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LETTER

A Fast Sub-Volume Search Method for Human Action Detection

Ping GUO†a), Zhenjiang MIAO†, Xiao-Ping ZHANG††, Nonmembers, and Zhe WANG†, Member

SUMMARY This paper discusses the task of human action detection.
It requires not only classifying what type the action of interest is, but also
finding actions’ spatial-temporal locations in a video. The novelty of this
paper lies on two significant aspects. One is to introduce a new graph based
representation for the search space in a video. The other is to propose a
novel sub-volume search method by Minimum Cycle detection. The pro-
posed method has a low computation complexity while maintaining a high
action detection accuracy. It is evaluated on two challenging datasets which
are captured in cluttered backgrounds. The proposed approach outperforms
other state-of-the-art methods in most situations in terms of both Precision-
Recall values and running speeds.
key words: action detection, graph representation, Minimum Cycle detec-
tion, sub-volume search

1. Introduction

Analysis of human actions in a video is a crucial and
challenging task in many video applications such as video
surveillance, content based video retrieval, and human-
computer interfaces. This paper focuses on the human
action detection task, which requires identifying not only
which type of action occurs (action classification), but also
when and where it occurs (spatial-temporal localization)
in a video. Action classification has attracted many re-
searchers and has obtained outstanding evaluation results on
public datasets such as KTH [1] and Weizmann [2]. How-
ever, spatial-temporal localization is still a challenging prob-
lem, especially in uncontrolled scenes (e.g., CMU [3] and
MSR [4] datasets).

The task of human action detection is often regarded as
searching the sub-volume that contains the action of inter-
est. To locate the sub-volume, human detection and tracking
methods are applied [5]. These approaches are usually fast.
However, cluttered background, object occlusion and cam-
era shaking have significant impacts on the performance of
human detection and tracking, especially for on-line video
data [6]. Therefore, a strict reliance on human detection and
tracking is not a promising solution for human action de-
tection in a video. Recent research works have shown that
sliding window matching methods through spatial and tem-
poral sub-volume space is simple and effective [3], [4], [7],
[8]. However, the computation complexity is usually high.
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There are W2×H2×T 2 candidate sub-volumes in a video of
W×H×T size. This requires large computations. For exam-
ple, searching a 50×25×20 sub-volume in a 144×180×200
video requires 30 minutes on a Pentium 4 3.0 GHz proces-
sor [8]. To save computation time, the search space is re-
duced by down sampling [9] and using coarse-to-fine strate-
gies [8]. However, these treatments probably lose detection
accuracies. A fast sub-volume search approach based on
the branch-and-bound theory is proposed in [7]. Its compu-
tation complexity is significantly reduced compared to the
sliding window methods. However, it is still very slow. For
instance, it costs about 20 hours to evaluate the 1-hour MSR
dataset II [10].

This paper proposes a novel sub-volume search method
that runs much faster than previous approaches while main-
taining similar action detection accuracies. A new repre-
sentation for the search space in a video is presented based
on graphs. The graph structure offers a means to efficiently
search sub-volumes by Minimum Cycle detection. As far as
we know, both the graph representation and the sub-volume
search method have not been used for human action detec-
tion in previous papers. Evaluations of the proposed method
are conducted on a set of challenging natural videos. Our
method outperforms other state-of-the-art methods in most
situations in terms of both Precision-Recalls values and run-
ning speeds.

The rest of this paper is organized as follows. The next
section introduces concepts about graphs that are used in
this paper. The proposed sub-volume search method is pre-
sented in Sect. 3 and evaluations are conducted in Sect. 4.
Finally, this paper is concluded in Sect. 5.

