
2852
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.12 DECEMBER 2012

PAPER Special Section on Parallel and Distributed Computing and Networking

A Swarm Inspired Method for Efficient Data Transfer

Yutaka KAWAI†a), Student Member, Adil HASAN††b), Go IWAI†c),
Takashi SASAKI†d), and Yoshiyuki WATASE†e), Nonmembers

SUMMARY In this paper we report on an approach inspired by Ant
Colony Optimization (ACO) to provide a fault tolerant and efficient means
of transferring data in dynamic environments. We investigate the prob-
lem of distributing data between a client and server by using pheromone
equations. Ants choose the best source of food by selecting the strongest
pheromone trail leaving the nest. The pheromone decays over-time and
needs to be continually reinforced to define the optimum route in a dynamic
environment. This resembles the dynamic environment for the distribution
of data between clients and servers. Our approach uses readily available
network and server information to construct a pheromone that determines
the best server from which to download data. We demonstrate that the ap-
proach is self-optimizing and capable of adapting to dynamic changes in
the environment.
key words: data grid, ACO, swarm intelligence, grid computing, file sys-
tem, iRODS

1. Introduction

Swarm intelligence [1] is inspired primarily by observations
of the collective behavior of social insects in addressing
complex distributed problems. The basic idea is that each
member of the swarm has simple rules that govern its be-
havior, but the interaction among the members of the swarm
can be used to tackle problems that are difficult to solve with
complicated numeric methods. In this paper we investigate
the problem of data distribution between a client and server
in a dynamic environment. We regard each download from
the server to the client as a single member in a swarm. The
member’s behavior is simply to reliably download a data
file. Each member can communicate with other members
to allow the swarm to settle on the best set of servers to
download the data from based on the current status of the
environment.

Some research work generates large numbers of small
files and then interacts with the generated small files in
groups. For example, the T2K ND280 [2], [3] group con-
sists of hundreds of researchers in 12 countries and 62 re-

Manuscript received January 6, 2012.
Manuscript revised April 19, 2012.
†The authors are with Computing Research Center, High

Energy Accelerator Research Organization (KEK), Tsukuba-shi,
305–0801 Japan.
††The author is with the Dept of English, University of Liver-

pool, Liverpool, UK.
a) E-mail: yutaka.kawai@kek.jp
b) E-mail: adilhasan2@gmail.com
c) E-mail: go.iwai@kek.jp
d) E-mail: takashi.sasaki@kek.jp
e) E-mail: yoshiyuki.watase@kek.jp

DOI: 10.1587/transinf.E95.D.2852

search institutes, all of whom must reliably download their
own data files. They are using iRODS (The Integrated Rule-
Oriented Data System) [4], [5], which provides each user
with a virtual file-system that maps to distributed storage
systems. iRODS has been developed by the Data Inten-
sive Cyber-Environments (DICE) [6] team and collaborators
and is based on more than a decade of experience with dis-
tributed data management systems ([4]). Different iRODS
installations can be federated together to provide a larger
virtual-file-system while allowing each member of the fed-
eration complete control over access and management of
their own iRODS. This approach also allows client appli-
cations to interact with the data. Our implementation uses
iRODS i-commands to download files from each system.

In Sect. 2 we describe the type of swarm algorithm
we have experimented with and Sect. 3 describes our spe-
cific problem. We refer to some previous studies in Sect. 4.
We define our pheromones in Sect. 5. The algorithm to se-
lect the best server by using the pheromones is described
in Sect. 6. Section 7 describes our simulation and its re-
sults and Sect. 8 describes the implementation and test re-
sults. Section 9 summaries our work and describes some
next steps.

2. Ant Colony Optimization

Ant Colony Optimization (ACO) algorithms [7] are a type
of swarm intelligence. They are based on the behavior of
foraging ants in which individual ants search in a seem-
ingly random manner for food. As an ant searches it leaves
pheromone or scent that records on its discovery of a food
source and the path used during its return to its nest. The
amount of the pheromone reveals information about the
nature of the food source. Subsequent ants follow the
pheromone trail and also reinforce it when they return to
the nest with food. There may be multiple trails to the food
source, but after some time the ants will converge on the
most direct path between the source and the nest. This is
due to the evaporation of the pheromone, since longer paths
will have weaker intensities of pheromones and will be less
likely to be followed.

