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Smaller Bound of Superconcentrator

Chen YUAN†, Nonmember and Haibin KAN†a), Member

SUMMARY A Superconcentrator is a directed acyclic graph with spe-
cific properties. The existence of linear-sized supercentrator has been
proved in [4]. Since then, the size has been decreased significantly. The
best known size is 28N which is proved by U. Schöning in [8]. Our work
follows their construction and proves a smaller size superconcentrator.
key words: expander, superconcentrator, theoretical computer science

1. Introduction

A superconcentrator is a class of expanders to meet some
constraints. An N-superconcentrator TN is a directed acyclic
graph with N input nodes X and N output nodes Y . For any
subset S of X and T of Y where |S | = |T |, there are |S | ver-
tex disjoint paths from S to T . Superconcentrator supports
many applications in computer science. For instance, a com-
munication network can be viewed as a superconcentrator
such that every group contacts others through nonintersect-
ing paths.

It has been acknowledged that there exists linear size
superconcentrator where the number of edge in supercon-
centrator grows linearly to its node number. Gaber and
Galil [4] first present a superconcentrator with O(N) edges.
Following their work, the size bound became smaller and
smaller. It has been successfully improved to 39N in [6],
38.5N in [3], 36N in [2], 34.2N in [7], and 33N. To our
best knowledge, the smallest bound it has ever been proved
is attributed to [8] 28N. In this paper, we successfully de-
crease it by 0.5864N. Our method is non-constructive. We
modify the construction in [1] at the cost of some additional
directed edges. However, we succeed in reducing the size of
recursive N/2-superconcentrator to a number little smaller
than it.

2. Construction

Here we construct an infinite family of superconcentrator
with 27.4136N edges. Let Tn be the n-superconcentrator.

2.1 The Construction of Tn

First, we define some parameters which will be determined
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later. Let r and λ be in [0, 1]. Let X and Y be the input
set and output set of Tn. We denote X and Y by {x1, . . . , xn}
and {y1, . . . , yn} respectively. Similarly we define X′ and Y ′.
However, the size of X′ and Y ′ is little smaller than n. Let
X′ = {x′1, . . . , x′λn} and Y ′ = {y′1, . . . , y′λn}.

The edges directed from X to X′ form a bipartite graph
G = (n, d, λn) with (α, β) expanding. Similarly we do
the same operation on edges between Y and Y ′. Arcs
(xi, yi) are in Tn where i ∈ {1, . . . , rn}. In addition, for
each ι ∈ {1, . . . , λn/2}, the arcs (x′ι , x′ι+λn/2), (y′ι+λn/2, y

′
ι),

(x′ι+λn/2, y
′
ι) and (x′ι , y′ι+λn/2) are in Tn. Finally, we recursively

construct Tλn/2 between node set X′′ = {x′1, . . . , x′λn/2} and
Y ′′ = {y′1, . . . , y′λn/2}. Figure 1 illustrates such construction.

Note that the directed edges from X to Y reduce the
number of vertex-disjoint paths passing through X′ and Y ′.
One of the merit is to narrow the size of X′′ so as to decrease
the size of Tn. However, its side effect is the increasing
edges between X and Y . We will determine the parameter
λ and r later.

2.2 Existence of Bipartite Graph

Definition 2.1: An (n, d, λn) graph is a bipartite graph with
n vertices on left side and λn vertices on right side. Each
vertex on left side has degree d and each vertex on right side
has degree d/λ. We define NG(S ) the neighbor vertex of
vertex set S in graph G.

An (n, d, λn) graph is an expander (α, β) if every subset on
the left side of size at most αn has more than λβn neighbors
on the right side. The existence of such graph G is confirmed
by following inequality in [7].

d >
h(α) + h(β)λ

h(α) − βh
(
α
β

) . (1)

Theorem 2.2: For an integer n, 0 < α ≤ β < 1, λ > 0,
there exists an integer d such that G = (n, d, λn) is an ex-
pander (α, β). For large n, the expander exists if inequality
(1) holds.

