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SUMMARY Predicting network throughput is important for network-
aware applications. Network throughput depends on a number of factors,
and many throughput prediction methods have been proposed. However,
many of these methods are suffering from the fact that a distribution of
traffic fluctuation is unclear and the scale and the bandwidth of networks
are rapidly increasing. Furthermore, virtual machines are used as platforms
in many network research and services fields, and they can affect network
measurement. A prediction method that uses pairs of differently sized con-
nections has been proposed. This method, which we call connection pair,
features a small probe transfer using the TCP that can be used to predict the
throughput of a large data transfer. We focus on measurements, analyses,
and modeling for precise prediction results. We first clarified that the ac-
tual throughput for the connection pair is non-linearly and monotonically
changed with noise. Second, we built a previously proposed predictor using
the same training data sets as for our proposed method, and it was unsuit-
able for considering the above characteristics. We propose a throughput
prediction method based on the connection pair that uses ν-support vector
regression and the polynomial kernel to deal with prediction models repre-
sented as a non-linear and continuous monotonic function. The prediction
results of our method compared to those of the previous predictor are more
accurate. Moreover, under an unstable network state, the drop in accuracy
is also smaller than that of the previous predictor.
key words: network measurement, virtualization, PlanetLab, Support Vec-
tor Regression (SVR)

1. Introduction

Network throughput prediction is a challenging issue in the
network research field. A predicted network throughput can
be used to enhance grid task scheduling, path selection on
multiple paths, and the efficiency of data transfer. Vari-
ous throughput prediction methods have been proposed, but
many of them are suffering from the fact that the scale and
bandwidth of networks are rapidly increasing. Additionally,
the current traffic consists of mice and elephants [1], [2]. A
spike that corresponds to large and abrupt throughput is oc-
casionally caused by elephants. Such spikes are obstacles in
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determining a model of probability distribution for the pre-
diction. A prediction method that uses pairs of different-
sized connections was previously proposed by Wolski et
al. [3]. This method, which we call connection pair, fea-
tures a small probe transfer using the Transmission Control
Protocol (TCP) that can be used to predict the throughput of
a large data transfer.

Virtualization technology has been widely applied in
many network research fields, and virtual machines have re-
cently been used as platforms for grid computing [4], net-
work testbeds [5], [6], and cloud services [7]. We should
particularly consider the impact of virtualization because it
can affect network measurement. PlanetLab [6] is a virtual-
ized network testbed, and Linux-Vserver is used to virtual-
ize resources on a node. In the testbed, a platform called a
sliver is provided as a virtualized environment to users, and
multiple slivers can be run simultaneously at each node. A
set of these slivers participating in the same activity at dif-
ferent nodes is called a slice. Thus, PlanetLab consists of
virtualized nodes on the Internet.

The aims of our research are to predict network
throughput and to improve the predicted throughput results
in comparison with those of an existing prediction method.
The prediction results can be improved by considering his-
torical measurements, and such prediction can be formu-
lated as a regression problem. We first selected an appropri-
ate probe size (256 KB) [8] through Spearman’s rank corre-
lation coefficient (ρ) before the prediction. Second, we built
a previously proposed predictor [9] for comparison, and de-
veloped a throughput prediction method that uses ν-support
vector regression (SVR) and the polynomial kernel to deal
with prediction models represented as a non-linear and con-
tinuous monotonic function. Next, we compared the predic-
tion results of our proposed method with those of the pre-
viously proposed predictor for the same data sets. Finally,
we composed additional input data sets below the mean
throughput of the probe transfer to evaluate the prediction
results under an unstable network state.

In this paper, we present our throughput prediction
method and show its improved prediction results. The con-
tributions of this work are as follows.

• We find that the previous prediction method is unsuit-
able when actual throughput is non-linearly and mono-
tonically changed with noise.

• We propose a network throughput prediction method
with improved accuracy. The prediction results of the
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proposed method are more accurate than the previous
one for the same data sets.

• The proposed method is shown to be more robust than
the previous one. In an evaluation under an unstable
network state, the range of any drop in accuracy is
smaller than that of the previous method.

