
2750
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.12 DECEMBER 2012

PAPER Special Section on Parallel and Distributed Computing and Networking

Parallel Dynamic Cloud Rendering Method Based on Physical
Cellular Automata Model

Liqiang ZHANG†a), Member, Chao LI††, Nonmember, Haoliang SUN††, Member, Changwen ZHENG†,
and Pin LV†, Nonmembers

SUMMARY Due to the complicated composition of cloud and its disor-
dered transformation, the rendering of cloud does not perfectly meet actual
prospect by current methods. Based on physical characteristics of cloud, a
physical cellular automata model of Dynamic cloud is designed according
to intrinsic factor of cloud, which describes the rules of hydro-movement,
deposition and accumulation and diffusion. Then a parallel computing ar-
chitecture is designed to compute the large-scale data set required by the
rendering of dynamical cloud, and a GPU-based ray-casting algorithm is
implemented to render the cloud volume data. The experiment shows that
cloud rendering method based on physical cellular automata model is very
efficient and able to adequately exhibit the detail of cloud.
key words: cellular automata model, dynamic cloud, ray-casting, GPU
computing

1. Introduction

Real-time cloud rendering and simulation is an important
research area in computer graphics research. It can boost
up the user’s immersion and reality in the field such as air-
craft view scene simulation, large spatial war simulation and
movie cartoon, thus efficient and realistic cloud render has a
broad prospect in practical applications.

For the complicated composition of cloud and its dis-
ordered transformation, it is a challenge to render the cloud
in real time. Dobashi [1], [2] and Miyazaki [3] proposed a
method to conduct real-time rendering the cloud with the
dynamic produced imposter and octree. This method uses
the intersection of the current viewpoint and the octree to
determine the texture casting object. When the viewpoint
is moving, most of the objects are reserved and the time
used to produce new imposter object is saved. Ren Wei [4]
proposed a method with updating strategy based on grid ele-
ment, which combined the technology of volume rendering
and imposter. A cloud texture object queue is constructed,
and the objects in the limited view scope and distance are
selected from the queue and rendered. These methods use
the texture instead of the actual cloud unit to achieve high
efficiency. However, there are three main disadvantages
presented in the methods: First, when the simulation scale
increases, massive texture objects are generated which de-
crease the efficiency of real-time rendering; second, with

Manuscript received January 9, 2012.
Manuscript revised June 14, 2012.
†The authors are with Institute of Software of Chinese

Academy of Science, China.
††The authors are with Graduate University of Chinese

Academy of Sciences, China.
a) E-mail: zlqiang@163.com

DOI: 10.1587/transinf.E95.D.2750

movement speed of viewpoint being fast, the rendering FPS
will become unstable, which partly affects the rendering flu-
ency. Third, the ceaseless attenuation bound with time can’t
be realistic rendered by these methods because the texture
of cloud is static.

Liu [5] proposed a novel simulation method in which
the equations of motion was solved in a lower resolution
of the grid to obtain the velocity field, then drifting noise
texture is generated to increase the cloud surface detail,
and GPGPU (General-Purpose computing on Graphics Pro-
cessing Units) method is employed to accelerate render-
ing speed. Wang [6] used human-computer interaction, to
roughly set bounding box of cloud by giving its shape and
size, and set the attitude of the bound box to adjust the face
direction of cloud, then adjust the number of the cloud par-
ticles in the box to get corresponding density of the cloud.
Neyret [7] uses some heuristic rules to simulate convection
features of cirrocumulus convolution effects. The above
methods can acquire desired effect of cloud. However, as
little modeling elements are considered, the rendering per-
formance of realistic effect is weak, and due to the prede-
fined shape of the dynamic cloud, users need many trials of
selecting parameters to get the desired one, which limits the
practical application of the algorithm. In addition, rendering
the scene with lighting effects doesn’t consider the physical
characteristics; therefore, they cannot simulate the high spot
reflection phenomenon and the high beam effect during light
transmission in the cloud.

In recent years, with the rapid development of graph-
ics hardware, some researchers have proposed the usage of
graphics hardware to accelerate solving the Navier-Stokes
(hereinafter referred as N-S) equations to generate the dy-
namic effect of cloud simulation, and the representative
method, proposed by Harris et al [8], is implemented by
combination 3D textures and 2D texture. This method
presents bottlenecks in stratospheric cloud computing, and
the resolution of adopted textures is low. There are some
numerical solutions of hydrodynamic equations [9]–[11] to
achieve three-dimensional cloud simulations. However, the
time complexity of those methods is high, and the algorithm
has some limitations on simulation effect, as it can only sim-
ulate the higher viscosity of cloud, such as rain clouds and
thunder, for some other types of clouds, such as spread and
cohesive, fluid accumulation process of cirrocumulus and
altocumulus which does not meet the characteristics of fluid
cloud, are not well simulated.