Here h is an entropy function under log2 base such that

h(a) = −a log(a) − (1 − a) log(1 − a). (2)

Based on it, the following expander exists.

Theorem 2.3: Let G = (n, λn, d) be the bipartite graph de-
scribe above. We require that graph G own following prop-
erties. X and Y are its parts where |X| = n and |Y | = λn. Let
S be a subset of X. If |S | = αn, we have that:
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Fig. 1 It is a graph of n-superconcentrator. G is a bipartite graph with
parameters (n, d, λn). S (λn/2) is a λn/2-superconcentrator constructed by
recursion.

1. if α < λ/4, then |NG(S )| ≥ 2αn.
2. if λ/4 ≤ α ≤ λ/2, then |NG(S )| ≥ αn + λn/4.
3. if λ/2 < α ≤ 1 − r/2, then |NG(S )| ≥ αn + (λ − α)n/2.

Note that λ ≥ 1−r/2. However, we should pick up λ strictly
larger than 1 − r/2 so as to construct an expander with few
edges. we claim that such graph G exists by Theorem 2.2.
Here, we replace β with 2α/λ, α/λ + 1/4 and (λ + α)/2λ
respectively. Then we get following inequalities

d >
h(α) + h

(
2α
λ

)
λ

h(α) − h
(
λ
2

)
2α
λ

(α ∈ (0, λ/4])

d >
h(α) + h

(
α
λ
+ 1

4

)
λ

h(α) − h
(
αλ
α+ λ4

) (
α
λ
+ 1

4

) (α ∈ (λ/4, λ/2])

d >
h(α) + h

(
α
2λ +

1
2

)
λ

h(α) − h
(

2αλ
α+λ

) (
α
2λ +

1
2

) (α ∈ (λ/2, 1 − r/2])

In our construction, we put λ = 0.9734 and another param-
eter r = 0.1246. A simple calculation shows that d = 6 can
satisfy above three inequalities. Now we can compute the
total size of Tn by following equation:

|Tn| = (2d + r + 2λ)n/
(
1 − λ

2

)
+ O(1) (3)

We obtain our final result |Tn| = 27.4136n +O(1). We leave
the proof of our construction to next section.

Theorem 2.4: Tn is an n-superconcentrator with 27.4136n
+ O(1) edges where X and Y are input set and output set.

3. Proof

The proof in this paper is of some similarity to proof in
[1]. Specifically, we rely on lemma 3.2 which is similar to
Lemma 4.3 in [1]. The proof technique is quite analogous.
However, we use Tλn/2 as the recursive superconcentrator.
The node number in two side of this expander (n, d, λn) is

different. Therefore, not all the proof in [1] works. We must
modify some discussions. All we do is to ensure that similar
result is hold under new parameter.

3.1 Main Theorem

As in [1], we use induction in our proof. That is, we have
a λn/2-superconcentrator. We want to show the existence
of n-superconcentrator. First, we denote the graph between
X(Y) and X′(Y ′) byΛX(ΛY resp). S is any subset of X, and T
is any subset of Y where |S | = |T |. We show that there exists
|S | vertex disjoint paths in Tn. Our proof depends on the
following theorem which is a modification of Lemma 4.1 in
[1]. We denote (1 − r/2) by γ in the following discussion.

Theorem 3.1: S is any subset of X, and T is any subset of
Y where |S | = |T | ≤ γn. There exist matchings M∗S ⊂ ΛX

and M∗T ⊂ ΛY , such that M∗S and M∗T contain |S | edges and
satisfy following property:

1. M∗S saturates S and M∗T saturates T .
2. Let ι be an arbitrary integer in {1, . . . , γn/2}. If M∗S

covers x′ι and x′ι+λn/2, M∗T covers at least one of y′ι and
y′ι+λn/2 and vice versa.

