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Sparsity Preserving Embedding with Manifold Learning and
Discriminant Analysis

Qian LIU†,††, Student Member, Chao LAN†, Xiao Yuan JING†,†††a), Shi Qiang GAO†, David ZHANG††††,
and Jing Yu YANG†††††, Nonmembers

SUMMARY In the past few years, discriminant analysis and manifold
learning have been widely used in feature extraction. Recently, the sparse
representation technique has advanced the development of pattern recog-
nition. In this paper, we combine both discriminant analysis and manifold
learning with sparse representation technique and propose a novel feature
extraction approach named sparsity preserving embedding with manifold
learning and discriminant analysis. It seeks an embedded space, where not
only the sparse reconstructive relations among original samples are pre-
served, but also the manifold and discriminant information of both original
sample set and the corresponding reconstructed sample set is maintained.
Experimental results on the public AR and FERET face databases show that
our approach outperforms relevant methods in recognition performance.
key words: sparsity preserving embedding, manifold learning, discrimi-
nant analysis, feature extraction

1. Introduction

In the literature of image recognition, feature extraction
plays an important role and has been extensively studied.
Typical feature extraction methods include principle com-
ponent analysis (PCA) [1] and linear discriminant analysis
(LDA) [2]. PCA seeks a projective space where the data
variety is maximally preserved; LDA takes the class infor-
mation into consideration and looks for a linear embedded
space where the separability of inter-class samples is max-
imized and the separability of intra-class samples is mini-
mized.

Manifold learning, with its successful applications in
feature extraction, has attracted broad research interests. It
tends to preserve the manifold structure of a given data set
in a low-dimensional embedded subspace. Typical man-
ifold learning methods include locally linear embedding
(LLE) [3], Laplacian eigenmaps [4], locality preserving pro-
jection (LPP) [5] and neighborhood preserving embedding
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(NPE) [6]. Specially, LPP seeks a linear embedded space
where local neighbor relations of samples can be preserved,
while NPE looks for an embedded space where reconstruc-
tive relations of samples by their k nearest neighbors can
be preserved. All above manifold learning methods are un-
supervised, which do not consider the class label informa-
tion while training. To take advantage of the class separabil-
ity, some supervised manifold learning methods, which in-
corporate discriminant analysis, have been presented, such
as local discriminant embedding (LDE) [7], locally dis-
criminating projection (LDP) [8] and marginal fisher anal-
ysis (MFA) [9]. Particularly, LDE maintains the intrinsic
neighbor relations of intra-class samples by setting affinity
weights. MFA constructs an intra-class compactness graph
and an inter-class separability graph based on the available
class label information.

Recently, the sparse representation technique has ad-
vanced the development of pattern recognition. It shows that
one sample can be sparsely recovered by the others. Based
on this idea, sparsity preserving projections (SPP) [10] is
developed for feature extraction, which aims at preserv-
ing the sparse reconstructive relations among samples in a
low-dimensional subspace by minimizing the distance be-
tween sparsely reconstructed samples and their correspond-
ing original samples.

Enlightened by above works, in this paper, we com-
bine both manifold learning and discriminant analysis with
sparse representation technique and propose a novel fea-
ture extraction approach named sparsity preserving em-
bedding with manifold learning and discriminant analysis,
which aims at both preserving the sparse reconstructive re-
lations among original samples and maintaining the mani-
fold and discriminant information of original samples and
sparsely reconstructed samples. This aim is computation-
ally achieved in two ways. On the one hand, we minimize
the distance between sparsely reconstructed samples and
their corresponding original samples as SPP does; on the
other hand, providing that inter-class samples lie on differ-
ent sub-manifolds while intra-class samples lie on the same
sub-manifold, for each sparsely reconstructed sample, we
minimizes its distance from the intra-class original samples
and simultaneously maximizes its distance from the inter-
class original samples. Experiments on the AR [11] and
FERET [12] face databases validate the effectiveness of our
approach.
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2. Sparsity Preserving Embedding with Manifold
Learning and Discriminant Analysis

SPP merely preserves the sparse reconstructive relations
among original samples, but does not study the manifold
structure of the data set. In this section, we investigate
sparse reconstructive relations, manifold structure and dis-
criminant information in dimension reduction simultane-
ously.

