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PAPER

Colorization Based Image Coding by Using Local Correlation
between Luminance and Chrominance

Yoshitaka INOUE†a), Student Member, Takamichi MIYATA†, and Yoshinori SAKAI†, Members

SUMMARY Recently, a novel approach to color image compression
based on colorization has been presented. The conventional method for
colorization-based image coding tends to lose the local oscillation of
chrominance components that the original images had. A large number
of color assignments is required to restore these oscillations. On the other
hand, previous studies suggest that an oscillation of a chrominance com-
ponent correlates with the oscillation of a corresponding luminance com-
ponent. In this paper, we propose a new colorization-based image coding
method that utilizes the local correlation between texture components of
luminance and chrominance. These texture components are obtained by a
total variation regularized energy minimization method. The local corre-
lation relationships are approximated by linear functions, and their coeffi-
cients are extracted by an optimization method. This key idea enables us
to represent the oscillations of chrominance components by using only a
few pieces of information. Experimental results showed that our method
can restore the local oscillation and code images more efficiently than the
conventional method, JPEG, or JPEG2000 at a high compression rate.
key words: image coding, colorization, total variation, correlation be-
tween luminance and chrominance

1. Introduction

Colorization [1], [2] is a process that restores a complete
color from a given complete gray-scale image and incom-
plete color information. This method is based on the as-
sumption that neighboring pixels that have similar lumi-
nance also have similar chrominance. Recently, a novel ap-
proach to color image compression based on colorization
has been presented [3]–[6]. The conventional method [3] re-
duces the coding rate by transforming whole chrominance
components into small color assignments at the encoder.
The chrominance components are restored by propagating
the color assignment by a colorization [1] at the decoder.
Although the conventional method outperforms JPEG from
the viewpoint of its visual quality, the decoded chrominance
components tend to lose the local oscillation that the origi-
nal images had. Additional color assignments are required
to restore these oscillations precisely, but these decrease the
coding efficiency.

On the other hand, previous studies [7]–[12] suggest
that an oscillation of chrominance components correlates
with the oscillation of the corresponding luminance com-
ponent. In this paper, we focus on the correlation that exists
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between luminance and chrominance in a local area of im-
ages and present a new colorization-based coding method
that can restore oscillations of chrominance. First, the in-
put image is separated into the texture (oscillations) and the
geometry (smooth areas and edges) components by using a
total variation regularization method [13], [14]. Second, the
geometry component is divided into a few clusters to group
the grid points (vertices). Note that the location and group-
ing of these vertices can be shared at both the encoder and
decoder side without any overhead. For texture components,
we assume that the local correlation of oscillation is approx-
imated by a linear function at each cluster, and we obtained
the chrominance (for geometry) and the coefficient of the
linear function (for texture) that minimize the decoded error
at each cluster. The luminance component is compressed by
JPEG2000. The cluster reference information of the vertices
and the chrominance and the coefficient of each cluster are
sent to the decoder. Our method enables significant rate re-
duction by sharing the same vertices at both the encoder and
decoder sides. At the decoder, the chrominance geometry
components are decoded from color vertices on the lumi-
nance image, and the chrominance texture components are
restored by the coefficients.

The paper is organized as follows. First, we briefly in-
troduce the existing colorization method [1] in Sect. 2. In
Sect. 3, we describe some colorization-based image coding
methods from our previous work. In Sects. 4 and 5, we in-
troduce related works on geometry-texture separation and
inter-color correlation. We present a new colorization-based
image coding method based on correlation between lumi-
nance and chrominance in texture component in Sect. 6. Ex-
perimental results of our method are provided in Sect. 7. Fi-
nally, Sect. 8 concludes this paper.

2. Colorization

The colorization method developed by Levin et al. [1] is
used to restore natural chrominance components by esti-
mation from small number of pixels that have chrominance
value. The method is based on the assumption that neigh-
boring pixels that have similar luminance also have similar
chrominance.

Luminance similarity of two pixels r and s is defined
as

wrs =

{
e−{Y(r)−Y(s)}2/2σ2

r (s ∈ N(r))
0 (s � N(r)).