Assume the correctness of theorem 3.1, we show that it will
induce the correctness of our construction. S is any subset
of X and T is any subset of Y where |S | = |T |. If |S | > γn =
(1 − r/2)n, S and T will have collision in subscript set of
{1, . . . , rn}. Since there are directed edge between xi and yi

for i ≤ rn, we can eliminate those pairs of xi and yi from S
and T . The size of remaining set S is at most (1− r/2)n, and
so is T . Now we can apply theorem 3.1 to S and T.

For each pair (x′ι , x′ι+λn/2) where ι ∈ {1, . . . , γn/2}, we
divide it into two cases:

1. If M∗S covers both x′ι and x′ι+λn/2, we have that M∗T
covers at least one of y′ι and y′ι+λn/2. If y′ι is covered,
we derive a directed path from x′ι+λn/2 to y′ι . Then
we eliminate this two node from matching set M∗S and
M∗T . Otherwise, y′ι+λn/2 must be covered, we drive a di-
rected path (x′ι+λn/2y

′
ιy
′
ι+λn/2) which connects x′ι+λn/2 and

y′ι+λn/2. Similarly, we remove both nodes.
2. If only x′ι+λn/2 is covered by M∗S , we map it to x′ι by arcs

(x′ι+λn/2, x
′
ι).

The remaining node in M∗S belongs to node set
{x′1, . . . , x′γn/2}. (include mappings). We do same operation
on set T according to matchings M∗T . Therefore, the remain-
ing node in M∗T belongs to {y′1, . . . , y′γn/2}. Since there is a
λn/2-superconcentrator (λ ≥ γ) between X′′ and Y ′′, and
both remaining node set has equal size, we complete our
proof.

3.2 Proof of Theorem 3.1

The proof of theorem 3.1 depends on the following lemma
which appears in [1] with some changes.

Lemma 3.2: Let S and T be the subset of X and Y respec-
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tively where |S | = |T | ≤ γn. There exist matchings MS and
MT and a subset I of {1, . . . , λn} have following properties.

1. Each edge in MS is incident with a vertex in S, and each
edge in MT is incident with a vertex in T.

2. Let X′I denote the subset of X′ of the form {x′ι : |ι ∈ I}.
Y ′I denote the subset of Y ′ of the form {y′ι : |ι ∈ I}. Then
MS saturates X′I and MT saturates Y ′I .

3. Let α be number between 0 and γ such that |S | = |T | =
αn. If α ∈ [λ/4, λ/2], |I| ≥ αn − λn/4. If α is larger
than λ/2 and smaller than γ, |I| ≥ αn − (λ − α)n/2.

We have shown the existence of bipartite graph G which
satisfies Theorem 2.3. Next we prove that such construction
owns the properties of Lemma 3.2.

Let U′ = {u′1, . . . , u′λn} and V ′ = {v′1, . . . , v′λn}. G′ is the
following graph on S ∪U′∪V ′∪T . G′[S ∪U′] is isomorphic
to ΛX[S ∪X′] such that (x, u′ι) is an edge iff (x, x′ι) is an edge
in Tn. Similarly we define for G′[V ′ ∪ T ]. G′[U′ ∪ V ′] is a
matching such that (u′ι , v′ι′ ) is an edge iff ι = ι′. By Menger’s
Theorem, the maximum size of I is the minimum size of
vertex set C which separates S and T . Suppose |C∩S | = an,
|C ∩ U′| = bn, |C ∩ V ′| = cn, |C ∩ T | = dn.

1. If α ∈ [λ/4, λ/2], we assume that both a and d is no
larger than α + λ/4 or |C| is enough big. Since C is a
cut-set, 2α−a−d+λ/2−λ is at most b+ c. Therefore,
|C| = a+b+c+d ≥ 2(α−λ/4). (The detailed discussion
is same as in [1].)

2. If α ∈ (λ/2, 1− r/2], we assume that both a and d is no
larger than α − (λ − α)/2 or |C| is enough big. Since C
is a cut-set, 2α − a − d + (λ − α) − λ is at most b + c.
Therefore, |C| = a + b + c + d ≥ α ≥ (3α − λ)/2. (The
detailed discussion is same as in [1].)