In solving complex problems ACO algorithms use
computational agents (representing the ants) that perform
simple tasks. Each agent constructs a candidate solution
that is communicated to other agents via a probability (the
pheromone element) that is based on the components used to

Copyright c© 2012 The Institute of Electronics, Information and Communication Engineers



KAWAI et al.: A SWARM INSPIRED METHOD FOR EFFICIENT DATA TRANSFER
2853

construct the solution. For example, in the travelling sales-
man problem the probability is based on the edges between
cities. Each probability contains a weight based on the
heuristic information for the current problem. The weight
represents the evaporation factor and reduces the probabil-
ity for each ant’s solution by a defined amount. The role of
the weight is to eliminate local or intermediate solutions and
reinforce the global or true solution.

3. The Data Distribution Problem

A common problem in almost any field that requires the pro-
cessing of quantities of data is the movement of data from
the storage systems to the computational systems where the
data can be processed as quickly and reliably as possible.
The problem is compounded by the dynamic nature of the
environment in which the client is operating. The activity
of each server can vary over time, the network activity can
vary over time and the activity of each client can vary over
time. In some cases network status information is coupled
with server information through a broker service to guide the
client to the best server [8]. However, these services require
each server to publish the necessary information in order for
the clients to make decisions. Since the servers cannot antic-
ipate all of the needs of each client, it is possible that crucial
information for a client will not be published by the server.

We argue that such a priori in formation, although nec-
essary, is actually encoded in the ‘full’ transfer rate from
client to server. The ‘full’ transfer rate is simply the time
taken for the client transfer application to complete a trans-
fer. This includes the overhead of staging the data onto a
disk on the server and finalizing the transfer on the client
(such as calculating a check-sum for the downloaded data).
We believe that this is a better metric since the client is of-
ten interested not only in transferring the data as quickly as
possible, but also in using the data as quickly as possible.

4. Related Work

4.1 ACO Related Work

The main area where swarms and ACO algorithms have
been used is in optimizing distributed computational pro-
cessing [9]–[11]. In such cases Particle Swarm Optimiza-
tion (PSO), which is based on the flocking behavior of birds
can optimize computational job submissions to the most ef-
ficient and least loaded nodes. Ant Clustering Algorithms
(ACA) have been used to address the problem of clustering
data in which related data should be clustered together (or
co-located) for more efficient access (see [12], [13]). Data
clustering is crucial for data mining where the data is stud-
ied for patterns and relationships.

As in the case of ACO an ACA agent possesses simple
behaviors and the interactions between agents allow com-
plex problems to be solved. The ACA was based on studies
of ant cemeteries where worker ants sort the deceased ants

according to their size and function. Each ant works indi-
vidually to arrange the dead ants in its local vicinity into
a uniform group. Global sorting is done by the deceased
ants on the edges being sorted by the neighboring worker
ant. The ACA works by having each agent sort the data
within a restricted vicinity (typically a 3 × 3 grid) so that
all the data within that vicinity is of the same nature (where
the nature is defined by the current problem). The data on
the edges between neighboring agents is sorted first by one
agent and then by the other (and then by their neighbors un-
til they match a pile). The final result is clusters of data with
similar properties.

In the area of data distribution using swarms the work
by Peterson and Sirer [14] investigates the problem of data
distribution in a peer-to-peer network. Peer-to-peer net-
works operate in a non-privileged manner where there is no
central server and each client is also a server of data. The
paper described the development of Antfarm, a system that
manages the bandwidth usage of each server for the optimal
download rates by a swarm of clients. The Antfarm system
consists of coordinators that use information from seeders
and peers to control the bandwidth for the peers download-
ing data such that the data is downloaded to members of the
swarm in the most efficient manner possible. The system
also encourages downloads between peers to distribute the
bandwidth requirements. This paper differs in that the main
focus of this work is the problem of optimizing upload and
download performance in a client-server environment.