2. Preliminaries

A graph consists of two elements namely nodes and edges.
Each edge can be assigned with a weight that might repre-
sent costs, lengths or capacities, etc. In a graph, if the edge
has a direction, the edge is called an arrow or directed edge,
and the graph is called a directed graph or digraph. A closed
walk in an undirected graph or a closed directed walk in a
digraph is called a cycle. A cycle can also have a weight. In
this paper, the weight of a cycle is defined as follows:

wcycle(c) =
∑

e∈c
w(e), (1)

where e is an edge/arrow, c is a cycle that passes e, and w(e)
is the edge/arrow weight.
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A cycle is called a negative cycle if its weight is neg-
ative, similarly for a zero cycle and a positive cycle. The
problem of finding the cycle who has the minimum weight
in a graph/digraph is called the problem of Minimum Cycle
detection in this paper. More details about graphs can be
found in [11].

3. A New Sub-Volume Search Method for Human Ac-
tion Detection

The general problem of interest addressed in this paper can
be briefly described as follows: given a query video of an
action of interest, we aim to detect its spatial-temporal loca-
tions in a test video. This task can be regarded as searching
the target sub-volume that contains a similar content to the
query video. Note that the size and duration of the target
sub-volume may not be the same as the query video, and
their contents may not be exactly the same. For instance,
the action can be performed by different people in differ-
ent scenes. To deal with this task, a novel graph structure
is going to be presented for video representation, and a fast
sub-volume search method is going to be proposed based on
the Minimum Cycle detection technique.

Important notations used in the following paper are de-
fined here:

• v0: the query video with a size of W0 × H0 × T0.
• V: a test video with a size of W × H × T .
• v: a sub-volume in V
• v∗: the target sub-volume we want to detect.

3.1 A New Graph Based Video Representation

A new weighted digraph structure is built for the video rep-
resentation. A sub-volume v is considered a cuboid that con-
sists of 12 arris. The task of locating the target sub-volume
v∗ equals to the task of locating its arris. As a matter of
fact, only half of these arris are necessary since there are 4
arris in each surface of a cuboid but a surface can actually
be decided by just 2 intersected arris. That is to say, 6 arris
that each two of them intersect at a vertex are enough to rep-
resent a sub-volume. These 6 arris happen to form a cycle
(Fig. 1 (a)). For description convenience, the arris are named
as A1, A2, ...A6, and their intersection points (vertices) are

Fig. 1 A cuboid is represented by six of its arris and six of its vertexes.
(a) A cuboid; (b) A cuboid can be represented by a cycle in the digraph.

named as V1,V2, ...V6.
To search v∗ in V , its search space is represented by

a digraph. Since a cuboid can be represented by 6 of its
arris A1, .A6 and 6 of its vertexes V1, ...,V6, the search space
of v∗ is also represented by the locations of these arris and
vertexes. Candidate locations of each Ai(1 ≤ i ≤ 6) are
represented by a set of nodes in the digraph (Fig. 2). Each
node is assigned a location attribute of (w, h, t) in which w,
h, and t are the coordinates of an arris in the width, height
and time direction, respectively. For instance, the A1 arris
has WH candidate locations, so WH nodes are developed
for the A1 arris. Since the A1 arris is parallel to the t axes
(Fig. 1), no coordinate values are assigned for A1 nodes in
the t dimension (the coordinate value in the t dimension is
represented by “-”), similarly for other types of nodes.

A vertex is an intersection point of two arris, which
therefore is represented by an arrow (labeled by “e”) that
connects two nodes. Since there are six types of vertexes in
Fig. 1, there are six types of arrows in the digraph that rep-
resent candidate locations of the six vertexes V1,V2, ...V6
respectively. Each arrow e in the digraph has a attribute of
e(x, y, z) which is actually the coordinate of the vertex that
the arrow represents, and its coordinate can also be observed
from the two nodes that it connects. Take the arrow that con-
nects A1(2, 1,−) and A2(−, 1, 10) as an example, it shows
that these two arris intersects at a vertex of V1(2, 1, 10). The
digraph is illustrated in Fig. 2 that different types of nodes
and arrows are filled in different colors for a clear view.

All candidate locations of the six arris in Fig. 1 are rep-
resented by six types of nodes in the digraph, and all can-
didate locations of the six vertexes in Fig. 1 are represented
by six types of arrows in the digraph. Therefore, all candi-
date locations of v∗ are reflected in the digraph in Fig. 2 in
terms of candidate cycles. A cycle that contains six types of
arris and six types of vertexes stands for a possible location
of v∗, and the task of finding v∗ now equals to the task of
locating the optimal “Ai”s and “Vi”s (Fig. 1 (b)). Thus, the
sub-volume search task is actually to find the optimal cycle
in the digraph.

