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Blind Adaptive Method for Image Restoration Using Microscanning

José L. LÓPEZ-MARTÍNEZ†,††a), Nonmember and Vitaly KOBER†b), Member

SUMMARY This paper presents a restoration method using several de-
graded observed images obtained through a technique known as microscan-
ning. It is shown that microscanning provides sufficient spatial information
for image restoration with minimal information about the original image
and without knowing the interference function that causes degradation.
key words: image restoration, image processing, microscanning

1. Introduction

Image restoration is a very popular area within image pro-
cessing [1], [2]. It finds applications in medical images, mi-
croscopy, industry, etc. In most cases, the restoration meth-
ods are based on a priori knowledge of the degradation pro-
cess and generally use a single observed scene to carry out
restoration [3], [4].

In this paper, we present a method of restoration aimed
at restoring images degraded by additive, multiplicative,
and impulsive interferences. These degradations [5]–[8] are
caused by nonuniform illumination, imperfections in the
manufacturing process of sensors (i.e. Focal Plane Array),
damaged sensors, etc. We use microscanning [9] to ob-
tain a set of observed degraded images of the same scene
with a controlled shift between the scene and camera. This
technique may be used for image restoration if the origi-
nal image and interferences are spatially displaced relatively
each other during the microscanning process. Microscan-
ning can be implemented either with a controlled movement
(i.e. using a piezoelectric actuator for precision position-
ing) of a sensor array that captures images or with a con-
trolled motion of a light source in the case of nonuniform
illumination. The proposed method can be used for correc-
tion of nonuniform illumination, for restoring information
at damaged sensor’s elements, and for scene-based removal
of nonuniform fixed-pattern noise in imaging array sensors.
Using the set of the images, restoration is carried out by
solving a system of equations that is derived from optimiza-
tion of an objective function. In the proposed method, we
suppose that the degradation function is unknown, that is
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a blind restoration. This paper is organized as follows. In
Sect. 2 we present the used signal model and the proposed
restoration method. Computer simulation and experimental
results are provided and discussed in Sect. 3. Finally, Sect. 4
summarizes our conclusions.

2. Restoration Method

Let us introduce some notation and definitions. Let
{s(1)

i, j , s
(2)
i, j , s

(3)
i, j } be three observed degraded images captured

during microscanning, and i, j are the pixel coordinates. The
size of images is M × N pixels. Let us define the sets { fi, j}
as an original image {ai, j} as an additive degradation. The
observed signal is also corrupted by additive and impulsive
noises. The additive noise is modeled as a white Gaussian
noise {n(k)

i, j , k = 1, 2, 3} with a zero mean and a standard
deviation. The impulsive noise occurs with a given prob-
ability. Examples of additive interference, impulsive and
additive noises are the photodetector’s bias of imaging ar-
ray sensors, damaged sensor’s elements, and time-varying
wideband thermal (electronic) noise of sensors [5], respec-
tively.

When image degradation is caused by an additive
nonuniform interference and additive noise, the observed
scene can be described as

s(1)
i, j = ai, j + fi, j + n(1)

i, j , 1 ≤ i ≤ M, 1 ≤ j ≤ N. (1)

Using microscanning two frames with vertical and hor-
izontal displacements can be obtained, that is,

s(2)
i, j = ai+1, j + fi, j + n(2)

i, j , 1 ≤ i < M, 1 ≤ j ≤ N, (2)

and

s(3)
i, j = ai, j+1 + fi, j + n(3)

i, j , 1 ≤ i ≤ M, 1 ≤ j < N. (3)

We see that the additive interference and the original
image are spatially displaced relatively each other by mi-
croscanning. The idea behind the proposed method is to use
the information about the spatial relation between the de-
graded images along the rows and columns. Let

ri, j = s(2)
i, j − s(1)

i+1, j = fi, j − fi+1, j + n(2)
i, j − n(1)

i+1, j,

1 ≤ i ≤ M − 1, 1 ≤ j ≤ N, (4)

be a gradient matrix for the vertical frame motion, and let

ci, j = s(3)
i, j − s(1)

i, j+1 = fi, j − fi, j+1 + n(3)
i, j − n(1)

i, j+1,

1 ≤ i ≤ M, 1 ≤ j ≤ N − 1, (5)
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be a gradient matrix for the horizontal frame motion. Uti-
lizing the least-squares approach, the variance of additive
noise contained in these matrices can be minimized. So, an
objective function to be minimized can be written as

F̃

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
M−1∑
i=1

N−1∑
j=1

[
ri, j − fi, j + fi+1, j

]2
+
[
ci, j − fi, j + fi, j+1

]2⎫⎪⎪⎪⎬⎪⎪⎪⎭
+

N−1∑
j=1

[
cM, j − fM, j + fM, j+1

]2
+

M−1∑
i=1

[
ri,N − fi,N + fi+N, j

]2
,

(6)

where the first term takes into account the noise informa-
tion present into most of the image, and the two last terms
are based on the noise information in the bottom row and
the right column of the image, respectively. The minimiza-
tion of the objective function with respect to elements of the
image fi, j, leads to a linear system of equations. In matrix-
vector notation the linear system is given by