Ant Colony Optimization has been studied in peer to
peer networks by Wang Zhao and Hu [15] who looked at
the problem of data replication optimization so that the data
would be replicated to the peers that could make the most
efficient use of the available resources. Each agent used the
host latency, storage space and bandwidth as ingredients in
the pheromone to determine the best placement for all of the
data on all of the available hosts. The ACO then globally
optimized the placement of the replicas by allowing each
agent to choose a placement based on the previous agent’s
attempt. The placement was governed by the strength of the
pheromone at each site. The optimization finished when the
agents did not return a better arrangement. The placement
of replicas has similarities with the work described in this
paper except that the global optimization was done only one
time.

4.2 Compared with Other Services

There are some other services for redundancy mechanisms
in distributed data systems. The Contents Delivery Network
(CDN) [16] and load-balancing are well-known examples.

A typical CDN application tries to find hosts are lo-
cated at the fewest number of hops from the client and it
selects the best host to optimize the download performance.
A typical application of load-balancing is to provide a sin-
gle Internet service from multiple servers. However, both
cases require installations of software and services on the
server side to manage the client load. Our approach does



2854
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.12 DECEMBER 2012

not require the servers install any software. Our approach is
client-based system and there is no impact or changes on the
server-side. Also, our approach imposes no overhead on the
server-side, but it offers advantages to the clients to get the
data more efficiently when it resides in a number of differ-
ent locations. As long as a user has access to the data (either
through iRODS or any other file system) then the user can
use the ACO to obtain the data in an optimal way (as long
as there are multiple copies of the data).

5. Pheromone Definition

The essential component of the ACO is the pheromone.
Ants collect their food using their pheromone. The envi-
ronment around ants is similar to the environment of clients
collecting data from servers (Fig. 1).

The pheromone indicates to the agents which are the
more promising paths to use in constructing a solution to a
problem. In our case the pheromone is a metric of the via-
bility of the server to serve the data to the client in as short
a time as possible. To encourage a quick convergence to a
solution we first determine the server availability to handle
requests to download data. The availability is dependent on
the load on the server and on the network.

A ‘ping’-like application that sends a light-weight
query to the server can assess the viability of the server
(We describe an example of a ‘ping’-like application in
Sect. 8.1). The servers would then be ranked according to
their responses to the ‘ping’. It is important to point out that
the application should ping the server application that serves
the data and not the server itself since the application may
be overloaded or down whilst the server is only moderately
loaded or up and still able to respond quickly to a ping re-
quest.

However, ranking servers according to their response
times to a lightweight query is not sufficient to optimize the
download performance. It is possible that a server may re-
spond quickly to a lightweight query, but may be either un-
able to serve the data due to some component of the storage
system being offline (in the case of a compound storage sys-
tem with a disk cache and a tape store where it is possible
the tape store may be offline), or the storage resource being
very busy (possibly due to high fragmentation in the case
of disk storage systems). To address such situations we de-
vised a pheromone element based on a transfer rate metric.

Fig. 1 Environments of ants-foods and clients-data.

The rate is the inverse value of the complete download time
measured from the time that the download application starts
to the time that it finishes. This rate is necessarily smaller
than the actual transfer rate because it includes the download
time for the server to fetch the data from its system, serve it
to the client, and any time required for the client download
application to prepare the data for use. In this paper, we
do not care about the actual transfer rate in the network but
we only consider the inverse value of the complete down-
load time. Therefore, we redefine the inverse value of the
complete download time as the ‘TransferRate’.