(1)
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Where, Y(r) represents the luminance at r, and σ2
r is vari-

ance around r, N(r). N(r) is defined as eight neighboring
pixels of r in [1]. Describing the number of pixels of an in-
put image as n, ai j that represents i-th row and j-th column
factor of matrix A ∈ Rn×n is defined as follows.

ai j =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 (i = j)
0 ((i � j) ∧ (i ∈ V))
−wi j/Σs∈N(i)wis (otherwise).

. (2)

Here, i and j are pixels corresponding to i and j respectively,
and V is a set of given chrominance pixels. Describing a col-
umn vector Q ∈ Rn whose factor has a chrominance value if
V has a corresponding pixel, or 0, and restored chrominance
vector X ∈ Rn, Colorization [1] is formulated as

X = A−1Q. (3)

X is restored by propagating Q along with segments of lu-
minance component.

3. Colorization-Based Coding

Recently, color image compression by using colorization at
decoder has been presented [3]–[6].

Conventional colorization-based coding [3] represents
chrominance components of all pixels as a few color lines at
the encoder. At the decoder, chrominance components are
recovered by using a colorization method [1]. However, the
decoded chrominance components lose the local oscillation
that the original images had.

Another method [4] extracts some color vertices at the
encoder. Color vertices are propagated along with areas
segmented by luminance edges [2]. However, if the num-
ber of vertices is small in the areas that have dense oscil-
lations of luminance, chrominances cannot be propagated
correctly. Moreover, chrominance components are radically
smoothed, similar to those in the work of Levin et al. [1].

Since the local oscillations represent the textures and
shadows of materials, the loss of such oscillations leads sub-
jective quality to considerably degrade. A large number of
color assignments such as the vertices or the lines are re-
quired to restore these oscillations precisely. However, the
increase in the number of color assignments makes the com-
pressed data size large.

An alternative colorization-based image coding method
to restore oscillations has been proposed [5]. Coefficients
that describe the correlation between luminance and chromi-
nance in the texture component are used to restore oscilla-
tions [5]. However, achieving drastic bit-rate reduction is
difficult, since the coordinates information of lines must be
transmitted for color assignment.

4. Geometry-Texture Separation

Image denoising methods that use total variation (TV) reg-
ularization have been proposed by Rudin et al. [13]. Let
x ∈ R2 be a coordinate in the image, and let Y(x) : R2 → R
be the value of the luminance component at coordinate

x. We also use this notation for any other components.
TV-regularization is for solving the following minimization
problem.

Yg = argmin
X

∑
|∇X(x)| + 1

2λ

∑
{X(x) − Y(x)}2 . (4)

where Y is an original image and Yg is a generated image.
We call Yg the geometry component, since Yg only contains
the geometry features (smooth regions and edges) of an orig-
inal image. We call Yt = Y − Yg the texture component be-
cause it presents the texture features included in an image.
The solution for optimizing problem Eq. (4) was presented
by Chambolle [14], who defines TV semi-norm |∇·| [14].
Note that the ranges of pixel values of geometry and texture
components are [0, 255] and [−255,+255], respectively.

5. Correlation between Luminance and Chrominance

The color components of a natural image correlate with each
other. Most chrominance changes are accompanied by lumi-
nance changes [7]–[12]. Therefore, each oscillation of the
components in a local region has a similar shape and posi-
tive or negative correlation.

The natural image colorization [7] technique enhances
the visual quality of a color image after the colorization pro-
cess, assuming that the relationship between luminance and
chrominance can be represented as a corresponding linear
function. This correlation has also been utilized for color
image coding [8], [9]. Compression techniques reduce the
redundancies between components by predicting chromi-
nance from luminance.

Spatio-chromatic correlation is used for color image
coding [10]. 4 × 4 × 3 bases are calculated by PCA or ICA
using local color patches of 4×4×3 [pixel]. Correlation be-
tween luminance and chrominance is suggested, since some
upper bases contain chrominance change accompanied by
luminance changes.

Also, Gershikov and Porat [11], [12] suggest the corre-
lation between components of YCbCr color space and im-
prove coding efficiency of JPEG/JPEG2000 by decorrelat-
ing. However, these methods need overheads to send the
KLT matrix of each block or sub-band to the decoder.

