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Skeleton Modulated Topological Perception Map for Rapid

Viewpoint Selection®
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SUMMARY Incorporating insights from human visual perception into
3D object processing has become an important research field in computer
graphics during the past decades. Many computational models for different
applications have been proposed, such as mesh saliency, mesh roughness
and mesh skeleton. In this letter, we present a novel Skeleton Modulated
Topological Visual Perception Map (SMTPM) integrated with visual at-
tention and visual masking mechanism. A new skeletonisation map is pre-
sented and used to modulate the weight of saliency and roughness. Inspired
by salient viewpoint selection, a new Loop subdivision stencil decision
based rapid viewpoint selection algorithm using our new visual perception
is also proposed. Experimental results show that the SMTPM scheme can
capture more richer visual perception information and our rapid viewpoint
selection achieves high efficiency.

key words: visual attention, visual masking, topological perception, view-
point selection

1. Introduction

With the development of hardware and computer graphics,
visual perception based 3D object processing technology
has attracted many research works, such as mesh saliency,
mesh roughness and mesh skeleton.

The visual attention mechanism is one of the most of-
ten exploited visual perception characteristics in 3D mesh
perception or scene analysis applications. During the last
two decades, a particular strategy consisting of two attention
mechanisms are developed. One is bottom-up and the other
is top-down. Feature Integration Theory (FIT) [1] suggests
that visual information is analyzed in parallel from differ-
ent maps. Itti et al. have maintained that visual attention
is saliency-dependent [2]. According to the saliency model
proposed in [2], Lee et al. have developed a computational
model of mesh saliency [3]. It can capture the visually in-
terested regions on a mesh. They have used saliency map
successfully in mesh simplification and viewpoint selection.

Masking is a robust perceptual phenomenon and has

Manuscript received December 5, 2011.
"The author is with the Department of Mathematics, Harbin
Institute of Technology, No.92, West Da-Zhi Street, Harbin, China.
""The authors are with the School of Computer Science and
Technology, Harbin Institute of Technology, No.92, West Da-Zhi
Street, Harbin, China.

*This work is supported by the National Natural Science Foun-
dation of China (Project Number: 60832010, 61100187), the Fun-
damental Research Funds for the Central Universities (Grant No.
HIT. NSRIF. 2010046).

a) E-mail: szf@hit.edu.cn
b) E-mail: liyang.yu@ict.hit.edu.cn
¢) E-mail: ahmed_rahiem @yahoo.com
d) E-mail: xm.niu@hit.edu.cn
DOI: 10.1587/transinf. E95.D.2585

been studied by physiologists and psychologists for many
years [4]. The Visible Difference Predictor (VDP), as a com-
plex numerical models relying on some psychophysical and
physiological evidences like the masking effect, has devel-
oped by Daly [5]. In the field of computer graphics, to mea-
sure the quality of a watermarked mesh, Corsini et al. [6]
propose a perceptual metric based on global roughness vari-
ation. Lavoué has developed a computational model linked
with the concept of visual masking and named it as mesh
roughness [7]. This concept of roughness is quite relevant
to 3D perception.

The theories of topological perception and global
precedence developed by Navon [8] indicate that global per-
ception is prior to local perception. Recently, some experi-
ments conducted by Chen et al. [9] have been approved by
many researchers in the field of cognition. Skeleton of 3D
object can describe the topological feature and visual shape.
Topological perception might benefit from the technology
of skeleton extraction. Oscar et al.[10] present a simple
and robust geometric contraction method which works di-
rectly on the mesh domain. Inspired by the work [10], Cao
et al.[11] use Laplacian-based contraction to successfully
extract a curve skeleton. Other comprehensive survey of
curve-skeleton extraction is presented in [12].

Our goal in this paper is to bring multiple mechanism
of HVS to a unified perceptual model and apply it to 3D ob-
ject general-purpose processing. Mesh saliency and rough-
ness belong to local perception because they only model the
stimuli from local window or region. According to the the-
ory of topological perception, our goal is to integrate the
skeleton with mesh saliency and roughness. Here, skele-
ton is used to modulate the final visual perception property
composed of saliency and roughness features. Viewpoint se-
lection application will be used to validate the effectiveness
of the proposed unified perception model in this paper.

2. Skeleton Modulated Topological Perception Map
2.1 Algorithm Overview

In this paper, we present a novel robust visual perception
map named as Skeleton Modulated Topological Perceptual
Model (SMTPM) for 3D object processing. In order to un-
derstand the scheme more clearly, we overview it system-
atically. Figure 1 illustrates the workflow of our proposed
SMTPM.

Firstly, curvature estimation. Based on Normal Cy-
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Fig.1  Overview of our proposed scheme.

cle[13], we implement the estimation of curvature tensor
as [7] for each vertex of the mesh. Then, we extract the
principal curvature values kmin and kmax.