5.1 Pheromone Element

A pheromone’s current value is based on the historical
pheromone values so the base pheromone element must be
defined first. We define the set S that includes all of the
servers we want to use. M is defined as the number of
servers in S, and pi expresses the pheromone element of
si ∈ S , 0 ≤ i ≤ M. The pheromone element is given by:

n = 1 :

pi(1) =
(CurrentTransferRate)i∑M

i=0 (CurrentTransferRate)i

(1)

n > 1 :

pi(n) =
(CurrentTransferRate)i∑M

i=0 (PreviousTransferRate)i

(2)

where CurrentTransferRate is the rate used by the down-
load application to start and complete for a given server.
The PreviousTransferRate is the rate taken by the down-
load application for previous transfers. The n corresponds
to the number of files downloaded from a given server. The
first time a file is downloaded no prior history exists and the
pheromone element pi(1) appears as a weight of the current
TransferRate as shown in the first equation (Eq. (1)).

The pheromone element value is calculated immedi-
ately after downloading a file and is stored in a information
file. This will be explained in Algorithm 2 in the next sec-
tion.

5.2 Pheromone

Now we can define the signature of the pheromone ele-
ments. We simply call it “pheromone”. The h is given as
the number of pi histories. The capital Pi expresses the
pheromone and it is given by:

1 ≤ n ≤ h :

Pi(n) =
n∑

k=0

pi(k) (3)

n > h :

Pi(n) =
n∑

k=n−h

pi(k) (4)

The pheromone value is calculated by reading the informa-
tion file just before downloading a file. This is described in
Algorithm 1 in the next section.



KAWAI et al.: A SWARM INSPIRED METHOD FOR EFFICIENT DATA TRANSFER
2855

Table 1 The example of an information file (i.e. n = 10, h = 4).

i Server Name iping Time Download TransferRate p(6) p(7) · · · p(10)

0 Host01.kek.jp 3.4437897 42.4323076923 0.244369558 0.244369558 · · · 0.244369558
1 Host02.kek.jp 5.16568455 28.2882051282 0.172496159 0.172496159 · · · 0.172496159
2 Host03.kek.jp 4.2385104 34.47625 0.209459621 0.209459621 · · · 0.209459621
3 Host04.kek.jp 4.7683242 30.6455555556 0.148102762 0.148102762 · · · 0.148102762
4 Host05.kek.jp 8.10615114 18.0267973856 0.2255719 0.2255719 · · · 0.2255719

6. Algorithm

Our approach selects the best server using pheromone infor-
mation before a client tries to download a file from a server.
It also requires an information file to record each server’s
information and to update the information file immediately
after the download. Our ACO agent uses these algorithms:

6.1 Algorithm to Select the Best Server

The best server is obtained by using Algorithm 1. An exam-
ple of an information file is shown in Table 1. We created
the command ‘iping’ as an example of a ‘ping’-like appli-
cation that checks the responses from the servers. In this
example, the units for the iping values of Time and Trans-
ferRate are msec and MB/sec, respectively. The set S has all
of the servers that are listed in the information file, infoText.
The infoText file also has the historical pheromone element
values (pi) for each server that were previously defined in
the equations (Eq. (1), Eq. (2)). Reading Pi means to read
the required pi from infoText and calculate Pi as defined in
the equations (Eq. (3), Eq. (4)). The n corresponds to the
number of downloads in progress at that time.

The iping Boundary Time (ipBT ) is a fixed reference
value for the iping results and is set at the hypothetically best
response time. This helps to filter out servers in the srvList
that have unacceptable response times (either because they
are busy and cannot respond within an acceptable time or
because they are offline).

6.2 Algorithm to Update the Information File

While executing a download, the given server becomes the
bestServer that is selected by Algorithm 1. The infoText file
is then updated immediately after each download is com-
pleted. The infoText file is updated using Algorithm 2. The
stdOutput is the standard output for the download com-
mands. TransferRatenew is the TransferRate of the current
download from the bestServer.