The rest of this paper is organized as follows. First, we
describe related work in Sect. 2 and explain our measure-
ment methodology in Sect. 3. Second, we present the pre-
viously proposed method and our prediction method using
the same data sets in Sects. 4 and 5. Third, we discuss the
prediction results of these two methods in Sect. 6. Finally,
we conclude by summarizing the main points in Sect. 7.

2. Related Work

Many throughput prediction methods have been based on
historical data. He et al. [10] proposed a history-based (HB)
prediction. It is based on the moving average and Holt-
Winter models. Wolski et al. [3] empirically established the
basic probe size as 64 KB for the Network Weather Ser-
vice (NWS). They used the connection pair to predict the
throughput of data transfer on NWS and focused on only
the connection pair where the probe size was 64 KB and
data size was 16 MB. However, they selected the size of the
connection pair empirically and generated connection pairs
in limited networks, so the probe size might be unsuitable
for other networks. Moreover, Yousaf et al. [11] reported
the requirement of a large-sized probe, but they did not se-
lect an appropriate probe size for the Internet. Vazhkudai
et al. [12] proposed a linear regression model using a com-
bination of the 64-KB probe and past measurements; their
model uses the least squares method. However, there were
less data transfers than probe transfers, meaning the data
size was not determined precisely. Swany et al. [9] proposed
a prediction method using the cumulative distribution func-
tion (CDF) of network throughput for probe and data trans-
fers. The throughput for data transfer was predicted by using
the CDF of a probe transfer. In particular, we build in this
work the CDF predictor, and compare the prediction results
of our method with those of the CDF predictor for the same
data sets.

Support vector machines (SVMs) and support vector
regression (SVR) have been used in various network re-
search areas. Bermolen et al. [13] used an SVR for link load
prediction. Beverly et al. [14] considered an SVM for pre-
dicting round-trip latency. Moreover, Feng et al. [15] pro-
posed WLAN traffic prediction using an SVM. Mirza et
al. [16] have proposed a throughput prediction method us-
ing an SVR that combines prior data transfers and measure-
ments of network metrics, such as packet loss, queuing de-
lay, and available bandwidth. However, our method depends
only on measurements of the connection pair. Thus, our
method uses bivariate data while their method uses multi-
variate data. A radial basis function (RBF) for the kernel
trick is used to consider non-linear and multivariate regres-

sion. They used their laboratory testbed [16] for passive and
active measurements of these network metrics. In evalua-
tions, the prediction results with the passive measurements
were more accurate than those with the active measure-
ments because of the accurate network metrics for the pas-
sive measurements. However, the network metrics are nor-
mally undisclosed to users, and it is hard to estimate them on
end nodes precisely. Next, they used the Resilient Overlay
Networks (RON) testbed [17] to evaluate their method with
active measurements on the Internet, but nodes that should
have little or no other CPU or network load were restricted
and the operating system was also limited to FreeBSD 4.7
for the active measurements of the network metrics. Thus,
these limitations may be unsuitable for evaluations on the
Internet.

3. Measurement Methodology

We present here an overview of our prediction method. We
first selected an appropriate probe size through Spearman’s
rank correlation coefficient (ρ). However, an incorrect probe
size was selected due to the impact of virtualization. After
filtering the negative effects, a 256-KB probe was selected
for the prediction model. We then developed a throughput
prediction method that uses ν-SVR and the polynomial ker-
nel. In this section, we describe how to select the appro-
priate probe size to gather training data sets, and we show
our throughput measurement method. Finally, we present
the characteristics of the training sets and input sets for the
prediction methods.

3.1 Selection of Probe Size

To find the appropriate sizes for better prediction perfor-
mance, we evaluated various combinations of probe and
data sizes of connection pairs. The test transfers of con-
nection pairs are generated every 5 minutes on PlanetLab.
The details of the measurements and results are described in
another paper [8]. For convenience, we summarize the main
points of that paper below. We gathered a data set of approx-
imately 15,000 connection pairs over 2 weeks, and selected
the appropriate probe size through Spearman’s rank correla-
tion coefficient (ρ) before the prediction. Thus, we assumed
only monotonicity between probe and data throughputs. For
example, if probe throughput is decreased, data throughput
will be decreased monotonically. A high ρ value implies
that the probe will have a high predictability and that it can
therefore be regarded as appropriate for prediction. The 32-
KB probe had the highest ρ value (0.69) in our evaluation.