In the digraph, each e is assigned a weight n(e) that
measures the difference between v0 and a sub-volume ve

Fig. 2 A new digraph for video representation.
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one of whose vertex locates at e(x, y, z). The type of e in
v∗ should be the same as it in ve. For instance, if e is a
V1 type(front-top-right vertex in Fig. 1) with a coordinate
of e(x, y, z), then ve’s front-top-right vertex should locate at
e(x, y, z). The size of ve does not stand for the size of v∗. In
this paper, we simply give ve the same size as v0, and the
size of v∗ is decided by the path of c∗ after Minimum Cycle
detection. The value of n(e) is computed by:

n(e) =

∑
0≤i<B

Fe(i) · F0(i)

|Fe| · |F0| , (2)

where F0 and Fe are B-dimensional orientation distribution
vectors (the orientations=2nπ/B, n = 0, 1, ...B−1) of optical
flows on Harris points in v0 and ve, respectively.

For a cycle c, the lower n(e) is, it is more likely to be
the optimal cycle. Since one cycle in the digraph stands for
one candidate solution of v∗, the problem of finding v∗ is
equivalent to finding the optimal cycle c∗ that:

c∗ = arg η∗ = arg min
c⊆Δ

∑

e∈c
n(e), (3)

where Δ is the set of all cycles in the digraph and η∗ is the
weight of c∗.

3.2 A New Sub-Volume Search Method by Minimum Cy-
cle Detection

The Minimum Cycle detection algorithm proposed in [12]
is adopted here. Given a cycle weight η = η∗ in (3), give
each e in the digraph a new weight w(e) using the following
equation, the optimal cycle c∗ turns a zero cycle.

w(e) = n(e) − η/Lc, (4)

where Lc is the length of c that equals to the number of nodes
in c. Similarly, for a cycle weight η > η∗, a negative cycle
must be processed by (4).

Therefore, the minimum weight cycle is found by neg-
ative cycle detection iteratively. Set the initial value of η to
be its upperbound, and adjust it to a lower value at every iter-
ation. The algorithm will not stop until there are no negative
cycles in the graph. In our experiments, only 2-3 iterations
are necessary by setting a suitable η. The algorithm is given
in Fig. 3. The details of this algorithm and the Bellman-Ford
algorithm in Fig. 3 can be found in [12]–[14].

Computation complexity analysis: The total compu-
tation cost of our approach includes two aspects: 1) weight
setting that needs O(E) computation where E is the number
of edges in the digraph, and 2) Minimal cycle detection that
has a computation of O(uE) (E = 6 ∼ W ∼ H ∼ T and u is a
linear factor with a typical value of around 15 in this paper).
The total computation cost of our approach is O(uWHT ).
This computation is much lower than pure sliding window
based searches O(W2H2T 2) and lower than the branch-and-
bound based method in [4], [7], [10] (O(W2H2T )).

Fig. 3 Minimum Cycle Detection in a digraph.

4. Experimental Results

Our approach is evaluated on the CMU dataset [3] and the
MSR action dataset II [4]. The experimental results show
that our approach outperforms other state-of-the-art papers
for action detection in terms of both Precision-Recall values
and running speeds in most cases.

Videos in the CMU dataset are captured in crowded
backgrounds using a hand held camera. Five actions are
included namely “one-handed wave”, “two-handed wave”,
“push elevator button”, “pick up” and “jumping jacks”. The
total dataset has approximately 20 minutes of video con-
taining 114 actions of interest. Each action has about 14-30
testing instances. Videos in this dataset are downscaled to
160×120 in resolution. Each category has a binary template
video as its query video. The duration of templates ranges
from 9 frames to 22 frames and with a typical size of 60×80.