6.3 Comparison with Traditional Method

One of the traditional methods is just using the best trans-
fer rate from the previous session. The algorithm using this
method can be implemented by using the best transfer rate
with the same algorithms (Algorithm 1, 2) instead of using
Pi and pi. This method seems to be simple, but there is no
difference in the algorithms. In addtion, with this method

Algorithm 1 Select the best server with pheromone
1: open file infoText
2: create the set S
3: close file infoText
4: for each serverName si in S do
5: execute iping to si

6: tpi ← response time of si iping
7: add tpi to ipingList
8: end for
9: tpmin ← min(tp ∈ ipingList)

10: for each serverName si in S do
11: if tpi ≤ (tpmin + ipBT ) then
12: add si to srvList
13: end if
14: end for
15: open file infoText
16: if n > 1 then
17: for each selectedServer ssi in srvList do
18: seek the location of ssi information
19: read Pi from infoText
20: add Pi to PList
21: end for
22: else
23: for each selectedServer ssi in srvList do
24: seek the location of ssi information
25: read TransferRatei
26: add TransferRatei to trList
27: end for
28: for each selectedServer ssi in srvList do
29: calculate pi(1) with TransferRatei and trList
30: add pi(1) to PList as Pi(1)
31: end for
32: end if
33: close file infoText
34: Pmax ← max(P ∈ PList)
35: for each selectedServer ssi in srvList do
36: if Pi is equal to Pmax then
37: bestServer ← ssi

38: break;
39: end if
40: end for
41: return bestServer

we cannot correct the historical information, as when using
h in our approach. The results of the traditional method are
shown in Sect. 7.3.1.

7. Simulation

We created a simulator to study the behavior of ACO-based
data transfers. The simulator provided a controlled environ-
ment within which it was possible to study different types of
scenarios.



2856
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.12 DECEMBER 2012

Algorithm 2 Update the information file
1: open stream stdOutput
2: execute download from bestServer
3: TransferRatenew ← TransferRate
4: close stream stdOutput
5: open file infoText
6: create the set S
7: for each serverName si in S do
8: seek the location of si information
9: read TransferRatei

10: add TransferRatei to trList
11: end for
12: close file infoText
13: calculate pnew with TransferRatenew and trList
14: open file infoText
15: seek the location of bestServer information
16: update TransferRatebestServer ← TransferRatenew
17: add pbestServer ← pnew to infoText
18: remove poldest from infoText
19: close file infoText

7.1 Model

For the simulation we modeled two typical scenarios for
downloading data in a distributed environment. The model
assumed the data set spanned five different servers.

• Phased Degradation. In this case the performance of
each server degrades over time as shown in Fig. 3. Af-
ter the first file has been transferred the first server’s
performance degrades. The other servers’ perfor-
mance also degrades as they complete transfers. Af-
ter seven transfers the performance improves for all of
the servers, so they return to their optimal performance
status after 12 files have been transferred. This situa-
tion is fairly common in distributed environments when
clients start working in lock-step among the servers.
Such a situation may appear when a group of clients
start to use one system until its performance becomes
unacceptable and they search for a new server for their
downloads.

• Random Degradation. In this case the performance of
each server degrades randomly over time as shown in
Fig. 5. The performance of the first server degrades af-
ter 10 transfers and then improves and degrades again
after 17 transfers. The second server degrades after
seven transfers, returns to optimal performance after
13 transfers and then degrades after 20 transfers. The
other servers follow similar patterns. This situation
models a more random access pattern where there is
no coupling among the performance of the servers.

7.2 Procedure

The simulation first required the preparation of input data
for the ACO-based data transfer application. The models
were used to generate several information files (Fig. 2). The

Fig. 2 Simulator uses several information files.

server conditions for the two scenarios were defined in ad-
vance in each information file. The simulator runs by read-
ing each information file. These information files contain
rows of numbers according to the following schema (the ex-
ample information file is already shown in the Table 1):

• server name
• ‘ping’ time
• download transfer rate
• upload transfer rate
• pi(k)

Each row corresponded to the download information
for a given file for a given server. For these simulations the
download information was based on the iRODS iget down-
load application. The simulation program read in a data set
and ranked the servers according to the ‘ping’-like informa-
tion. The ‘ping’ information was based on the results of the
iping command for iRODS. This determined the initial se-
lections for which agents would use the hosts.