Suppose that X = [x1, x2, . . . , xN] is the original sample
set of size N, where xi is the ith sample. According to the
sparse representation technique, xi can be linearly recovered
by the rest N − 1 samples as

xi = ai1x1 + ai2x2 + · · · + 0 · xi + · · · + aiN xN , (1)

where ai j indicates the sparse reconstructive coefficient as-
sociated with the jth sample for xi. Note that aii = 0, indicat-
ing that xi does not contribute to the sparse reconstruction of
itself. Let ai = [ai1, ai2, · · · , aiN]T , and it is expected to have
as few nonzero entries as possible in order to be sparse. The
sparse representation technique calculates ai by

min ‖ai‖0, s.t. xi = Xai . (2)

However, solving Formula (2) has proved an NP-hard prob-
lem, and in our approach, we use an approximate L1-norm
optimization problem [10] to calculate {ai}Ni=1, which is

min ‖ai‖1, s.t. ‖xi − Xai‖2 < ε, ET ai = 1 , (3)

where ε is used to control the reconstructive error, E ∈ RN

is a vector of all ones. Let A = [a1, a2, · · · , aN]. The overall
sparsely reconstructed sample set X′ can be calculated by

X′ = XA . (4)

Let yi denote the class label of xi. We define the inter-
class weight matrix Hb =

[
Hb

i j

]
N×N

and intra-class weight

matrix Hw =
[
Hw

i j

]
N×N

as follows:

Hb
i j =

{
exp(−∥∥∥xi − x j

∥∥∥2/t), if yi � y j

0, otherwise
(5)

and

Hw
i j =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
exp(−∥∥∥xi − x j

∥∥∥2/t), if yi = y j

and i � j ,
0, otherwise

(6)

where t is a parameter and it is usually set as the variance
of the overall sample set. Then, we define the distance S b

between reconstructed samples and their inter-class original
samples, and the distance S w between reconstructed sam-
ples and their intra-class original samples as follows:

S b =

N∑
i=1

N∑
j=1

∥∥∥x j − Xai

∥∥∥2Hb
i j (7)

and

S w =

N∑
i=1

N∑
j=1

∥∥∥x j − Xai

∥∥∥2Hw
i j . (8)

The sparse reconstructive relations among original
samples are evaluated by the total reconstructive errors de-
fined below:

E =
N∑

i=1

‖xi − Xai‖2 . (9)

Equations (8) and (9) can be written in a unified form, i.e.,

S =
N∑

i=1

N∑
j=1

∥∥∥x j − Xai

∥∥∥2Hi j , (10)

where

Hi j =

{
exp(−∥∥∥xi − x j

∥∥∥2/t), if yi = y j

0, otherwise .
(11)

Based on Formulas (7) and (10), we build our objective
function that maximizes S b and simultaneously minimizes
S in the feature space as follows:

max
v

vT S bv
vT S v

, (12)

where v is the projective vector. S b can be rewritten in a
matrix form as

S b =

N∑
i=1

N∑
j=1

∥∥∥x j − Xai

∥∥∥2Hb
i j

=

N∑
i=1

N∑
j=1

(x j − Xai)(x j − Xai)
T Hb

i j

=

N∑
j=1

x j(
N∑

i=1

Hb
i j)xT

j − XHb(XA)T ,

−(XA)HbXT +

N∑
i=1

(Xai)(
N∑

j=1

Hb
i j)(Xai)

T

= X(Db − HbAT − AHb + ADbAT )XT (13)

and S can be rewritten in a matrix form as

S =
N∑

i=1

N∑
j=1

∥∥∥x j − Xai

∥∥∥2Hi j

= X(D − HAT − AH + ADAT )XT , (14)

where H = [Hi j]N×N , D = diag{Dii}N×N and Db =

diag{Db
ii}N×N are two diagonal matrices, Dii =

N∑
j=1

Hi j and

Db
ii =

N∑
j=1

Hb
i j. By using the Lagrange multiplier method, the

optimal solution is the eigenvector of matrix S −1S b associ-
ated with the largest eigenvalue.

The algorithm of our approach is summarized in Fig. 1.
For simplicity, we assume that sparse reconstructive coeffi-
cient matrix A has been obtained.
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Fig. 1 Algorithm of our approach.