Ax = b, (7)

where matrix A has the size MN×MN, x is a vector version
of fi, j of size MN × 1, and vector b = br + bc has the size
MN × 1. The vectors brand bc are given by

br
j = r1, j, 1≤ j≤N, (8)

br
iN+ j = ri+1, j − ri, j, 1≤i≤M − 2, 1≤ j≤N, (9)

br
NM− j = −rM−1,N− j, 0≤ j≤N − 1, (10)

bc
iN+1 = ci+1,1, 0≤i≤M − 1, (11)

bc
iN+ j = ci+1, j − ci+1, j−1, 0≤i≤M − 1, 2≤ j≤N − 1, (12)

bc
iN = −ci,N−1, 1≤i≤M. (13)

The matrix A is sparse, and it is given by

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A1 A3 0 . . . 0
A3 A2 A3 0

0
. . .
. . .
. . .

...
0 . . . A3 A2 A3

0 . . . 0 A3 A1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (14)

where the matrices A1, A2 and A3, of the size N × N, are
written as

A1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 −1 0 . . . 0
−1 3 −1 0

0
. . .
. . .
. . .

...
0 . . . −1 3 −1
0 . . . 0 −1 2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (15)

A2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3 −1 0 . . . 0
−1 4 −1 0

0
. . .
. . .
. . .

...
0 . . . −1 4 −1
0 . . . 0 −1 3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, and (16)

A3 = diag [−1,−1, . . . ,−1] . (17)

The rank of the matrix A is MN−1, therefore the origi-
nal image can be restored if one pixel of the image is a priori
assigned to a constant, for instance the last pixel of the im-
age is set to zero. After the restoration the obtained image
is point-wise processed to have the same mean value (as-
sumed to be known) with original image. In order to solve
the linear system of equations we use an effective iterative
conjugate gradient method [10]. The computational com-
plexity of the proposed method is given by the execution
order of the conjugate gradient and the size of an image to
be restored. The conjugate gradient has O(mk) operations,
where k is the number of iterations required for solving the
system of equations, and m is the number of nonzero entries
in A. Without loss of generality, we assume that N = M.
Therefore, m = O(5N2) and k = qN, where q depends on
precision of the solution. The computational complexity of
the method can be estimated as O(5qN3).

Impulsive noise is caused by sensor failures in the cam-
era or transmission through a noisy channel. The proposed
method is able to interpolate implicitly the pixel values cor-
rupted with impulsive noise based on the information con-
tained in neighboring pixels. This is because during mi-
croscanning the information of each pixel of the original im-
age is captured in three different observed images. If one of
the sensors is damaged, partial information about the pixel
intensity of the original image could be available in the other
observed images. For example, suppose there is a dead pixel
at the point (k, l). It can be shown that the value of f̃k,l is im-
plicitly approximated with a linear combination of the cen-
tral and neighboring pixels as follows:

f̃k,l ≈ 1
4
(
fk+1,l + fk,l+1

)
+

1
2

fk,l. (18)

Sometimes, pixels corrupted by impulsive noise tend
to form an impulsive noise cluster. It is interesting to note
that the method of restoration is able to interpolate implic-
itly such pixel values. For example, if the cluster has the
shape of a cross, one can show that the central pixel value is
estimated as follows:

f̃k,l ≈ 1
12
(
fk+2,l + fk+1,l + fk,l+2 + fk,l+1 + fk−1,l+1

+ fk+1,l−1
)
+

1
6
(
fk+1,l+1 + fk−1,l + fk,l−1

)
. (19)

We see, since there is no information on the central
pixel in the three observed images, the interpolation of the
central pixel uses only the neighboring pixels.

The original image can be degraded with multiplica-
tive interference. A typical example of such degradation is
nonuniform illumination. When the degradation is caused
by multiplicative interference, and additive noise is low, the
multiplicative degradation model can be converted to the ad-
ditive model by applying to the observed degraded images
the logarithmic transformation. Therefore, the described
restoration method can be also used for multiplicative degra-
dations. Finally, the restored image is obtained by applying
to the solution of the linear system the exponential function.
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3. Computer Simulations and Experimental Results

Here we analyze the performance of the proposed method in
terms of the root mean square error (RMSE) criterion and a
subjective visual criterion. The RMSE criterion is given by

RMSE( f , f̃ ) =

√√√√√ M∑
i=1

N∑
j=1

(
fi, j − f̃i, j

)2
NM

. (20)

The signal range is [0, 255]. The size of test images is
256 × 256. The experiments were performed using a com-
puter with the Intel Core 2 Duo 2.26 GHz processor and with
2 GB of RAM. The conjugate gradient method is used to
solve the linear system. The convergence criterion is when
the residual value drops below 10−10. The subjective visual
criterion is defined as an enhanced difference between origi-
nal and restored images. A pixel is displayed as gray if there
is no error between the original image and the restored im-
age. For maximum error, the pixel is displayed either black
or white (with intensity values of 0 and 255, respectively).