Figures 1–3 show the local correlation between Y and
Cb in separated geometry and texture components obtained
by TV-regularization in Sect. 4. These lines mean the values
extracted from the image “Food,” in horizontal coordinate

Fig. 1 Extracted area from image “Food” (white line).
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Fig. 2 Original image and its geometry components.

Fig. 3 Relationship between texture components of Y and Cb.

x ∈ [330, 450] and fixed vertical coordinate y = 250. The
values from x < 390 corresponding to Fig. 3 are the surface
of a kiwi fruit, and the values x ≥ 390 are the surface of a
lemon. In Fig. 3, the kiwi area has a negative correlation be-
tween Yt and Cbt. In contrast, the lemon area has a positive
correlation. The key observation here is that these correla-
tions change from negative to positive at the edge x � 390,
accompanied by a Yg change (Fig. 2). This correlation is
mostly caused by optical properties of the material surface
and its magnitude is affected by gamma correction of YCbCr
colorspace. However, even if we know these facts, it is dif-
ficult to decorrelate luminance and color components cor-
rectly.

6. Proposed Colorization-Based Coding

6.1 Overview of Proposed Method

Figure 4 shows an overview of the proposed colorization-
based coding algorithm. The algorithm is described in
Sects. 6.2–6.8. Here, we denote width and height of the in-
put image as W [pixel] and H [pixel], respectively.

6.2 Geometry-Texture Separation

Our method separates each component of YCbCr into the ge-
ometry YgCbgCrg and the texture YtCbtCrt by Eq. (4). Then,
the following equation is satisfied.
⎡⎢⎢⎢⎢⎢⎢⎢⎣

Y(x)
Cb(x)
Cr(x)

⎤⎥⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎣

Yg(x)
Cbg(x)
Crg(x)

⎤⎥⎥⎥⎥⎥⎥⎥⎦ +
⎡⎢⎢⎢⎢⎢⎢⎢⎣

Yt(x)
Cbt(x)
Crt(x)

⎤⎥⎥⎥⎥⎥⎥⎥⎦ . (5)

At the decoder side, only luminance Y is separated.

6.3 Correlation between Luminance and Chrominance in
Texture Component

We denote the number of clusters as K, a coordinate in the
image as x ∈ R2, and an index of a segmented local region
as k(x) : R2 → {1, · · · ,K}. By the observation in Sect. 5,
if the clusters are properly segmented, we assume that the
correlation in YtCbtCrt can be formulated as

[
Cbt(x)
Crt(x)

]
�
⎡⎢⎢⎢⎢⎢⎣ Pk(x)

b

Pk(x)
r

⎤⎥⎥⎥⎥⎥⎦Yt(x). (6)

where coefficients Pk(x)
b and Pk(x)

r represent the linear rela-
tionships between Yt(x) and Cbt(x), or Crt(x), respectively.
Note that k(x) represents a superscript of coefficient ak(x)

i ,
not an exponent.

Section 6.5 explains the clustering method, and
Sect. 6.6 describes how to build arrays PK

b and PK
r that con-

tain Pk(x)
b and Pk(x)

r .

6.4 Extracting Vertex Information

The conventional method [3] needs to send the coordinates
of two end points of each line segment, in addition to its
chrominance values. In contrast, to improve the coding ef-
ficiency, our method uses point information that can only
be obtained from the compressed luminance component Y

′
g.

Moreover, our method uses the vertices as color assign-
ments, unlike the lines in the conventional method [3], since
lines extracted from compressed luminance Y

′
g could cut

across the boundary of the areas that have different chromi-
nance. On the encoder side, Y

′
g can be obtained by local

decoding. The algorithm of extracting vertex information
from Y

′
g is as follows.

1. Dividing compressed luminance Y
′
g into L × L [pixel]

non overlapped blocks, and putting vertex x at the cen-
ter of each block. We denote the set of these vertices as
V and the number of vertices as |V | = HW/L2.

