity where the
samples are only when the OOV words appear as the cur-
rent word in a word sequence (APP (OOV only) in Table 4).

To further validate our proposed model, we compare it
with four other baselines; they are:

• LSA baseline: A similar approach with the proposed
model, different similarity and without using web data.
The model uses the available LSA projection matrix to
map OOV words into IV classes (described below in
detail).
• TRAIN baseline: A similar approach with the proposed

model, the same similarity but without using web data.
Instead, the model used training data split in docu-
ments, and used a simple indexing to retrieve docu-
ments that consisted of OOV words on observation.
Note that TRAIN database contains all OOV words in
this evaluation.
• RANDOMCLUSTER baseline: A similar approach

with the proposed model, different similarity and with-
out using web data. Instead, the model used a random
approach to map OOV words into IV classes during
training, then are used by the defined classes during
testing. Note that this random cluster is consistent with
the training data and test data (see Table 5 (a)). There-
fore, this clustering method is impractical for new OOV
words in test corpus, because we have no means for
classifying the new word into one of pre-defined clus-
ters.
• RANDOM baseline: A similar approach with the pro-

posed model, without using similarity and web data.
Instead, this model used a completely random approach
to map OOV words into IV classes during training and
testing. Different to RANDOMCLUSTER baseline,
the approach used no information taken from the OOV
classes during training, in other words, the cluster is not

Table 4 Adjusted perplexity on WSJTRAIN (+20k IV).

(a) Proposed method

OOV APP APP (OOV only)
vocab 100 IV 200 IV 100 IV 200 IV
size Classes Classes Classes Classes
0k 51.5 51.5 2,371,657 2,371,657
1k 50.9 50.9 1,787,706 1,748,026
5k 49.6 49.4 954,245 870,700
10k 48.7 48.4 612,479 526,917
20k 47.9 47.5 409,558 328,474

(b) LSA baseline method

OOV APP APP (OOV only)
vocab 100 IV 200 IV 100 IV 200 IV
size Classes Classes Classes Classes
1k 50.9 50.8 1,784,771 1,742,419
5k 49.6 49.4 939,074 850,345
10k 48.6 48.3 594,578 507,993
20k 47.8 47.4 394,205 315,471

(c) TRAIN baseline method

OOV APP APP (OOV only)
vocab 100 IV 200 IV 100 IV 200 IV
size Classes Classes Classes Classes
1k 50.9 50.9 1,792,445 1,753,818
5k 49.6 49.4 946,755 865,875
10k 48.7 48.4 604,244 523,758
20k 47.9 47.5 400,608 324,894

(d) RANDOMCLUSTER baseline method

OOV APP APP (OOV only)
vocab 100 IV 200 IV 100 IV 200 IV
size Classes Classes Classes Classes
1k 50.9 50.8 1,760,705 1,707,698
5k 49.5 49.2 899,359 795,909
10k 48.5 48.1 558,831 458,433
20k 47.6 47.1 360,581 271,127

(e) RANDOM baseline method

OOV APP APP (OOV only)
vocab 100 IV 200 IV 100 IV 200 IV
size Classes Classes Classes Classes
1k 51.7 51.7 2,453,470 2,501,994
5k 52.3 52.3 2,475,521 2,594,257
10k 52.7 52.9 2,504,126 2,682,534
20k 53.3 53.5 2,651,975 2,910,058

Table 5 Example of word class mapping.

(a) RANDOMCLUSTER method

Training Phase Test Phase
w1 → CLAS S 1 w1 → CLAS S 1
w2 → CLAS S 2 w2 → CLAS S 2
w3 → CLAS S 2 w3 → CLAS S 2
w4 → CLAS S 1 w4 → CLAS S 1
w5 → CLAS S 2 w5 → CLAS S 2

(b) RANDOM method

Training Phase Test Phase
w1 → CLAS S 1 w1 → CLAS S 2
w2 → CLAS S 2 w2 → CLAS S 2
w3 → CLAS S 2 w3 → CLAS S 1
w4 → CLAS S 1 w4 → CLAS S 2
w5 → CLAS S 2 w5 → CLAS S 1
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consistent with the training and test (see Table 5 (b)).
This leads to use wrong class in the test phase.