Secondly, saliency and roughness computation. Based
on the framework of computational model of mesh
saliency [3], we use the mean curvature generated from cur-
vature estimation as a substitute for Taubin mean curva-
ture [3], then the mesh saliency is computed. Mesh rough-
ness estimation is the same as [7].

Thirdly, skeletonisation map computation. We imple-
ment the skeleton extraction based on iterative contraction
presented by Oscar et al. [10] and Cao et al. [11]. Based on
the skeleton, we compute the shortest distance from each
vertex of mesh to the skeleton.

Finally, feature map fusion. We use a new fusion style
based on three maps (mesh saliency, mesh roughness and
mesh skeletonisation) to define the SMTPM.

2.2 Skeletonisation Map Computation

Let the final curve-skeleton of M, with N vertices V =
{vilv; € R3,1 < i < N}be S = Skel (M), then contraction
based curve-skeleton extraction aims to design transforma-
tion C for extracting the skeleton quickly. Laplacian-based
contraction provide a rapid and effective transformation for
extracting a final curve-skeleton. In this paper, we use the
Laplacian-based contraction described in [11].

For any vertex v; € V, we use Eq. (1) to denote the
minimal distance from the jth new contracted position v(’)
to the final curve-skeleton.

4 = m1n{| D _ ptl v € S = Skel (Mo)} )
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where j = 0,1,2,---. During the extraction of curve-
skeleton, the distance series {d@/)} of vertex v; can be ob-

tained. We map {d(j)} to the corresponding vertices of the

original mesh. In thls paper, we use the original mesh to
calculate the minimal distance and define the skeletonisa-
tion map.

2.3 Definition of the SMTPM

Mesh saliency and mesh roughness mainly focus on features
of local regions and can not well illustrate the global topo-
logical perception of 3D object. Mesh skeleton describes the
main information of the overall topological shape and visual
shape. Therefore, we incorporate them together into a new
perception map for 3D object processing.

Let S, R and B be the saliency map, roughness map and
skeletonisation map of a 3D mesh M respectively. Supposed
that mesh M has N vertices V = {v;|v; € R3,1 < i < N}. We
first normalize each map to unit interval [0, 1] and use S (v;),
R (v;) and B (v;) to denote each perceptual feature of vertex v;
respectively. Then, the final skeleton modulated topological
perception of each vertex v; is defined as the Eq. (2):

SMTP (v;)
= ((1 - B(v)) * S () + B () * R(w)")"*, 2)

where «a is greater than zero.
3. SMTPM Based Rapid Viewpoint Selection
3.1 Definition of the Best and Worst Viewpoint

The term good view in computer graphics is difficult to de-
fine precisely. Up to now, there is no consensus about what
a good viewpoint is. However, it seems that the best view-
point is the one that obtains the maximum information of a
scene. Therefore, a good viewpoint must help user to cap-
ture as much information of the object or scene represented
as possible.

In this paper, we develop a method for automatically
selecting a good viewpoint so as to maximize the sum of fea-
tures of visible regions of the object according to SMTPM.
For a given viewpoint vp, supposed that F (vp) is the set of
vertices visible from vp, and SMTPM is the feature map of
3D mesh. Then, we compute the sum of visible SMTPM
from vp as: SMTPM g (0p) = Xper(up) SMTPM (v).

Then, the best viewpoint vp;,s; and the worst viewpoint
UPuwors: satisfy Eq. (3):

SMTPM,, (Upbest) =argmax {SMTPM,, (UP)}

vp
SMTPMup, (0Puorsy) =arg min (SMTPMyup, 0p)) ©)

vp
3.2 Tterative Subdivision Based Rapid Viewpoint Selec-
tion

In this paper, we design an iterative based stepwise refine-
ment method to help us select the best and worst viewpoints
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Fig.2  Loop subdivision stencil based iterative viewpoint selection.

rapidly. The following illustrates the algorithm of the best
viewpoint selection. It is similar to the worst case.

Firstly, we sample some vertices over viewpoint space.

Secondly, we compute the best viewpoint from the N
initial viewpoints. The final best viewpoint might be located
in the 1-ring neighbor region N, if the v, vertex is the best
viewpoint for all N initial viewpoints.

Thirdly, we subdivide each of the neighbor triangles in
N,, into four sub-triangles. Each newly generated vertex can
be achieved by using Loop subdivision stencil [14].

Fourthly, we use N, to denote the new 1-ring neighbors
which are composed of those new vertices. The SMTPM
value of each new vertex in N, is computed. If the SMTPM
values of all vertices are less than vy, we can take vy as the
new maximum iterative viewpoint. Otherwise, we take v;
with the maximum SMTPM as the new viewpoint vy de-
scribed in the second step. Figure 2 shows the subdivision
rules and the iterative viewpoint selection principles used in
the third and the fourth steps.