A packet spacing is an idle period between the recep-
tion of a packet and the sending of the next packet. It
is approximately 0.000010 [s] over a non-virtualized envi-
ronment. However, we found oversized packet spacings,
which can result from CPU scheduling latency, even when
no significant changes occur in well-known network met-
rics. These packet spacings are a major cause of throughput
fluctuations in the best condition (Fig. 1), and they are un-
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Fig. 1 CDF of packet spacing at anomalous case.

Table 1 Geographic location and mean RTT at node pairs.

Node Geographic Node pair Mean
name location (arrow is transfer direction) RTT [s]

α
Europe α← β 0.0283

β

γ
Europe γ ← δ 0.0477

δ

ε
Europe ε ← ζ 0.0511

ζ

η
North America η← θ 0.0370

θ

κ
North America κ ← λ 0.0598

λ

μ
North America μ← ν 0.0392

ν

usual anomalies in a virtualized network environment [18].
An anomalous case is that throughput instability occurs de-
spite a stable network state, which can be observed through
round-trip time (RTT), packet loss rate, and so on. Such
anomalous cases are unnecessary for a precise prediction
model, and we should review the actual throughput care-
fully. After filtering the anomalous cases, we selected a
256-KB probe (ρ = 0.67) [8], instead of the 32-KB probe
(ρ = 0.31), as the appropriate probe size.

3.2 Training Data Sets

For training data sets, we empirically selected six pairs of
nodes from PlanetLab nodes located in both North America
and Europe, which we refer to as nodes (α, β), (γ, δ), (ε,
ζ), (η, θ), (κ, λ), and (μ, ν). The geographic location and
mean RTT using ping for all the pairs are shown in Table 1.
We simultaneously generated connection pairs at the sender
every 5 minutes. Each of that consists of two simultane-
ous TCP/IP streams in different sizes. Smaller one is called
‘probe’ and larger one is called ‘data’. This time we used
the 256-KB probe and the 16-MB data. If the measured size
is smaller than expected or if the transfer time is more than 5
minutes, we judge at the receiver that the measurement has
failed. Thus, network throughput was measured using the
connection pair. The measurement methodology is shown

Fig. 2 Measurement methodology.

Table 2 Statistics of training data sets. (NT is network throughput).

Node Min NT Mean NT Max NT Total
pair [KBps] [KBps] [KBps] counts
α, β 138.1 2008.0 2107.8 4705
γ, δ 323.7 1280.5 1290.7 3690
ε, ζ 0.2 1140.9 1168.0 4535
η, θ 304.3 1467.6 1616.3 4941
κ, λ 56.3 975.0 1032.1 4936
μ, ν 845.9 1335.4 1512.3 5340

Fig. 3 Actual throughput for connection pair at node pair (η, θ).

in Fig. 2. We gathered training data sets for all the node
pairs over seven days. There were no anomalous cases in the
training sets. The statistics for the training sets are shown in
Table 2. The actual throughput for the connection pair at (η,
θ) is described in Fig. 3. It is shown to be non-linear with
noise. Thus, probe and data throughputs are monotonically
changed. Finally, we should consider noise and non-linear
characteristics for a precise prediction model.

3.3 Input Data Sets

To evaluate prediction methods, the input data sets per node
pair were collected over 36 hours. The actual throughput of
the input data set at node pair (η, θ) is shown in Fig. 4. The
actual throughput widely fluctuated with noise. Prediction
results under an unstable network state are more important
than those under a stable one. If the network state is stable
or stationary, we do not have to predict network through-
put. However, the scale and the bandwidth of networks
are rapidly increasing and the network state is dynamically
changing. To evaluate the prediction results under an unsta-
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Fig. 4 Actual throughput of input data set at node pair (η, θ).