Each agent in the simulation program then used the
best host on the list and started to read the simulation
data (which included simulated download rates for the
servers). The pheromone was then computed with Eq. (1)
using the information from all of the available hosts that
had completed their first download. Each agent ready to
perform a download selected the available host with the
best pheromone and updated the pheromone value after the
download using Eq. (2). This procedure continued until the
simulated data was exhausted.

7.3 Results

The results of the simulation are shown in Fig. 3 for the
Phased Degradation model and in Fig. 5 for the Random
Degradation model. Both models are using four pheromone
histories (h = 4).

7.3.1 Phased Degradation

Figure 3 shows the first simulation results corresponding to
the Phased Degradation model. The upper figure shows the
transfer rate for each server without the ACO-based down-
load. The selected curve corresponds to the ACO-based
download. The lower figure shows the pheromone value for



KAWAI et al.: A SWARM INSPIRED METHOD FOR EFFICIENT DATA TRANSFER
2857

Fig. 3 Transfer rate and pheromone for the phased degradation (the x-
axis corresponds to the downloaded file number).

each host with the max P curve corresponding to the ACO-
based download case. In this case of rapid degradation of
the servers the ACO-based approach performed well. The
pheromone is based on history information and there is al-
ways a delay between the response of the ACO-based down-
load and the performance of the server.

In the initial stages the best server rapidly becomes the
worst server resulting in the ACO-based approach tracking
the degradation of the servers. However, as the servers im-
prove in performance the ACO-based approach gradually
improves. Clearly, this situation is a troublesome case, but
realistic, situation and it is encouraging that the trough in
the performance is steeper than that for each server, indicat-
ing that the algorithm is doing well in a bad situation. The
lower graph shows consistently that the value of max P cor-
responding to the best path consists of those hosts with the
best pheromone value at that time.

We also simulated this situation with the same data
in the traditional method described in Sect. 6.3. Figure 4
shows the results from using slightly lower-performance
hosts compared with our approach.

7.3.2 Random Degradation

Figure 5 shows the simulation results for the random degra-
dation model. This case clearly shows that the results from
the ACO-based approach shown in the selected curve out-
perform those based on any individual server. The visible
dips at the beginning and end of the transfer period are an
artifact of the pheromone having to rely on historical infor-
mation. The pheromone for the best hosts shown in the max
P curve in the lower figure consistently corresponds to the
best host at that time.

Fig. 4 Transfer rate in the traditional way.

Fig. 5 Transfer rate and pheromone in the random degradation model
(the x-axis corresponds to the downloaded file number).

8. Test Implementation

We took the ACO-based application and used it for a real
test-setup consisting of three distributed servers: one in the
UK, one in the USA and one in Japan. We used the iget
application of iRODS to download files from each system.
The implementation required the development of scripts to
provide the functions needed to implement the ACO-based
downloads. These consisted of:

• iping (new i-command for iRODS). This was needed
to perform the light-weight queries of the servers r to
determine the server rankings.

• iping.py (script to drive the iping command). This
script wrapped the iRODS icommand with iget.py.

• iget.py (script using the original iget command). This
script implemented the ACO agent (as the ACO-based
download algorithms) and called the iRODS iget com-
mand.



2858
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.12 DECEMBER 2012

8.1 iping/iping.py

Currently iRODS does not have a command like ping that
can be used to check the server availability. We created the
iping application that calls the iRODS server and gets the
echo outputs from the server.

The iping.py can specify the iRODS host with the op-
tion “-H” and iping the server. That is because the iping
command can execute only on the server that is specified
in the client’s iRODS configuration file (.irodsEnv). All i-
commands should follow the information in the .irodsEnv
file so we avoid including the option specifying a server
in the iping command, instead, the iping.py script takes
charge of the options. The iping application also includes
“ping to all()” function that can execute iping to all servers
specified in a configuration file. This function is useful for
checking all server availability just before executing iget
commands. After executing the iping command invoked by
the ping to all() function, the iping.py updates the ranking
of the servers.