Copyright c© 2012 The Institute of Electronics, Information and Communication Engineers



ZHANG et al.: PARALLEL DYNAMIC CLOUD RENDERING METHOD BASED ON PHYSICAL CELLULAR AUTOMATA MODEL
2751

Dobashi [1] first proposed a cellular automata-based
modeling of dynamic cloud, the method uses three Boolean
variables for humidity, cloud and change factors to represent
the cloud state property, and it defines a Boolean operation
to simulate the growth of cloud, the cloud particles disap-
pear and wind shift motion (i.e. three physical processes).
The approach is focused on the simulated beam transmis-
sion phenomena in the cloud and cloud shadow, demands
little on cloud detail character, and so adopts relatively sim-
ple rules of Boolean operations, but it is difficult to simu-
late for complex cloud movement change. Eric [12] adopt
the modeling method of Dobashi [1], by combining real pic-
ture to enhance and complement rendering technology in the
rendering stage. But as the model used didn’t get out of the
Dobashi’s design restriction, the growth of cloud can be sim-
ulated, however not realistically.

We proposed the method of modeling the changing
process of the cloud based on its physical characteristics,
then via concept of cellular automata, dynamic cloud model
can be defined as a dynamical system which evolutes in the
discrete time dimension in accordance with local rules. As
the key element of cellular automata system, three cellular
evolution rules is modeled as fluid dynamics, deposition and
accumulation, diffusion and aggregation.

Based on above, physics-based cellular automata
model is adopted to simulate the dynamic cloud in three
steps: First, we define cell, cell space and cell neighbors;
then, cellular change rules, including fluid movement rules,
sedimentation and accumulation rules, cohesion and prolif-
eration rules are analyzed and modeled. Finally the render-
ing process using light projection method renders the data
that have been generated. Experiments show that the method
has high flexibility, can take high realistic simulation effect
on all types of clouds, and the algorithm has high rendering
efficiency due to the parallel computing architecture.

2. Cloud Physical Cellular Automata Model

The cloud in the atmosphere consists of a large number of
small drops, which iterative with each other. The evolution
process is too complex to be described by a single mathe-
matical model. Early research pursues the visual approx-
imation, not considering its inherent physical laws. Then
more and more studies based on physical methods, which
can be mainly divided into two categories: The first cate-
gory was the Euler method, which studied the movement of
fluid from the space occupied by the various fixed points,
and analyzed pressure, density and other parameters chang-
ing over time. The second category is called Lagrangian
method, which analyzed the fluid from the view of each
micro-cell, and the state transforming when a fluid micelle
moves to other ones, which can be consider as a particle-
based method [13]. The existing methods cannot well simu-
late clouds’ chaotic motion process. Cellular automata [14]
is a discrete time and space dynamical system, which can
simulate complex natural evolution, and the chaotic state in
it and attractor phenomenon.

Fig. 1 Changing process of cloud micelle.

Cloud particles are generated in the process of life, in-
tegrating of diffusion and attenuation, which is related with
the temperature, humidity, force field and other environmen-
tal conditions. When the body of cloud goes up for the
buoyancy, cloud particles break up at certain probability. In
the division process, splitting speed of the cloud particles is
slow when the density of cloud micelle is large. After the
splitting the cloud particles occupy more space [15]. On the
contrary the larger quality of light cloud particles, the faster
it splits, as Fig. 1 (a) shows. Cloud will drifts under the ac-
tion of the wind effect, as Fig. 1 (b), (c). Then with time ad-
vanced and their own movement, the cloud particles are con-
tinuously generated and dispersing as shown in Fig. 1 (d).
Based on the above, this modeling of the cloud takes into
account three aspects as fluid dynamics, deposition and ac-
cumulation, diffusion and aggregation. These three aspects
are modeled as evolution rules in cellular automata model.

Other than evolution rules, cellular automata consist of
basic part of cell state set, cell space and cell neighbors. We
map the cloud particles to cellular automata cell, and map
the movement of particles dynamics, deposition and accu-
mulation, diffusion and aggregation process to a variety of
rules. Then based on concept of cellular automata, dynamic
cloud model can be defined as a dynamical system which
evolutes in the discrete time dimension in accordance with
certain local rules, which consists of cellular automata with
finite state in cellular space, and in accordance with certain
local rules, the time dimension in the evolution of discrete
dynamical systems.