Now we use Lemma 3.2 to complete the proof of Theo-
rem 3.1. We prove that there exists matchings M∗S ⊆ ΛX

and M∗T ⊆ ΛX satisfying following two properties:

1. M∗S saturates S and M∗T saturates T .
2. Let ι be any arbitrary integer in {1, . . . , γn/2} such that

neither ι nor ι+ λn/2 in I. Then M∗S covers at most one
of x′ι and x′ι+λn/2 and M∗T covers at most one of y′ι and
y′ι+λn/2.

These two properties imply Theorem 3.1. Now let MS , MT

and I satisfy Lemma 3.2. X′I and Y ′I are as in 2 of Lemma 3.2.
We show the existence of such M∗S and M∗T . Let Λ̃X be the
graph formed from ΛX[S ∪X′] by identifying x′ι with x′ι+λn/2
iff neither x′ι nor x′ι+λn/2 is in I. Similarly, we define graph

Λ̃Y . To finish our proof, it needs to prove there exist match-
ings in M∗S and M∗T that saturate both S and X′I simultane-
ously, and, T and Y ′I simultaneously.

A There are matchings in Λ̃X and Λ̃Y saturating S and T
respectively. There also are matchings, possibly differ-
ent, in Λ̃X and Λ̃Y saturating X′I and Y ′I .

Since MS , MT and I satisfy Lemma 3.2, there exist match-
ings in Λ̃X and Λ̃Y saturates X′I and Y ′I respectively. All we
need to do is to show the first part of A. By Hall’s theorem,

it needs to show that for any subset S 0 of S and T0 of T , we
have |NΛ̃X

(S 0)| ≥ |S 0| and |NΛ̃Y
(T0)| ≥ |T0|. Consider the

following inequality:

|NΛ̃X
(S 0)| ≥ |NΛX (S 0) ∩ X′I | + |NΛX (S 0) ∩ (X′ − X′I)|/2

We divide the proof into two cases.
Case 1: α ≤ λ/2 where |S | = αn. If S 0 is size less than

λ/4, by Theorem 2.3

|NΛ̃X
(S 0)| ≥ |NΛX (S 0)|/2 + |NΛX (S 0) ∩ X′I |/2

≥ (2|S 0|)/2
= |S 0|

Then, We turn to the case that |S 0| is larger than λ/4.
According to Theorem 2.3, NΛX (S 0) has size at least |S 0| +
λn/4. Moreover, by Lemma 3.2, since |I| is at least (α −
λ/4)n, |NΛX (S 0) ∩ X′I | ≥ |S 0| − λn/4. Thus we have:

|NΛ̃X
(S 0)| ≥ |NΛX (S 0)|/2 + |NΛX (S 0) ∩ X′I |/2

≥ (|S 0| + λn/4)/2 + (|S 0| − λn/4)/2

= |S 0|
Similarly, we come to the same conclusion for T0.

Case 2: α ∈ (λ/2, 1 − r/2] where |S | = αn. Then we
assume that |S 0| ≥ (λ−α)n/2. By Theorem 2.3,NΛX (S 0) has
size at least |S 0|+(λ−α)n/2. Moreover, by Lemma 3.2, |I| is
at least αn−(λ−α)n/2. So |NΛX (S 0)∩X′I | ≥ |S 0|−(λ−α)n/2.
Now we have

|NΛ̃X
(S 0)| ≥ |NΛX (S 0)|/2 + |NΛX (S 0) ∩ X′I |/2

≥ (|S 0| + (λ − α)n/2)/2

+ (|S 0| − (λ − α)n/2)/2

= |S 0|
Similarly, we come to the same conclusion for T0. We have
completed the proof of A which implies the existence of M∗S
and M∗T in Theorem 3.1.

4. Conclusion

In this paper, we show the existence of superconcentra-
tor of density 27.4136 by a non-constructive proof. The
proof combines the ideas from [1], [3] and [7] to generate
a smaller-sized superconcentrator. Since the lower bound is
(5 − o(1))N [5], the gap is still large to be narrowed.
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