8.2 iget.py

The scripts for downloading (iget.py) a file execute the fol-
lowing steps:

1) execute iping for all of the servers
2) read the configuration file
3) select the best server
4) execute iget for a file
5) get the current iget transfer rate
6) calculate pi(k)
7) update the transfer rate and pi(k)

The steps except for 4) executing iget are our ACO
agent tasks. The best server is selected in exactly the same
manner as in the simulation. First, the servers are ranked
according to their ping responses, and then the server with
the best P is chosen.

8.3 Results

The test-setup was highly distributed and consisted of three
iRODS servers: one located at Queen Mary University of
London (QMUL), UK, one at Louisiana State University
(LSU), USA and one at KEK in Japan.

The tests were performed at KEK which is regarded
as the local host and so the performance would be much
better within unloaded servers. To address this we artifi-
cially adjusted the ranking results from the iping to give
KEK the lowest ranking. The results are shown in Fig. 6.
In this example, the same pheromone values are given as
for the initial pheromone and the pheromone history (h) is
4. The first file was downloaded from LSU and the next
from QMUL. In both cases the pheromone value was low
(with the initial value set to one third of the correspond-

Fig. 6 Transfer rate and pheromone in the actual case (the x-axis corre-
sponds to the download file number).

ing pheromone for each server). The third file was down-
loaded from KEK resulting in a much higher pheromone
value. Subsequent agents quickly settled on this host for
downloading the data reinforcing the pheromone value for
the KEK server. This demonstrated that the ACO-based ap-
proach was able to quickly find the optimum performance in
a real environment.

We ran this demonstration with one client and three
servers. This approach can scale easily since each client in-
dependently checks the servers. Therefore, we can use this
approach in real environments (as mentioned in the intro-
duction).

9. Summary and Future Work

In this paper we have described an approach inspired by
swarm intelligence. We created a simulator for our ACO-
based approach and obtained results showing that our ap-
proach works well. This approach can provide a fault toler-
ant and efficient means of transferring data in a dynamic en-
vironment. Also, we implemented an iping command with
several scripts and demonstrated them in the iRODS file sys-
tem. The demonstration showed that our ACO-based ap-
proach can quickly find the optimum performance in a real
environment. In addition the self-optimizing nature of the
ACO indicates the system is tolerant to servers going offline.
In such cases the pheromone for that server will diminish
from the next iteration encouraging the agents to select an
active server.

For future work we want to apply this approach to dif-
ferent kinds of Data Grids. We also envisage a need to ‘pub-
lish’ the transfer information so that other clients in similar
locations will be able to take advantage of the recent history



KAWAI et al.: A SWARM INSPIRED METHOD FOR EFFICIENT DATA TRANSFER
2859

to more quickly select an optimal set of servers to download
from. We are also considering how to include constraint in-
formation to allow some clients to have preferential down-
loads over others.

Acknowledgment

The authors would like to thank Dr. Francesca Di Lodovico
for the iRODS setup between KEK and QMUL. Also, the
support of Dr. Shantenu Jha and his team for use of the LSU
server resource is gratefully acknowledged.

References

[1] B. Gerardo and W. Jing, “Swarm intelligence in cellular robotic sys-
tems,” Proc. NATO Advanced Workshop on Robots and Biological
Systems, Tuscany, Italy, June 1989.

[2] Y. Itow, T. Kajita, K. Kaneyuki, M. Shiozawa, Y. Totsuka, Y. Hayato,
T. Ishida, T. Ishii, T. Kobayashi, T. Maruyama, K. Nakamura, Y.
Obayashi, Y. Oyama, M. Sakuda, M. Yoshida, S. Aoki, T. Hara, A.
Suzuki, A. Ichikawa, T. Nakaya, K. Nishikawa, T. Hasegawa, K.
Ishihara, A. Suzuki, and A. Konaka, “The JHF-Kamioka neutrino
project,” KEK Report, vol.4, p.29, 2001.