Cell state set is an essential element of cellular au-
tomata, which stores the state of the change process. Cell
state set is a discrete set. In the simplest case, each cell can
have two states 0 and 1. In complex cases, the cell may
have a number of different state variables, including loca-
tion pos, size r, speed v, acceleration a and effect range ra.
The pos represents the position of the cell, and it is related
to the local evolution rules. The size r represents the radius
of the cell, and it’s value is determined by the process of ac-
cumulation, sedimentation, diffusion and aggregation. It’s
important in the rendering phase for contributing the den-
sity of cloud. The moving speed v and acceleration a are the
key state in fluid dynamics process.

Cellular space is discretized in each dimension to form
a space grid collection. The state of the environment param-
eters in cellular space contains: pressure, concentration and
humidity parameters. The whole target space is discretized
at three dimensions. The pressure, concentration and hu-
midity parameters are attributes of the discretized space grid



2752
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.12 DECEMBER 2012

to provide the environment parameters for the cellular au-
tomata motion.

Neighbor cells are the adjacent ones to itself, gener-
ally referring to cell which can have the impact to it. Takes
two dimensional cellular automata for example, there are
some traditional form of neighbor cell, as von Neumann
type, Moore type, expansion of Moore type [14]. Consid-
ering cloud cell is in the three-dimensional space, in our
model the two-dimensional neighbors’ cell type extends
three-dimension. We adopt the extension neighbor type of
von Neumann for three dimensions.

According to the current state of its neighbor cell and
the cellular space environmental parameters to determine
the cell’s next state, in which the transfer function of this
state changing constitutes the cell’s rules. The transfer func-
tion integrates all the possible states per cell and the cell’s
state of transformation rules, and constructs local evolution
model in the space and time dimension. As a dynamic sys-
tem, the cellular automata’s change in the time dimension
is discrete and continuous. The movement of the cloud cell
has the characteristics of incompressible fluid [16], and also
has the cohesive and diffusion effects and precipitation and
accumulation in the evolution of cellular, thus we define the
evolution rules of cloud cellular automata, including fluid
dynamical movement, deposition and accumulation and dif-
fusion and aggregation as follow.

2.1 Cellular Automata Fluid Movement Rule

Cellular automata’s movement in the space meets the basic
law described by the N-S equations:

∂u
∂t
= −(u · ∇)u + ν∇2u − 1

ρ
∇P + f (1)

Where u is the fluid velocity vector, ν is the fluid dynamic
viscosity, ρ is the fluid density, P represents the pressure
term, and f is the force applied to the fluid. The equation
for the momentum conservation equation, deduced by the
Newton’s second law, also meets the fluid mass conservation
equation as ∇ · u = 0.

Stam [16] divided change process of fluid state into
three sub processes according to the N-S equations as force,
advection, diffusion and projection process:

w0(pos)→w1(pos)→w2(pos)→w3(pos)→w4(pos)

Here, w0 ∼ w4 represent the cell velocity field in the four
processes respectively.

In the action of external forces, the velocity field of
cellular automata changes in this manner:

w1(pos) = w0(pos) + f × Δt (2)

Where pos represents the cell position, f is the external
forces vector field such as wind force and buoyancy, after
a time increment Δt, the velocity field changes from w0 to
w1.

State inverse deducing method is adopted to get veloc-
ity field results of advection process:

w2(post) = w1(post−Δt) (3)

Influence on the cell’s state is not calculated by deducing
directly from the time t to t + Δt, but by tracing each grid
cell’s track, to get the location of cellular state at time t−Δt,
and then replacing the current state of cell with it.

Viscous diffusion partial differential equation which
represents process of diffusion is:

∂w2

∂t
= v∇2w2 (4)

Where v is the fluid viscosity. Implicit integration method is
used to solve this equation:

u(x, t) = u(x, t + Δt) − Δt · v∇2u(x, t + Δt) (5)

This equation is Poisson equation, which requires multi-
ple iterations to get approximate result. Foter and Metaxas
use relaxation iteration method to solve these equations, but
it has the poor convergence of iterative, and needs many
iteration times. Here, we adopt SOR (Successive Over-
Relaxation) method which is a variant of the Gauss-Seidel
method for solving a linear system of equations, resulting in
fast convergence, to solve these equations to exhibit cloud
detail accurately:

X(k+1)
i = X(k)

i + ω

⎛⎜⎜⎜⎜⎜⎜⎝bi −
i−1∑
j=1

ai jX
(k+1)
j −

n∑
j=i+1

ai jX
(k)
j

⎞⎟⎟⎟⎟⎟⎟⎠ /aii,

(6)

Xk+1
i is the k+1 root for i− th iteration, and we set relaxation

factor ω to 1.5. We can see that the equation solver for SOR
method is suitable for parallel calculations of cell automata
updates.