2. Quantized luminance value Y
′
gq(x) ∈

{
0, 1, · · · , qmax

Y

}
is obtained by applying uniform quantization to Y

′
g(x).

Where, qmax
Y ∈ N represents a maximum quantization

level.
3. Making an array IV ∈ N2×|V | by sorting the coordinates

of the vertices ∀x ∈ V in ascending order of its corre-
sponding quantized value Y

′
gq(x) ∈

{
0, · · · , qmax

Y

}
(see

Fig. 5).

Array IV is the vertex information, as described above.
The coordinates are stored in scanline order (first, ascending
order of x coordinate, and second, ascending order of y) not
in the whole area, but in each area that has the same level qY

as described in processes 2 and 3. This ordering enables us
to highly compress of cluster reference indexes (its details
are described in Sect. 6.5) by run-length encoding. Arrows
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Fig. 4 Overview of proposed method.

Fig. 5 Sort order of IV .

in Fig. 5 show an example of order in the case of |V | = 16
and qmax

Y = 2. Vertex information IV does not need to be
sent to the decoder, since the same IV can be obtained at the
decoder side. This enables a significant rate reduction when
compared with the conventional method [3].

6.5 Building Cluster Reference Index

At the encoder side, cluster reference indexes are built by
using geometry components YgCbgCrg of an original image
YCbCr and vertex information IV . The algorithm is as fol-
lows.

1. Normalizing vectors of [Yg(x),Cbg(x),Crg(x)] by sub-
tracting its average and dividing it by its standard de-
viation. Then, clustering the normalized vectors into
K clusters (k(x) ∈ {0, · · · ,K − 1}) by using k-means

method.
2. Storing cluster indexes k(x) of all x ∈ V into an array

IR ∈ N|V |. Note that the orders of IV and IR are the
same.

The array IR represents the cluster reference indexes,
as described above. IR requires the following information
volume to be stored.

VR = |V | �log2(K)� [bit] (7)

Since segmented Y
′
g and YgCbgCrg have similar shapes,

the same numbers occur in many consecutive elements in IR.
Therefore, the information volume of IR can be compressed
significantly.

IR is transformed into

• LR: Sequence whose element represents a run-length.
• CR: Sequence whose element represents a cluster in-

dex.

by run-length encoding. Describing bits assigned to an ele-
ment in LR as bR, an element in LR ranges

{
1, · · · , 2bR

}
, and

that in CR ranges {0, · · · ,K − 1}. Since LR and CR are the
functions of bR, we can obtain the information volume VR

when we choose run-length coding with the best value of bR

by

VR = min
bR∈{1,2,...,bmax

R }
{
len(LR(bR))bR+len(CR(bR))�log2(K)�

+ �log2(bmax
R )� )

}
[bit]. (8)

Where, len(·) means length of a sequence.
For each input image, the proposed method compares
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Eq. (7) with Eq. (8). Then, the method that can minimize
VR is adopted. An additional flag bit fR ∈ {0, 1} that states
which method has been adopted is also sent to the decoder.

6.6 Calculating Chrominance and Coefficient Information

In this section, we describe how to calculate chrominance
information QK

b ,Q
K
r ∈ RK and coefficient information

PK
b , P

K
r ∈ RK . Chrominance and coefficient information are

arrays that have K elements of chrominance and coefficient
corresponding to each cluster. Conventional colorization-
based image coding developed by Ono et al. [6] presents
how to calculate chrominance information that minimizes
decoded error with fixed coordinates of assigned chromi-
nance. However, since the chrominance component is the
only information that is transmitted, Ono et al. did not in-
vestigate optimization for coefficient information. More-
over, they did not discuss clustering of color information.
We extend the previous chrominance optimization method
to clustered coefficients.

Let Ω (|Ω| = n) be a set of all pixels and V ⊂ Ω be a set
of pixels assigning chrominance. Focusing on Cb compo-
nent, let C

′
bg ∈ Rn be a decoded geometry of Cb component,

a vector Qb ∈ R|V | be chrominance information assigned at
V , and M ∈ Rn×|V | be a matrix whose column vectors are
extracted from A−1 ∈ Rn×n in Eq. (3) corresponding to the
pixels in V .