The action detection results are compared with ground
truth that manually labeled by ourselves. If the time inter-
val of two detected instances is small (less than 20 frames
here), they are connected to be one instance. If a detec-
tion result has more than 50% overlap with a labeled ground
truth, it is considered to be a correct decision. The average
Precision-Recall (P-R) values are given in Table 1 with a
comparison to previous papers. Precision=T P/(T P + FP)
and Recall=T P/NP where T P is the number of true posi-
tives, FP is the number of false positives and NP is the total
number of positives of ground truth.

Our computational cost is the lowest. The computation
complexity of paper [3] and [5] is W2H2T 2. The computa-
tion complexity of our approach is O(uHWT ). Paper [15]
reports that each 100 frame clip needs about 2-3 minutes on
an Intel 2.5 GHz PC. This searching time is about 30 times
of the video length. For the CMU dataset, our computa-
tion time is less than 6 times of the video length on an Intel
2.83 GHz processor (less than 7 times of the video length
on an Intel 2.5 GHz PC as in [15]). Paper [16] reports that
searching a 50 × 25 × 20 template in a 144 × 180 × 200
video requires 36 seconds on a 2.3 GHz processor. Using
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Table 1 Average precision-recalls on the CMU dataset.

P-R R=0.2 R=0.4 R=0.6 R=0.8 Computations
This paper 0.9 0.7 0.52 0.5 O(uWHT )
[3] 0.9 0.5 0.25 0.15 O(W2H2T 2)
[5] 1.0 0.8 0.52 0.4 O(W2H2T 2)
[15] 0.9 0.7 0.5 0.3 -

Table 2 Average precision-recalls on the MSR action dataset II.

P-R R=0.2 R=0.4 R=0.6 R=0.8 Computations
This paper 0.7 0.43 0.43 0.3 8 h
[4] 0.54 0.3 0.2 - 20 h [10]

our approach, our computation time is around 25 seconds
on an Intel 2.83 GHz processor (around 31 seconds on an
Intel 2.3 GHz PC as in [16]).

In addition,we can see that our P-R values are better
than other papers in most situations. The main reason is that
we search for all candidate locations of v∗ but these papers
are not. Due to the computational complexity of exhaus-
tive search, paper [3] and [15] search for the best location of
v∗ in only one scale, and paper [5] locates v∗ with the help
of a human head detection technique which is not reliable
in complex environments. Compared to these works, our
approach provides a fast sub-volume search way and also
improves the P-R values in most situations.

The MSR action dataset II contains three actions:
“boxing”, “handwaving” and “handclapping”. This dataset
is also taken in realistic scenarios. It includes 54 video se-
quences, has a total duration of around 45 minutes and con-
tains 203 action instances in all. Each video has a size of
320 × 240.

The MSR action dataset II dose not provide template
videos. For each action type, a video clip is segmented from
the KTH [1] dataset. The experimental settings are the same
as the above test on the CMU dataset, and the P-R values
are shown in Table 2. Our P-R values are better than [4].
The reason we think is that paper [4] use GMM to model
the distribution of spatial-temporal interest points based on
KTH videos, but due to the camera shaking and zooming,
noises are detected as interest points in the training stage. In
this paper, no training stage is required. Thus, we only need
to select one clean video as the template video and thus gain
a better result. In addition, the total testing time of the whole
MSR action dataset II is about 8 hours, which is much faster
than [4] (20 hours reported in [10]).

5. Conclusions

In this paper, a novel sub-volume search method is pre-
sented based on the Minimum Cycle detection technique. A
new weighted digraph is built to represent the search space
in a video. Based on the digraph structure, the proposed
algorithm has a computation complexity of O(uHWT )
which is significantly lower than traditional sliding window

based methods (O(H2W2T 2)) [8] and other state-of-
the-art methods such as the brand-and-bound based ap-
proach (O(H2W2T )) in [4], [7]. Experiments are conducted
on the CMU dataset and the MSR action dataset II which
are two challenging datasets captured in crowded scenes.
Experimental results show that not only the computational
complexity of the proposed method is the lowest, but also
the precision-recall values of our method are as good as or
even better than other methods in most cases.
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