After the calculation of the above three processes, we
get the velocity field with divergence w3. According to the
mass conservation constraint ∇·u = 0 for N-S equations, the
movement of fluid must meet the energy conservation law.
Divergence of the velocity field has to be eliminated, that is,
the projection process of cellular automata movement:

w4 = w3 − ∇2q (7)

w4 is the destination field and has zero divergence. Accord-
ing to the Helmholtz-Hodge decomposition theorem we can
get the scalar field q by ∇2q = ∇ · w3. Then we can see that
this equation is another Poisson equation, which can also be
solved by Eq. (6).

2.2 Cellular Automata Accumulation and Sedimentation
Rule

In the case of cumulus and nimbostratus, the cloud has sed-
imentation accumulation behavior which can be described
by cellular automata sand pile model [17]. One cellular cell
is represented by a grain of sand. With a grain of sand be-
low the sand, there is one sand on its bottom left and right
sides (Fig. 2 left), the sand is stable. In the other side, it will



ZHANG et al.: PARALLEL DYNAMIC CLOUD RENDERING METHOD BASED ON PHYSICAL CELLULAR AUTOMATA MODEL
2753

Fig. 2 Cellular automata sand pile model.

turn into other states at a certain probability (Fig. 2 middle).
The sand will be converted from state 1 to state 2 with prob-
ability Pr, or with to another state3 with probability 1 − Pr

(Fig. 2 right side).
In cellular automata sand pile model, the declination in

the height of cell will make it to obtain energy as follow:

E′(x, y, z) = E(x, y, z) +GAΔh (8)

Where GA is coefficient for the current force field, which
can be sum of gravity, wind and buoyancy field. h is the
cell’s height. E′(x, y, z) were cell’s kinetic energy located
at (x, y, z) after the dropped process, while E(x, y, z) is the
previous one.

Cell’s state of motion located at (x, y, z) determined by
its kinetic energy Ek(x, y, z) and potential energy in all di-
rection. According to the probability of static or movement,
specific direction of motion is determined. When cell lo-
cated at (x, y, z) moves to the neighbor cell, the conversion
of kinetic energy and potential energy occurs:

Ep(i) = GA[h(x, y, z) − hvoni ] (9)

Here, Ep(i) is the change potential energy after cell moves
to the i − th von Neumann neighbor voni, and hvoni is height
of von Neumann neighbor.

The cell’s probabilities of staying Ps or moving in cer-
tain direction Pd are as follow [17]:

Ps =

√
C

Ep(i) + ε
10

10 + Ek
(10)

Pd = (1 − Ps)
niEk + Ep(voni)

Ek +
∑

Epvon
(11)

Where Ek is the kinetic energy of cell, ε is momentum com-
pensate factors, ni is the weighting factor for the direction of
motion, C is the static coefficient, and

∑
Epvon is the total

change potential energy of von Neumann neighbor. Equa-
tion (10) is deduced from the sand pile model experiment.
It is an experiential equation which depends on the momen-
tum compensates factors ε and the static coefficient C. The
probability of CA (Cellular Automata) moving to its neigh-
bor determined by ratio between Ek, the changing potential
energy after cell move to the i − th von Neumann neigh-
bor and Ek, the total changing potential energy of von Neu-
mann neighbor. In the movement process of cell at (x, y, z)
moved to neighbor position (x′, y′, z′), the speed, location
and height attribute of cell are updated, when the probabil-
ity of the kinetic and potential energy conversion according
to Eqs. (10) and (11).

Fig. 3 Cellular automata diffusion and aggregation model.

2.3 Cellular Automata Diffusion and Aggregation Rule

Cellular automata diffuse and aggregation rule produced
more twigs from its shielding effect, which is a nonlinear
effect. Growth ratio at random arising tip in the growing
process is faster, which makes cell in front of the twig move
faster, and shields cell from proliferation on the road into
the twig:

Based on the experiment of a cellular DLA (Diffusion
Limited Aggregation) model, in the case of a single cell, the
four directions around the growth probability are all 0.25. In
the case of cellular clusters, the growth probability of Cellu-
lar clusters in two state-of-the-art location is 0.22, but other
positions can only be 2/3 of the previous one, as shown in
Fig. 3.