For example, if |V | = 2 and chrominance value q1 and
q2 are assigned to these two pixels. By using column vectors
a1 and a2 corresponding to them, we can represent Eq. (3)
as follows.

C
′
bg =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
. . . a1 . . . a2 . . .

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
q1

0
q2

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(9)

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
a1 a2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

[
q1

q2

]
(10)

= MQb. (11)

Every vertex is clustered in our method. If q1 and q2

belong to the same cluster (K = 1), q1 and q2 must have
the same chrominance (q1 = q2). Two column vectors a1

and a2 are summed up into a new column vector a1 + a2.
Then, Eq. (11) is deformed as follows, using a new matrix
MK ∈ Rn×K and a vector QK

b .

C
′
bg =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
a1 + a2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
[

q1

]
(12)

= MK QK
b . (13)

If |V | ≥ 3 or K ≥ 2, MK and QK
b are calculated in a

similar way from Eq. (9) to Eq. (13).
Similarly, let Y

′
t ∈ Rn be a texture component of lo-

cally decoded luminance, PK
b ∈ RK be coefficient informa-

tion, and P
′
b ∈ Rn be the vector propagated from PK

b by MK .
A texture component of decoded chrominance C

′
bt ∈ Rn is

formulated as follows.

C
′
bt = P

′
b � Y

′
t (14)

= (MK PK
b ) � Y

′
t (15)

= Y
′
t � (MK PK

b ) (16)

= diag(Y
′
t )MK PK

b . (17)

Here, � means element-wise multiplication. Chrominance
information QK∗

b and coefficient information PK∗
b that mini-

mize the square error between original chrominance Cb and
decoded chrominance (C

′
bg+C

′
bt) is simultaneously obtained

by solving the following minimization problem.

{QK∗
b , P

K∗
b } = argmin

QK
b ,P

K
b

‖Cb − (C
′
bg +C

′
bt)‖

= argmin
QK

b ,P
K
b

‖Cb − (MK QK
b + diag(Y

′
t )MK PK

b )‖

(18)

We can combine the second and third term of Eq. (18) by
introducing matrix N ∈ Rn×2K ,

N =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣ MK diag(Y
′
t )MK

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ (19)

C
′
bg +C

′
bt = N

⎡⎢⎢⎢⎢⎢⎢⎣
QK

b

PK
b

⎤⎥⎥⎥⎥⎥⎥⎦ (20)

Therefore, we can easily obtain the solution of Eq. (18)
by calculating the Moore-Penrose pseudo inverse of N.
⎡⎢⎢⎢⎢⎢⎢⎣

QK∗
b

PK∗
b

⎤⎥⎥⎥⎥⎥⎥⎦ = N†Cb (21)

Where N† denotes the Moore-Penrose pseudo inverse of N.
If we denote the information volume assigned to an el-

ement in QK
b and QK

r as bQ [bit], total information volume of
chrominance information can be expressed by K×2bQ [bit].
Similarly, if we let the information volume of the coefficient
PK

b and PK
r be bP [bit], total information volume of coeffi-

cient information becomes K × 2bP [bit].

6.7 Sending Data

The following data are sent to the decoder side.

• Luminance component compressed by JPEG2000
• Header information

– Number of iterations by TV-regularization: LTV

– Parameter of TV-regularization: λTV
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– Block size for extracting vertex: L
– Maximum quantization level for extracting vertex:

qmax
Y

– Number of clusters: K
– Flag bit of run-length encoding: fR
– Number of bits assigned to each element of run-

length encoding: bR

– Number of bits assigned to each element of
chrominance information: bQ

– Number of bits assigned to each element of coef-
ficient information: bP

• Cluster reference index: IR (or LR and VR encoded from
IR)

• Chrominance information: QK
b and QK

r
• Coefficient information: PK

b and PK
r

6.8 Oscillation Restoration

By extracting vertex information IV from the decoded lumi-
nance, and matching IV with cluster reference index IR, we
can build the matrix MK at the decoder side. QK

b and PK
b

are propagated by Eqs. (13) and (17), respectively. Using
coefficient maps P

′
b and P

′
r, and the texture component of

decoded luminance Y
′
t , chrominance oscillation is restored

by pixel-wise multiplication as follows.
⎡⎢⎢⎢⎢⎣ C

′
bt(x)