[3] “T2K-ND280 collaboration,” Online, http://www.nd280.org/
[4] “iRODS – the integrated rule-oriented data system,” Online,

http://www.irods.org
[5] A. Rajasekar, M. Wan, R. Moore, and W. Schroeder, “A proto-

type rule-based distributed data management system,” Proc. HPDC
workshop on Next Generation Distributed Data Management, Paris,
France, May 2006.

[6] “Data Intensive Cyber environments (DICE) Center at the University
of North Carolina at Chapel Hill,” Online, http://dice.unc.edu/

[7] C. Blum, “Ant colony optimization: Introduction and recent trends,”
Physics of Life Reviews, vol.2, pp.353–373, Oct. 2005.

[8] C. Jiang, C. Wang, X. Liu, and Y. Zhao, “A survey of job schedul-
ing in grids,” Lect. Notes Comput. Sci., vol.4505/2007, pp.419–427,
2007.

[9] G. Subashini and M. Bhuvaneswari, “Non dominated particle swarm
optimization For scheduling independent tasks On heterogeneous
distributed environments,” Int. J. Advance. Soft Comput. Appl.,
vol.3, no.1, March 2011.

[10] A. Abraham, H. Liu, W. Zhang, and T. Chang, “Scheduling jobs on
computational grids using fuzzy particle swarm algorithm,” pp.500–
507, Springer-Verlag Berlin Heidelberg, 2006.

[11] H. Izakian, B.T. Ladani, K. Zamanifar, and A. Abraham, “A novel
particle swarm optimization approach for grid Job scheduling,” In-
formation Systems, Technology and Management, Communications
in Computer and Information Science, vol.31, Part 5, pp.100–109,
2009.

[12] A. Abraham, S. Das, and S. Roy, “Swarm intelligence algorithms
for data clustering,” In Soft computing for knowledge discovery and
data mining, vol.Part IV, pp.279–313, 2007.

[13] A.N. Sinha, N. Das, and G. Sahoo, “Ant colony based hybrid opti-
mization for data clustering,” Kybernetes, vol.36, no.2, pp.175–191,
2007.

[14] R. Peterson and E.G. Sirer, “Antfarm: efficient content distribution
with managed swarms,” NSDI ’09: USENIX Symposium on Net-
worked Systems Design and Implementation, pp.107–122, 2009.

[15] Y. Yang, Y. Zhao, and F. Hou, “Ant colony optimization algorithm
based P2P system replica optimal location strategy,” Service Opera-
tions and Logistics, and Informatics, pp.494–497, Oct. 2008.

[16] “Akamai technologies, globally distributed content delivery,”
http://www.akamai.com/dl/technical publications/
GloballyDistributedContentDelivery.pdf

Yutaka Kawai has been a researcher in
Computing Research Center at High Energy Ac-
celerator Research Organization (KEK) since
2009. His research interest is the interoperabil-
ity for Grid/Cloud computing. He is currently a
Ph.D. student at the Graduate University for Ad-
vanced Studies (SOKENDAI). He is a member
of IPSJ and IEEE.

Adil Hasan is a research fellow at the Uni-
versity of Liverpool and a honorary research fel-
low at Kings College London. He has consider-
able experience in data management and distri-
bution in both scientific and non-scientific data.
Recently he was part of the technical coordina-
tion team for the SHAMAN EU-funded digital
preservation project.

Go Iwai is currently Assistant Professor
in the Computing Research Center of Applied
Research Laboratory at High Energy Accelera-
tor Research Organization (KEK). His research
focus is developing the universal interface to
different middleware components in Grids and
Clouds. He is a member of Physical Society of
Japan.

Takashi Sasaki is Professor of High Energy
Accelerator Research Orgernization (KEK) and
the Graduate University for Advanced Studies
(SOKENDAI) since 2007.

Yoshiyuki Watase joined High Energy
Physics Laboratory (KEK), Tsukuba, Japan in
1974 to study elementary particle physics by
high energy particle accelerators. His current in-
terests are in the field of distributed computing
to cope with a huge amount of experimental data
in the world wide collaboration. He is a mem-
ber of Physical Society of Japan, IPSJ, and IEEE
CS.