From view of the process of cell diffusion and ag-
gregation, the growth ratio of cell away from the center
of concentration is larger, and smaller at the edge. From
far away to the edge of clusters a concentration gradient
is formed. For such a concentration field, we use the first
Fick diffusion equation g = −D∇μ, and the second equation
∂μ/∂t = −∇ ·g = D∇2μ to describe it. g is the diffusion field
which is product of the concentration gradient diffusion field
∇μ and the diffusion coefficient D, the second equation rep-
resents that concentration versus time equals divergence of
diffusion field, where μ is statistical probability of occurring
in diffusion and aggregation process.

Fick’s second equation can be discretized as:

∂μ

∂t
=
∑ g(x + i, y + j, z + k)

N
− g(x, y, z) (12)

Where i, j and k represent relative location of the neighbor
cells at (x, y, z). The first term on the right of equation is
sum of the N nearest neighbor’s diffusion inflow, while the
second term represents the diffusion outflow from the cell.
In the steady-state conditions, the divergence is zero, that is
to say,

∑
g(x+i, y+ j, z+k)/N−g(x, y, z) = 0. Then according

to the second Fick equation, we can get ∇2μ = 0, which is a
Laplace equation, and it can be discretized into:

[(μi+1, j,k − μi, j,k) − (μi, j,k − μi−1, j,k)]

+[(μi, j+1,k − μi, j,k) − (μi, j,k − μi, j−1,k)]

+[(μi, j,k+1 − μi, j,k) − (μi, j,k − μi, j,k−1)] = 0 (13)

The boundary conditions of above equation are that μ = 1 in
the far distance and μ = 0 in the aggregate cluster boundary,
and growth rate between the boundary and far distance can
be expressed as:



2754
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.12 DECEMBER 2012

V = −n · g = Dn · ∇μ (14)

g is the cell diffusion flow, D is the diffusion coefficient. μ
is concentration gradient, n is the unit vector of the cluster
boundary. According to the boundary conditions (far dis-
tance μ = 1, cluster border μ = 0), the value of μ between
the sample point is interpolated according to the geometric
relationship between the points. Thus cell generation rate
V on the cluster border is calculated, and growth point in
the next cycle can be calculated by V and the cell’s growth
probability of μ in the model solver process.

3. Algorithm Implementation and Experiments

We divided process of rendering cloud into two phases:
1) Parallel executing the evolution rules to generate and up-
date cloud volume data
2) Parallel rendering of cloud volume data by ray-casting
method

In the first phase, we map the three evolution rules into
kernel function for parallel computing.

In the second phase, we adopt volume rendering
method in which each tracing ray’s color is computed in par-
allel.

3.1 Parallel Executing the Evolution Rules to Generate
and Update Cloud Volume Data

As the computing scope of the cellular automaton model
continues to expand, serial program on solving large-scale
computation will take considerable time. In the cellular au-
tomata, the calculation of status change of each cell is inde-
pendent in each iteration; the next iteration of the cell state
parameters is related with current state set of cell parame-
ters, the current space environment parameters and parame-
ters related to cellular neighbors. The status of cellular au-
tomata change process can be considered as the calculation
process of the data, and this process can be performed in
parallel kernel function in the parallel computing architec-
ture such as CUDA (Compute Unified Device Architecture).

So we map the three cellular evolution rules as fluid
dynamics rule, deposition and accumulation rule, diffusion
and aggregation rule to the parallel kernel function on GPU.
Cellular status updates according to the previous step’s state
by carrying out this calculation. It requires two buffers to
store the state of cellular automata, using a mutual-update
way to conduct the status update. In one simulation loop,
kernel function parallel generating and updating cloud vol-
ume data for rendering.

3.2 Parallel Rendering of Cloud Volume Data by Ray-
casting Method

The output of cellular automata model is the space volume
data. We get the volume data for the cloud volume render-
ing, then we use the parallel ray-casting method to imple-
ment high realistic rendering. Each grid point holds the sta-

Fig. 4 Parallel ray casting algorithm.

tus information of the cell. Render program generates cast-
ing ray for cloud volume data, then employs direct volume
rendering way based on image sequence, and calculates the
final color for each casting ray.