C
′
rt(x)

⎤⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎣ P

′
b(x)

P
′
r(x)

⎤⎥⎥⎥⎥⎦Y ′t (x). (22)

7. Simulation

7.1 Uncompressed Luminance

First, we compared several methods with flawless lumi-
nance component (without using any compression apart
from lossless compression). Table 1 shows the encoder set-
tings (Miyata et al. [3] and Inoue et al. [5] give the parame-
ters). We used the 256× 256 [pixel] color image “Mandrill”
and evaluated the peak signal-to-noise ratio (PSNR) of Cb

for several information volumes of the chrominance com-
ponent. We compared our proposed method, conventional
methods in [3], [5], JPEG, and JPEG2000. Note that JPEG
and JPEG2000 encoding were performed for the chromi-
nance component only.

Figure 6 shows that our proposed method coded im-
ages more efficiently than the conventional methods [3] and
[5]. From this result, we can say that avoiding the coordi-
nates information transmission is important to improve the
coding efficiency. The proposed method also outperforms
JPEG and JPEG2000, especially in terms of a high com-
pression rate.

7.2 Compressed Luminance

The proposed method propagates chrominance values and

Table 1 Encoder settings.

Method Parameter Value

Proposed

L 8
K 5, 10, 15, 20, 25, 30, 35, 40
bP 8

LTV 100
λTV 0.2
qmax

Y 8
bQ 8

bmax
R 8

Conventional [3]
V 15
th 4, 6, 8, 12, 16, 20, 24, 28
S 0.25

Conventional [5]
V 15
th 4, 6, 8, 12, 14, 16, 20
S 0.25
bP 8

JPEG q 1, 3, · · · , 27

JPEG2000 rate

0.030, 0.031, 0.032, 0.033,
0.034, 0.035, 0.036, 0.038,
0.040, 0.045, 0.050, 0.055,

0.06, 0.07, 0.08, 0.1

Fig. 6 Comparison of coding efficiency (uncompressed Y , “Mandrill”).

coefficients on a luminance component by using a coloriza-
tion method [1]. If the luminance is highly compressed, the
degradation of luminance may affect the decoding process
of the chrominance. For example, if we use the compressed
luminance component that loses sharp edges, chrominance
may be propagated beyond the borders between the appro-
priate and inappropriate areas. Moreover, if we use the lumi-
nance component that loses oscillation like the texture com-
ponent, chrominance fails to restore their oscillations.

In this section, we compare (a) JPEG2000 with (b) the
proposed method using JPEG2000 to compress the lumi-
nance component. Their performances are evaluated using
the following processes. Let PSNR(X1X2) be a PSNR cal-
culated from average of two mean squared errors (MSE) —
between X1 and its corresponding original component, and
between X2 and its original.

Similarly, we denote an average of structured similarity
(SSIM) [15] between X1 and its original and SSIM between
X2 and its original as SSIM(X1X2). The SSIM is a well-
known and well-used quality metric used to measure the
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(a) “Mandrill” (b) “Parrots” (c) “Sunset”

Fig. 7 Comparison of CbCr PSNR (compressed Y).

(a) “Mandrill” (b) “Parrots” (c) “Sunset”

Fig. 8 Comparison of CbCr SSIM (compressed Y).

Table 2 Encoder settings.

Parameter Value

(L,K)
(48, 5), (32, 10), (16, 10), (12, 10),

(8, 10), (8, 20), (8, 30)
bP 0, 4

LTV 100
λTV 0.2
qmax

Y 8
bQ 8

bmax
R 8
rỸ 0.1, 0.4

similarity between two images because it is a better model
of the human quality perception than PSNR.

1. Preparing several compressed images ŶĈbĈr using
JPEG2000, by changing luminance bitrate and chromi-
nance bitrate (sum of CbCr).