The linear minimum mean square error method is a
popular technique in image restoration. When the original
signal and additive noise are stationary processes, and there
is no blur, the method is the Wiener smoothing filter [5]. In
our experiments, we assume that degradation parameters for
the Wiener filter are exactly known. The proposed method
does not need any information about the degradation func-
tion.

3.1 Additive Degradation Model

Figures 1 (a), 1 (b), and 1 (c) show a test original image, a
nonuniform additive interference, and the observed image
corrupted by additive noise, respectively. The additive noise
is a white Gaussian noise with a zero-mean and a standard
deviation of 2. The mean value and standard deviation of
the interference image are 179 and 48, respectively. The
restored image obtained with the proposed method is shown
in Fig. 2 (a). The enhanced difference between the original
and restored images is shown in Fig. 2 (b).

Figure 3 shows the performance in terms of the RMSE
of the proposed method and the Wiener filtering using three
observed images versus the standard deviation of additive

Fig. 1 (a) Original image, (b) additive interference, (c) observed image
degraded with additive interference and white noise with standard deviation
of 2.

noise. It can be seen that the performance of the proposed
method is much better than that of the classical Wiener fil-
tering with known parameters. It happens because the addi-
tive interference is spatially inhomogeneous, and therefore
it cannot be considered as a realization of a stationary pro-
cess and correctly used in the filtering. The time required
to restore the image using the proposed method is approxi-
mately 43 sec. In this case, the iterative conjugate gradient
algorithm requires about 1000 iterations.

3.2 Additive Degradation Model with Impulsive Noise

Figures 4 (a), 4 (b), and 4 (c) show the observed image, the
restored image, and enhanced difference between the origi-
nal and restored images, respectively. The observed image is
corrupted with an additive nonuniform interference, a zero-
mean white Gaussian noise with a standard deviation of 2,
and impulsive noise with the occurrence probability of 0.07.
The value of impulsive noise is zero.

Figure 5 shows the performance of the proposed
method in terms of the RMSE versus the probability of im-
pulsive noise. The observed images are corrupted by addi-
tive noise with a standard deviation of 2. One can observe
that when the probability of impulsive noise increases, the
restoration quality decreases.

Finally, we present computer simulation results when
the observed images contain an impulsive noise cluster. Fig-
ures 6 (a), 6 (b), and 6 (c) show the observed image, the re-
stored image, and enhanced difference between the original
and restored images, respectively. The observed image is
corrupted by the additive nonuniform interference, a zero-
mean white Gaussian noise with a standard deviation of 2,

Fig. 2 Performance of the proposed method for additive degradation:
(a) restored image, (b) enhanced difference between the original image and
restored images.

Fig. 3 Performance of the proposed method for additive degradation:
RMSE versus a standard deviation of additive noise.
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Fig. 4 (a) Observed image degraded with additive interference, white
noise with standard deviation of 2, and impulsive noise with probability
of 0.07, (b) restored image, (c) enhanced difference between the original
image and restored images.

Fig. 5 Performance of the proposed method for additive degradation
with impulsive noise: RMSE versus probability of impulsive noise while
the standard deviation of additive noise equals 2.

Fig. 6 (a) Observed image degraded with additive interference, white
noise with standard deviation of 2, and impulsive noise cluster
(100 pixeles), (b) restored image, (c) enhanced difference between the orig-
inal image and restored images.

and impulsive noise cluster of 10 × 10 damaged elements.
One can observe that the restoration performance of the

method is good outside of the cluster area. At the location
of the cluster the method attempts to carry out a smooth in-
terpolation using information containing in the neighboring
pixels.

3.3 Experimental Results

Here we present experimental results with a real-life image
degraded by a multiplicative interference. The observed im-
ages were obtained as follows. A test image was displayed
on a LCD screen. A printed transparency was placed be-
tween a camera and the screen in order to simulate a mul-
tiplicative degradation. Microscanning was performed by
shifting the test image on the screen. Finally, the observed
images were captured with the camera. The observed im-

Fig. 7 (a) Original image, (b) multiplicative interference, (c) observed
image degraded with multiplicative interference, (d) restored image.

ages have the size of 295 × 284 pixels. First, the observed
images were passed through the logarithmic transformation.
Next, the proposed method was utilized to obtain a resulting
image. Finally, the exponential transformation was applied
to the resulting image to restore the original image. The
original image, multiplicative degradation, and one of the
observed images taken by a camera are shown in Figs. 7 (a),
7 (b), and 7 (c), respectively. The restored image is pre-
sented in Fig. 7 (d).

Since in the experiment the level of additive noise is
low, the quality of the restoration with the proposed method
is very good.

4. Conclusion

In this paper, we proposed a method for restoring images
degraded with additive and multiplicative interferences, and
corrupted by additive and impulsive noises. Using three ob-
served images taken with a microscanning imaging system,
an explicit system of equations for the additive signal model
was derived. The restored image is a solution of the sys-
tem. With the help of computer simulations and experimen-
tal results, we showed and discussed the performance of the
proposed method.
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