From the viewpoint of each pixel, along a fixed di-
rection (usually the direction of viewpoint) a ray of light
is launched across the entire image sequence, and the im-
ages sequence is sampled to obtain color information in the
process; meanwhile, the light absorption model accumulates
the color values, until the light goes across the entire image
sequence, then the resulting color value is the color of the
rendered image. As shown in Fig. 4, assuming that the light
is projected from point F to the cube, and cast out from the
L point, the distance across in the cube is m. When the light
is projected onto the cube from the F point, the sampling is
started when the crossing distance is n(n < m), there is a
formula:

TEX = TEXstart + d ∗ delta (15)

Where start denotes the texture coordinates of the body
point projected in the surface of the cube; d denotes pro-
jection direction; delta is the sampling interval, which in-
creases with n; TEX is the sampling texture coordinates. By
sampling the texture coordinates, the volume data can be
queried. Until n > m, or cumulative transparency is over 1,
the sampling process of a ray will be finished.

Light passing through an object will lead to wavelength
ratio changes. When through multiple objects, this change
is cumulative. Therefore, the transparent object rendering,
in essence, is the mixture of color of the transparent object
and the colors of subsequent objects, which is called alpha
blending technology. Graphics hardware has implemented
alpha blending technology, the expression is:

C0 = αsCs + (1 − αs)Cd (16)

It means that color values C0 obtained though the objective
observed from a transparent object, is mixed with the weight
for transparent objects’ color Cd and the original color Cs of
the objective.

The weighted coefficient distributions are αs and (1 −
αs), and opacity αs is obtained from volume data calculated
by the transfer function. The mapping from volume data to
opacity is called classification [18].

3.3 Experiments

We design several experiments to test the proposed algo-



ZHANG et al.: PARALLEL DYNAMIC CLOUD RENDERING METHOD BASED ON PHYSICAL CELLULAR AUTOMATA MODEL
2755

Table 1 Initial conditions for cloud simulations.

Fig. 5 Cirrostratus photo.

Fig. 6 One frame captured in simulation of cirrostratus.

Fig. 7 Altostratus photo.

rithm from the performance and render effect perspective.
In the model, the CPU we adopted is configured with Intel
Core Q9550, with 2.83GHZ, 2GB RAM; two graphics pro-
cessors capable of CUDA ability are used to test GPGPU
procedures, respectively GeForce GTX560Ti and GeForce
GTX480. The former one contains 384 processing cores,
with a maximum of 12288 concurrent threads. The proces-
sor clock frequency is 1.66 GHz, memory clock frequency
is 2004.00 MHz; the second one contains 336 processing
cores and the processor clock frequency is 1350 GHz, with
the memory clock frequency 1800Gbps; maximum concur-
rent threads is 10752.

The initial conditions for cloud simulation are listed
as Table 1. In the table h, ν, D, T , P represent height of
cell space center, fluid dynamic viscosity, diffusion coef-
ficient, environment temperature, atmospheric pressure re-
spectively. Then cellular automata model executes the same
evolution rules based on their own initial condition.

Figure 5–10 adopts the proposed render algorithm to

Fig. 8 One frame captured in simulation of altostratus.

Fig. 9 Nimbostratus photo.

Fig. 10 One frame captured in simulation of nimbostratus.

Fig. 11 Droplet distribution by size in simulation of Cirrostratus.

simulate several typical clouds, and compares with actual
aerial picture of typical clouds. By comparison, we can ob-
serve that our cloud rendering algorithm reflects the high
cloud with transparent thin fibrous, the middle cloud ceil-
ing with streaks and fiber strand structure, low clouds with
a strip and the wave detailed characteristics.

To validate the simulation result, we fetch the experi-
ment data generated by simulation for statistic analysis. We
compared the cell generated by our algorithm with the exist-
ing different types of cloud droplet size distribution analysis
report [19] according to the scale size. Here, the simulation
iterations (each iteration time is 1 ms) T1 is 100, T2 is 200,
T3 is 500 , shown in Fig. 11, 12, and 13, the distribution ra-
tio in the entire space for cloud particles at different scales
is given. Figures 11, 12, and 13 correspond to Figs. 6, 8, and



2756
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.12 DECEMBER 2012

Fig. 12 Droplet distribution by size in simulation of Altostratus.

Fig. 13 Droplet distribution by size in simulation of Nimbostratus.

Fig. 14 Cloud rendering effect of Harris’s method.

10.
The experimental results are consistent with rules pre-

sented in the report : in the process from cell proliferation
to cohesion stability, cell groups have different size distribu-
tion, in high humidity and low-sky environment, it is easy to
form a larger droplet size and thus the formation of higher
density clouds are formed, so thick cloud block is presented;
in dry atmosphere with thin air pressure, in which the cell
maintains a very small droplet size instead of convergence,
it forms the structure of the fibrous strand fiber shape in the
rendering effect.