3. Experiments

3.1 Introduction of Databases

The AR face database [11] contains 119 individuals, each 26
images with cropped size 60×60. All image samples of one
subject are shown in Fig. 2. In order to effectively evaluate
the impact of different variations to the recognition results,
we in turn choose the following 2-10 representative images
of every subject as training samples: (1), (14), (2), (5), (8),
(11), (17), (19), (23) and (25), and use the remainders as
testing samples.

The FERET database [12] includes 14126 facial im-
ages from 1199 individuals, which were captured under var-
ious illuminations, facial expressions and pose angles. We
adopt the CSU Face Identification Evaluation System [13] to
preprocess the full-frontal facial images and test the recogni-
tion performance of our approach. This system follows the
FERET test procedure for semi-automatic face recognition
algorithms [12] with slight modifications. All preprocessed
images of one subject are shown in Fig. 3. Each image is
cropped to 130 × 150. In our experiments, we choose the
standard training subset for training, and use the gallery and
dup1 probe sets for testing.

3.2 Recognition Performance Evaluation

We compare the recognition performance of our approach
with several related methods, including discriminant analy-
sis method LDA [2], unsupervised manifold learning meth-
ods LPP [5] and NPE [6], supervised manifold learning
methods LDE [7] and MFA [9], and sparsity preserving
method SPP [10]. For the related manifold learning meth-
ods, the number of nearest neighbors (k) is determined by
the values that can yield the best recognition results. In all
compared methods, we first perform PCA on the data to re-
duce dimension and avoid the singularity problem of the in-
verse matrix, and lastly use the nearest neighbor classifier
to do classification. The number of PCA dimensions in all
compared methods is N − C, where N is the number of all
training samples, and C is the class number of the sample
set. For all compared methods, the number of feature di-
mensions is determined by the values that can yield the best

Fig. 2 Demo images of one subject in AR database.

Fig. 3 Demo images of one subject in FERET database.

Fig. 4 Recognition rates versus different feature dimension numbers on
AR database.

Table 1 Feature dimension numbers with corresponding recognition
rates and average recognition rates of all compared methods on AR
database.

Method Feature dimension number Average recognition
(Recognition rate (%)) rate (%)

LDA 110 (77.56) 78.62
LPP 80 (77.01) 78.63
NPE 100 (81.73) 80.47
LDE 80 (82.42) 80.18
MFA 90 (82.70) 80.43
SPP 560 (81.76) 80.49
Ours 230 (85.50) 83.74

recognition results.
Figure 4 shows the recognition rates of all compared

methods versus different feature dimension numbers on the
AR database, where the number of training samples per
class is fixed to 6. Table 1 shows the final chosen feature
dimension numbers. Figure 5 shows the recognition rates
of all compared methods versus different training sample
numbers per class on the AR face database. According to
Fig. 5, the average recognition rates are shown in Table 1.
Compared with LDA, LPP, NPE, LDE, MFA and SPP, our
approach boosts the average recognition rates at least by
3.25% (= 83.74%-80.49%) on the AR database. Figure 6
shows the standard cumulative match curves of all compared
methods on the FERET database. From Fig. 5, Table 1 and
Fig. 6, we can see that our approach generally achieves the
highest recognition results.
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Fig. 5 Recognition rates versus different training sample numbers per
class on AR database.

Fig. 6 Standard cumulative match curves on FERET database.

4. Conclusions

In this paper, we propose a novel feature extraction method
named sparsity preserving embedding with manifold learn-
ing and discriminant analysis, which aims at both preserv-
ing the sparse reconstructive relations among original sam-
ples and maintaining the manifold and discriminant infor-
mation of original samples and sparsely reconstructed sam-
ples. Computationally, our approach reconstructs each sam-
ple by a sparse linear representation of the other samples
and obtains the sparsely reconstructed sample set. Then, it
minimizes the distance between sparsely reconstructed sam-
ples and their corresponding original samples in the embed-
ded space. In order to maintaining the manifold and dis-
criminant information, for each sparsely reconstructed sam-
ple, our approach minimizes its distance from the intra-class
original samples and simultaneously maximizes its distance
from the inter-class original samples. Experimental results
on the AR and FERET face databases show that, compared

with LDA, LPP, NPE, MFA, LDE and SPP, our approach
achieves the best recognition performance.
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