First, let us perform the LSA baseline. From IV cluster-
ing, we obtained matrix projection that was used to project
IV words into a vector space. Then, we used this projec-
tion matrix to map OOV words into the same vector space
according to

wOOV = wOOVVS−1, (11)

where wOOV is an OOV word matrix corresponding to the
documents in the training data and V and S are document
and singular matrices, respectively, obtained from LSA. Af-
ter projecting OOV words into a vector space, for each OOV
word, the distance against class centroids was calculated and
assign the OOV word to an IV class with the nearest cen-
troid. Table 4 (b) gives the adjusted perplexity. Compared
to the proposed model performance in Table 4 (a), there is
no significant differences on adjusted perplexity. These re-
sults suggest that obtaining OOV information from the web
data is as reliable as obtaining OOV information from the
training data.This is a good sign for modeling the second
type of OOV words. The conclusion is also supported by
TRAIN baseline, where its adjusted perplexity is given by
Table 4 (c).

Finally, RANDOMCLUSTER and RANDOM base-
lines are performed using Fisher-Yates shuffle [5]. Fisher-
Yates shuffle is an algorithm for generating a random per-
mutation of a finite set. The results are given by Tables 4 (d),
and 4 (e), respectively. RANDOMCLUSTER performs the
best amongs other baseline. It also performs better than our
proposed method. The reason is because RANDOMCLUS-
TER is actually a partial random method, i.e., it uses the
OOV class relation in the training and test phases (see Ta-
ble 5 (a). For instance, OOV word hitchcock is mapped to
class C39 randomly during training, and during the test the
word hitchcock will also be mapped into class C39. How-
ever, when applied this to handle the OOV words that do not
occur in the training data, the assignment of OOV classes
will become completely random. Thus, the performance of
RANDOMCLUSTER will most likely perform as worse as
RANDOM baseline. While using our proposed model to
handling the OOV words that do not occur in the training
data is expected to give results as good as handling the OOV
words that occur in the training data (Table 4 (a)).

Note that LSA baseline, TRAIN baseline, and RAN-
DOMCLUSTER except for the proposed method are not
available for the second type of OOV.

4.2.2 WSJTEST

The experiment is ended by making an evaluation on
WSJTEST data (open test data). Using web data, all OOV
words in the training data are mapped to word classes. For
145k model (144, 580 in Table 2), only 60k OOV words have
additional data in the web, therefore we trained OOV classes
using only 60k OOV words and the rest 85k OOV words

Table 6 Adjusted perplexity on WSJTEST for the proposed method
(+20k IV).

OOV APP APP (OOV only) OOV
vocab 100 IV 200 IV 100 IV 200 IV rate
size Classes Classes Classes Classes (%)

1k (1k) 149.3 149.3 3,119,956 3,089,913 2.39
5k (5k) 148.4 148.2 2,499,368 2,446,090 1.99

10k (9k) 147.8 147.6 2,193,484 2,168,025 1.66
20k (18k) 147.5 147.3 2,024,062 1,991,909 1.27

145k (60k) 148.6 148.4 2,652,141 2,607,767 0.75
Baseline 149.8 3,426.387 2.52

were treated as <UNK>. The adjusted perplexity is given
by Table 6. It shows that modeling the OOV words using
multiple classes lead to better adjusted perplexity than the
baseline with a single OOV class.

5. Experiments on ASR

5.1 Setup

Using the HTK toolkit [22], we trained acoustic models for
American English using 49, 190 utterances from the Wall
Street Journal (WSJ) corpus for the years 1987-1989. The
resulting feature vector is 39-dimensional, and consists of
12 MFCCs plus the 0th ceptral, together with their first
and second deviation coefficients, normalized using ceptral
mean subtraction. We also used the CMU pronunciation dic-
tionary† and LOGIOS lexicon††, containing 39 phonemes
without lexical stress. The HMM models are initialized
based on TIMIT phonetic transcriptions. Cross-word tri-
phones are learned by tied-state triphones based on a de-
cision tree. There are 16 Gaussians for non-silent states
and 32 for the silent state. For more details, please refer to
[21]. The language model is similar to the previous section
(Sect. 5.2). For the decoder, we used the in-house large vo-
cabulary continuous speech recognition system, SPOJUS++
(SPOken Japanese Understanding System) [6].