In the experiment, we compare the proposed method
in our paper with several typical methods. Figure 14 shows
the cloud rendering effect using texture-based method. Here
is the cloud effect rendered by Harris method. Figure 15,
16 respectively, represent the rendering effect by Dobashi’s
and Eric’s method which are based on Cellular automata
method. Figure 17 shows the dynamic cloud picture series
rendered by our method. Compared Fig. 14–16, with Fig. 17
show more realistic effect in cloud detail characteristic; be-
sides, it also vividly presents the accumulation and deposi-
tion effect, and the details of the characteristics of the cloud
edge caused by diffusion and condensation effect.

Fig. 15 Cloud rendering effect of Dobashi’s method.

Fig. 16 Cloud rendering effect of Eric’s method.

Fig. 17 Cloud rendering effect of our method.

Figure 18 shows rendering algorithms performance
comparison on two different GPUs and CPU platform. In
the GPU implementation, thread grid size is 256∗256∗256.
Though the view point is implemented as always changing
dynamically, in the experiment, we put static view point out
of the cloud simulation space and towards the center of it for
convenience. In the simulation, when the number of cell to
update is small, GPU-based rendering doesn’t present its ad-
vantage in computing compared with CPU-based one, this
is because the transmission overhead between host system
memory and device memory has occupied a large propor-
tion of the application time, which hide the parallel comput-
ing advantage. However, with the cell number increasing,
the time required to render is growing, and the computing
percent of application has accounts for most of the overall
application time.



ZHANG et al.: PARALLEL DYNAMIC CLOUD RENDERING METHOD BASED ON PHYSICAL CELLULAR AUTOMATA MODEL
2757

Fig. 18 The comparison of frequency per second of algorithms on GPU
and CPU.

The computing advantage of computing performance
on GPU compared to CPU has translated into the better
overall application execution on GPU. Besides, we also
found that, for the two different graphics cards GTX 480
and GTX 560TI, their rendering performance decreased ex-
ponentially after different cell number value, the former one
with the cell number reaching 7E4 and the second one reach-
ing 5E4. This is because during the model solver process,
the number of cell for parallel execution has exceeded the
number of concurrent threads that the card can support, as
different GPU with different capacity has different thread
maximum number. It is suggested that the parallel task
should be scheduled according to the power of GPU.

4. Conclusion

Based on the principle of cellular automata with fluid dy-
namics, deposition and accumulation of cellular models and
diffusion and aggregation model, we propose a CA-based
parallel computational model updating, combined with the
scattering model of the cloud particles. Then we present
a parallel volume-rendering based algorithm for real-time
cloud rendering. Experiments result show that, the physi-
cal characteristics of cloud body movements can be exhib-
ited excellently based on cellular automata model. From the
experimental performance analysis we can see that, GPU-
based ray-casting algorithm combined with the image pro-
jection algorithms are able to achieve a better rendering ef-
ficiency. It can also be seen that, with increasing number of
cell, performance of algorithms migrated from CPU to GPU
has improved significantly.

In addition, our ray-casting algorithm is based on vol-
ume data rendering algorithm which is simple and efficient,
and also easy to implement. In our future version, we will
consider the multiple scattering and reflecting effect of light
within the clouds, not just the case of a single scattering and
transmission, the rendering effect will be more realistic.

Acknowledgements

This project was supported by a grant from the National

High Technology Research and Development Program of
China (863 Program) (No.2009AA01Z303).

References

[1] Y. Dobashi, K. Kaneda, H. Yamashita, T. Okita, and T. Nishita, “A
simple, efficient method for realistic animation of clouds,” Proc.
27th Annual Conference on Computer Graphics and Interactive
Techniques, SIGGRAPH ’00, pp.19–28, 2000.

[2] Y. Dobashi, T. Nishita, H. Yamashita, and T. Okita, “Using meatballs
to modeling and animate clouds from satellite images,” The Visual
Computer, vol.15, no.9, pp.471–482, 1999.

[3] R. Miyazaki, S. Yoshida, Y. Dobashi, and T. Nishita, “A method for
modeling clouds based on atmospheric fluid dynamics,” Proc. Pa-
cific Conference on Computer Graphics and Applications, pp.363–
372, Tokyo, 2001.

[4] W. Ren, X. Liang, S. Ma, and X. Shen, “A real time simulation
method for large scale 3D clouds,” J. Computer-Aided Design &
Computer Graphics, vol.22, no.4, pp.662–669, 2010.