2. Obtaining Ỹ by JPEG2000 compression, with com-
pression rate rỸ , applied for the luminance compo-
nent Y only. Setting the compression rate to satisfy
PSNR(Ŷ) = PSNR(Ỹ). Compressing the chrominance
component by our proposed method with the com-
pressed luminance component Ỹ . Then, obtaining all
decoded components ỸC

′
bC

′
r.

3. Evaluating PSNR(ĈbĈr), PSNR(C
′
bC

′
r), SSIM(ĈbĈr),

and SSIM(C
′
bC

′
r).

Table 2 shows the encoder settings.
Results are shown in Figs. 7 and 8. The horizontal

axis represents sum information volume of the chrominance

Fig. 9 Comparison of information volume.

components and the header. For JPEG2000, this informa-
tion amount is the sum of (a-1) and (a-3), and for the pro-
posed method, it is the sum of (b-1), (b-3), and (b-4) (see
Fig. 9). The vertical axis represents the quality of the
decoded images of the proposed method (PSNR(C

′
bC

′
r)

and SSIM(C
′
bC

′
r)) and JPEG2000 (PSNR(ĈbĈr) and

SSIM(ĈbĈr)). In many images, our method coded more effi-
ciently than JPEG2000, especially in the case of the combi-
nation of high bit rate luminance and low bit rate chromi-
nance. Figure 7 shows that, in “Mandrill” and “Parrots”
images, we obtained +3 [dB] PSNR gain by using our pro-
posed method. Moreover, Fig. 8 shows that there is a re-
markable difference between bP = 0 and bP = 4 on SSIM
metrics, and which means that our main idea can improve
the perceptual quality drastically. Output images are shown
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(a) Extracted area from image “Mandrill”,
horizontal coordinate x ∈ [1, 100],
vertical coordinate y = 40.

(b) Local oscillation restoration by proposed method (horizontal axis:
horizontal coordinate x, vertical axis: pixel value).

(c) Original. (d) JPEG2000 (CbCr: 331 [byte],
26.19 [dB], 0.7679).

(e) Proposed (CbCr: 330 [byte],
27.43 [dB], 0.8117).

Fig. 10 Mandrill (rỸ = 0.4, Y: 3,040 [byte], 28.62 [dB]).

(a) Original. (b) JPEG2000 (CbCr: 287 [byte],
26.85 [dB], 0.8923).

(c) Proposed (CbCr: 292 [byte],
28.81 [dB], 0.9135).

Fig. 11 Parrots (rỸ = 0.4, Y: 3,050 [byte], 38.41 [dB]).

(a) Original. (b) JPEG2000 (CbCr: 306 [byte],
32.63 [dB], 0.9277).

(c) Proposed (CbCr: 299 [byte],
33.02 [dB], 0.9547).

Fig. 12 Sunset (rỸ = 0.4, Y: 3,047 [byte], 44.33 [dB]).
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in Fig. 10 (c) through (e), Figs. 11 and 12. JPEG2000 gen-
erated different colors from those of neighboring areas, for
example, on left side of the nose in “Mandrill,” in the back-
ground of “Parrots,” and in the sky of “Sunset.” In contrast,
our method restored natural colors and gradations and did
not generate such noises.

Figure 10 (b) shows the characteristic of the local
oscillation restoration of the proposed method. These
chrominance values are extracted from Fig. 10 (c) through
Fig. 10 (e), and the location of these pixels is shown in
Fig. 10 (a). JPEG2000 is more smoothed than the original
values. On the other hand, the chrominance of our proposed
method contains the local oscillation and has a similar wave-
form to the original, especially in x ∈ [1, 40].

8. Conclusion

In this paper, we presented a novel colorization-based image
coding method based on the correlation between luminance
and chrominance in separated texture components. Since
we focused on the relationship between edges of the geom-
etry component and the boundary of positive correlation and
negative correlation, our proposed method efficiently com-
pressed coefficients that represent the correlation. Further-
more, our proposed method enables drastic bit-rate reduc-
tion by sharing same vertices at both the encoder and de-
coder sides. The experimental results showed that our cod-
ing method outperforms the conventional method, JPEG,
and JPEG2000, especially when high bit rate luminance and
low bit rate chrominance are combined.
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