We selected test data from the WSJ collection, consist-
ing of 553 sentences (10, 957 words). Our used test dataset
is relatively difficult set, because we selected the dataset
in such a way that each sentence or utterance contained at
least one OOV word from a vocabulary of 20, 000 words.
The OOV rate and APP are 6.26% and 359.6 for a 20k vo-
cabulary size, respectively. We denote this test set as WS-
JASR. The APP, correct (CORR), and WER are given in
Table 7 for various vocabulary sizes. The WER and OOV
rate for this test dataset using a word-based trigram and ig-
noring the OOV words are also given in the table. Note
that in this experiment we focused on a vocabulary size
of 20, 000 (IV words) with a WER of 27.3%. Registering
OOV words in the ASR system vocabulary improves the
WER, as can be seen in Table 8 by adding 1k, 5k, 10k,
and 20k words, respectively. Note that this baseline is for
a class-based 3-gram, where all the IV words are mapped

†http://www.speech.cs.cmu.edu/cgi-bin/cmudict
††http://www.speech.cs.cmu.edu/tools/lextool.html
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Table 7 Adjusted perplexity and WER of baseline on WSJASR (%).

Vocab size OOV rate (%) # OOVs in test # Kind OOVs in test PP APP Del Ins Sub CORR WER
20k 6.26 686 595 164.3 359.6 3.2 4.1 20.0 76.8 27.3
21k 5.89 645 559 169.6 354.0 3.2 3.9 19.5 77.2 26.7
25k 4.52 495 424 191.1 335.8 3.3 3.2 18.1 78.6 24.6
30k 3.26 357 302 212.1 318.1 3.4 2.8 17.2 79.4 23.4
40k 2.04 212 178 239.5 304.2 3.4 2.1 16.2 80.4 21.7
60k 0.64 67 49 274.2 295.4 3.7 1.6 15.2 81.2 20.4
100k 0.19 20 15 289.8 296.0 3.8 1.4 15.1 81.1 20.4
165k 0.11 12 9 297.8 297.8 3.9 1.3 14.8 81.3 20.0

Table 8 WER of baseline by registering OOV words with 20k IV words
on WSJASR (%) (1 class).

OOV Vocab Size APP Del Ins Sub CORR WER
for registration

1k 359.6 3.3 3.8 19.6 77.1 26.7
5k 359.6 3.4 3.3 18.5 78.1 25.2
10k 359.6 3.4 2.9 17.8 78.8 24.2
20k 359.6 3.6 2.3 16.9 79.6 22.7

Table 9 Adjusted perplexity of the proposed method on 100 and 200 IV
classes on WSJASR (+20k IV words).

OOV PP APP
vocab 100 IV 200 IV 100 IV 200 IV
size classes classes classes classes
1k 170.6 170.3 356.7 356.1
5k 195.7 195.5 346.3 345.9
10k 221.5 220.0 339.2 336.8
20k 253.6 251.0 337.0 333.6

Baseline (1 class) 164.3 359.6

Table 10 WER of the proposed method with 20k IV words on WSJASR
(%).

(a) 100 IV classes

OOV Vocab Size Del Ins Sub CORR WER
for registration

1k 3.3 3.8 19.6 77.1 26.7
5k 3.4 3.1 18.3 78.3 24.8

10k 3.5 2.8 17.5 79.0 23.9
20k 3.7 2.2 16.8 79.5 22.7

(b) 200 IV classes

OOV Vocab Size Del Ins Sub CORR WER
for registration

1k 3.3 3.8 19.6 77.1 26.7
5k 3.1 3.1 18.3 78.3 24.9

10k 2.8 2.8 17.5 79.0 23.8
20k 3.6 2.1 16.6 79.8 22.4

to a singleton class, and all the OOV words are mapped to
an <UNK> class, where each OOV’s probability is given by
P(<UNK>) × 1

|#OOV | .