Finally, let the current best viewpoint be the ver-
tex vp®, and the next possible best viewpoint is
vp®*D. The final best viewpoint can be obtained and
the recursive iterative subdivision operation can stop if

|SMTPMmm (Up(k)) - SMTPM ,,, (vp(k+1))| < &, where ¢ is
an interactive control precision.

4. Experimental Results and Analysis
4.1 Skeleton Modulated Topological Perception Map

In this paper, we use skeletonisation map as a topological
perception expression to modulate the whole visual percep-
tion information. Based on the skeleton extraction work by
[11], Fig. 3 shows the SMTPM and skeleton for 3D objects:
dinosaur and venus. The SMTPM provides much important
visual perception information for 3D mesh. For all experi-
ments in this paper, we configure the same & as suggested in
[3] and the same local window size r as mentioned in [7], the
parameter @ = 3.0 is selected for Eq. (2). We can conclude
that the salient and rough region is retained while these three
feature maps are integrated together. Therefore, the visual
attention and visual masking mechanism are well modeled
with our proposed scheme. Figure 3 demonstrates that the

Saliency Roughness

Fig.3  Different Maps for 3D meshes: dinosaur (5025 vertices).

(a) Saliency based (b) SMTPM based

¢ ]

(c) SMTPM based (d) SMTPM based

Fig.4 The wireframe mesh around each model shows the magnitude of
the visible saliency or SMTPM sum when we see it from each direction.

SMTPM is effective for describing human visual perception
information.

4.2 The Best Viewpoint Selection

To validate SMTPM for viewpoint selection, we implement
mesh saliency and salient viewpoint selection presented in
[3]. We only show the best viewpoint selection in this pa-
per. Figure 4 shows the magnitude of the visible saliency
and the SMTPM sum when we see it from each direction.
The warmer colors(reds and yellows) in Fig. 4 show that we
can capture more visual perceptual information from these
viewpoints. On the contrary, the cooler colors(greens and
blues) show that we can obtain less information when locat-
ing viewpoint at these vertices.

In order to further compare the saliency based with the
SMTPM based viewpoint selection clearly, Fig. 5 illustrates
the best viewpoint for 3D objects: dinosaur (5026 vertices),
rock-arm (10000 vertices) and venus (33591 vertices). The
first row shows the results of best viewpoint selected from
mesh saliency [3] and the second row is the results based on
SMPTM. Obviously, SMTPM based best viewpoint is more
effective than the saliency based. In Fig. 5, the stomach of
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Tablel Processing time of saliency based and SMTPM based best view-
point selection. (Unit: second)

3D Model | Rocker | Venus | Horse | Dinosaur | Armadillo
#verts 10K 33K 48K 56K 172K
Saliency 13.2 46.5 65.1 81.3 241.7
SMTPM 5.3 17.6 28.2 36.7 102.5

dinosaur is occluded by the front left leg in saliency based
best viewpoint, but SMTPM based best viewpoint is not the
same. The right eye of dinosaur has almost the same salient
feature as the left one and the right stomach has more rough
regions than the left according to [7]. Therefore, SMTPM
based best viewpoint provide more visual perception infor-
mation than saliency based. For venus object, there are two
important scars on the lower jaw, Saliency based viewpoint
cannot provide the two important visual information, but
SMTPM based viewpoint can well capture them and pro-
vide almost the whole front face for observers. Therefore,
we can conclude that SMTPM based viewpoint selection has
the capability of providing more visual perception informa-
tion as far as possible.

4.3 Runtime Analysis for Rapid Viewpoint Selection

We conduct experiments for selecting the best viewpoint
with Loop subdivision stencil based iterative decision in or-
der to demonstrate the efficiency of our algorithm. The time
to compute the best viewpoint depends on the initial view-
points set. One triangulated 3D cube bounding box with
eight vertices is used as the initial viewpoints to be selected.
The threshold of stopping iteration is 0.1. We can conclude
that the proposed rapid viewpoint selection scheme is very
efficient. Table 1 details the processing times for different
3D meshes on 2.2 GHz Pentium PC with double kernel and
4 GB RAM.

5. Conclusions and Future Research

This paper presents a new visual perception map
named Skeleton Modulated Topological Perception Map
(SMTPM). Based on mesh saliency and mesh roughness,
the SMTPM integrate the two important visual perception
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information with the weight of skeletonisation map. Our
proposed scheme can capture richer visual perception infor-
mation than saliency map. A new rapid viewpoint selec-
tion based iterative decision using Loop subdivision stencil
is also presented. Benefit from the SMTPM and the rapid
iterative subdivision stencil, the best and worst viewpoint
are accurately selected. Experimental results demonstrate
the efficiency and effectiveness of our scheme. We can also
apply the SMTPM to other 3D object processing, such as
mesh simplification, mesh segmentation, mesh content au-
thentication.
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