[5] S. Liu, J. Chai, and Y. Wen, “A new method for fast simulation of
3D clouds,” J. Computer Research and Development, vol.46, no.9,
pp.1417–1423, 2009 (in Chinese).

[6] N.N. Wang, “Realistic and fast cloud rendering,” J. Graphic Tools,
vol.9, no.3, p.21, 2004.

[7] F. Neyret, “Qualitative simulation of convective clouds, formation
and evolution,” Proc. Eurographics Workshop on Animation and
Simulation, Berlin, Springer, pp.113–124, 1997.

[8] M.J. Harris, W.V. Baxter, T. Scheuermann, and A. Lastra, “Sim-
ulation of cloud dynamics on graphics hardware,” Proc. Graphics
Hardware, pp.92–101, 2003.

[9] R. Miyazaki, Y. Dobashi, and T. Nishita, “Simulation of cumuli-
form clouds based on computational fluid dynamics,” Proc. EURo-
GRAPHICS, pp.405–410, 2002.

[10] D. Overby, Z. Melek, and J. Keyser, “Interactive physically-based
cloud simulation,” Proc. 10th Pacific Conference on Computer
Graphics and Applications, Beijing, pp.469–470, 2002.

[11] Tang Zhao and Wu Pingbo, “Real-time modeling and rendering of
3D cloud and its application in industrial simulations,” J. Computer-
Aided Design & Computer Graphics, vol.19, no.8, pp.1051–1055,
2007 (in Chinese).

[12] M.U. Eric and K. Sudhanshu, “Dynamic cloud simulation using cel-
lular automata and texture splatting,” Summer Simulation Multicon-
ference, pp.270–277, 2010.

[13] F. Pighin, J.M. Cohen, and M. Shah, “Modeling and editing
flows using advected radial basis functions,” Proc. 2004 ACM
SIGGRAPH/Euro graphics Symposium on Computer Animation,
Grenoble, pp.223–232, 2004.

[14] B. Chopard and M. Droz, Cellular Automata Modelling of Physical
Systems, Cambridge, Cambridge University Press, 1998.

[15] C. Ponticks and E. Hicks, “Droplet activation as related to entrain-
ment and mixing in warm tropical maritime clouds,” Atmos. Sci.,
vol.50, pp.1888–1896, 1993.

[16] J. Stam, Stable fluids, ACM SIGGRAPH, ACM Press, New York,
1999.

[17] C. Kim, C.F. Hans, and J.J. Henrik, “Dynamical and spatial aspects
of sandpile cellular automata,” J. Statistical Physics., vol.63, no.3,
pp.653–684, 1991.

[18] M. Levoy, “Display of surfaces from volume data,” IEEE Comput.
Graph. Appl., vol.8, no.3, pp.29–37, 1988.

[19] S.K. Paul, “Cloud drop spectra at different levels and with respect
to cloud thickness and rain,” Atmospheric Research, vol.52, no.4,
pp.303–314, 2000.



2758
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.12 DECEMBER 2012

Liqiang Zhang received the M.S. degrees
in Computer Science from Beijing Institute of
Technology in 2005. He now studied in Institute
of Software, Chinese Academy of Sciences as a
Ph.D. candidate. He had participated in a project
related to research the parallel algorithms and
applications in field of computer graphics, vir-
tual reality and computer simulation.

Chao Li received the B.S. degree in Com-
puter Science from Dalian University of Tech-
nology in 2009. During 2009–2012, he stayed
in Institute of Software, Chinese Academy of
Sciences, study high performance parallel algo-
rithms and applications. He now is a 3rd year
master in computer science.

Haoliang Sun is a Ph.D. candidate in Insti-
tute of Software, Chinese Academy of Sciences.
His research interest is the transport layer pro-
tocols in deep space communication. He had
participated in a project related to research the
communication mechanisms and design trans-
port protocols in deep space networks.

Changwen Zheng is a Professor in the
National Key Laboratory of Integrated Informa-
tion System Technology, Institute of Software,
Chinese Academy of Sciences. He received his
Ph.D. degree from Huazhong University of Sci-
ence and Technology. His research interests in-
clude computer graphics, virtual reality, com-
puter simulation and artificial intelligence.

Pin Lv is an Associate Professor in the
National Key Laboratory of Integrated Informa-
tion System Technology, Institute of Software,
Chinese Academy of Sciences. He received his
Ph.D. degree from Chinese Academy of Sci-
ences. His research interests include computer
graphics, virtual reality, and computer simula-
tion.