5.2 First Type of OOVs

For the proposed method, the adjusted perplexity is given
in Table 9. Similar to the previous section, the proposed
method achieves better adjusted perplexity compared with
the baseline. The adjusted perplexity also improves with
an increase in the number of OOV words registered on ob-
servation. The WER for the proposed method can be seen

Fig. 5 WER of the Proposed Method on WSJASR. Baseline (word-
based) is a word-based 3-gram with OOV words mapped to a single class.

in Tables 10 (a) and 10 (b). Similar to the adjusted per-
plexity, the proposed method also performs better than the
baseline in Table 8 in terms of WER. Incorporating OOV
words yields an improvement of at most 18.0% relative to
the WER against a model without OOV words. The pro-
posed method also yields at most 1.7% relative improve-
ment on WER against a model with a single <UNK> class
(see Fig. 5), where the row “40k” in Table 7 corresponds to
the mark “×” at the right corner in Fig. 5.

Although the proposed method performs worse than a
word-based LM, which must retrain the LM by using all
training data including OOV words, the proposed method
does not require any retraining, and is therefore, more effec-
tive for the second type of OOV words, but we can not use
the word-based method.

5.3 Second Type of OOVs

In this subsection, we add the second type of OOV words
into the experiment. As we can see in Table 7, there are
9 kinds of OOV words (12 occurrences) that does not ap-
pear on the training data. Using the same offline version of
Wikipedia that was explained in Sect. 5.2, we are only able
to get the relation of 3 OOV words to the IV word classes.
Therefore, we used different web data in recognition phase
to obtain information about the OOV. We used the online
version of Wikipedia on April 2011. Using at most 100 ar-
ticles, we got the relation of 6 OOV words (8 occurrences).
The rest 3 OOV words (4 occurrences) of the second type
were mapped to <UNK> class. We performed the experi-
ments by taking into account of these OOV words (we will
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Table 11 WER of the proposed method by incorporating the second type
of OOV words on WSJASR (%) (+20k IV words).

Model Del Ins Sub CORR WER
1k OOV1 + 9 OOV2 (1 class) 3.3 3.8 19.6 77.1 26.7

1k OOV1 + 6 OOV2 (100 classes) 3.3 3.8 19.5 77.2 26.6
1k OOV1 + 6 OOV2 (200 classes) 3.3 3.8 19.5 77.2 26.6

20k OOV1 + 9 OOV2 (1 class) 3.6 2.2 16.8 79.6 22.6
20k OOV1 + 6 OOV2 (100 classes) 3.7 2.2 16.7 79.6 22.6
20k OOV1 + 6 OOV2 (200 classes) 3.6 2.1 16.6 79.8 22.3

refer these as OOV2 words, and OOV1 for the first type of
OOV words) to some of our proposed model in the previ-
ous subsection, Sect. 5.2, where the IV size is 20k, the OOV
sizes (the first type of OOV words) are 1k and 20k, and the
number of classes are 100 and 200. The results can be seen
in Table 11. Adding the OOV2 words to the system’s vo-
cabulary and mapping the words to the <UNK> class did
not change the results (see the first rows in Tables 10 and
11). Finding the relation between the OOV2 words with the
IV words lower the WER 0.1% absolute for 1k model and
0.3% absolute for 20k model. Statistical significance was
investigated on the latter experiment according to Strik et
al. [17], [18] by using a combination of the Number of Er-
rors per Sentence (NES) metric and the Wilcoxon Signed
Rank (WSR) test. The improvement is statistically signifi-
cant at the 0.14% level (p 2-tailed). Note that the proposed
method also recovered the errors in the surrounding words
by the correct recognition of unknown words. Among 12
occurrences of OOV2, 5 occurrences were able to recov-
ered. Overall, from 426 OOV words (486 occurrences), the
20k model baseline recovered 234 OOV words (268 occur-
rences), and the our 20k model recovered 268 OOV words
(301 occurrences).

6. Conclusions and Future Works

We have shown that the proposed method without retrain-
ing the LM is better than the baseline methods. The results
suggest the advantages of using multiple classes for OOV
words, instead of one unknown class. In this paper, we ex-
perimented only on a certain vocabulary size, the number of
observed OOV words, and the number of OOV classes. For
the class estimation of OOV words, we only required at least
one occurrence of OOV word in the additional data, which
could result inadequate similarity. For future work, we aim
to relax these limitations and optimize all three parameters
to achieve a better OOV model.
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