Table 3 Composition of input data sets. (NT is network throughput).

Node pair Mean NT [KBps] Total counts Below mean
α, β 1116.0 1134 328
γ, δ 699.2 779 146
ε, ζ 586.0 1130 325
η, θ 760.5 929 378
κ, λ 364.9 654 259
μ, ν 656.5 992 377

ble network state, we determined the mean throughput of a
probe transfer as a threshold value, and additional input data
sets consisted of the actual throughput below the threshold
value. The composition of the data sets is described in Ta-
ble 3. For example, at node pair (α, β), the number of con-
nection pairs at the input set is 1134 and that at the additional
set is 328.

4. Previous Prediction Method (CDF Predictor)

4.1 Building CDF Predictor

While other predictors require network metrics, such as
RTT, packet loss, and so on, it is possible to build the CDF
predictor [9] using only the connection pair. Thus, it is ap-
propriate for the comparison of prediction results under the
same condition. We first built the CDF predictor with the
training sets to evaluate whether this predictor produces pre-
cise prediction results. It computed the CDF of throughput
for probe and data transfers. The throughput for data trans-
fer was predicted by using the CDF of a probe transfer. If
there is no noise, throughput can be predicted precisely. The
CDF of the connection pair at node pair (η, θ) is shown in
Fig. 5. In the previous work [9], the curve shape of the CDF
of the connection pair was similar, but that of the CDF at
all the node pairs was different. The cause of the different
shape is noise.

4.2 Prediction Results

Prediction results of the CDF predictor at node pair (κ, λ)
are shown in Fig. 6. Because the CDF predictor deals with
all data, the results are far from those for the input data set.

(a) CDF of probe transfer

(b) CDF of data transfer

Fig. 5 CDF of connection pair at node pair (η, θ).

Fig. 6 Prediction results of CDF predictor at node pair (κ, λ).

Thus, a major cause of the difference is noise. Moreover, the
difference between the actual throughput and the predicted
throughput becomes large when the probe throughput is be-
low the mean probe throughput (364.9 KBps). Therefore,
the prediction results would be inaccurate under an unsta-
ble network state. The other results are similar to the above
results. We should consider the noise and monotonicity be-
tween probe and data throughputs for a precise prediction
model.
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5. Proposed Prediction Method (SVR Predictor)

5.1 SVR Overview

Support vector regression (SVR) is a version of a support
vector machine (SVM) [19] for regression. The concept of
SVR is to maximize margins. Assume we have a training
data set {(x1, y1), ...., (xi, yi), ...., (xl, yl)} ∈ Rn × R, where Rn

is the space of the input features xi, and yi is a symbol value.
Here, we give an overview of two types of SVR: ε-SVR [19]
and ν-SVR [20]. ε-SVR finds a function f (x) that approxi-
mates future values accurately. The function is defined as

f (x) = wφ(x) + b (1)

where w ∈ Rn, b ∈ R, and φ is a non-linear transformation
from Rn to high-dimensional spaces. An ε-insensitive loss
function is used to measure an empirical error and is defined
as

Lε( f (xi), yi) =

{
0, if| f (xi) − yi| ≤ ε
| f (xi) − yi| − ε, otherwise

(2)

ε-SVR can be written as

min
1
2
‖w‖2 +C

n∑
i=1

(ξi + ξ
∗
i ) (3)

where C is a weight parameter. The constant C > 0 is used
to determine the trade-off between training error and model
flatness. Slack variables ξi and ξ∗i are allowed to lie outside
of an ε-insensitive tube. Thus, ε-SVR calculates the dis-
tance of data points on the tube to determine the shape of
the tube. However, the shape of the tube would be changed
inappropriately if there was an outlier, such as noise. ν-SVR
is a modified version of ε-SVR. It has the advantage that a
parameter ν, which replaces C, can be interpreted as both
an upper bound on the fraction of margin errors and a lower
bound on the fraction of support vectors. Thus, there is no
calculation of distance on the outside tube in ν-SVR. Even if
there is an outlier, we can determine the appropriate shape of
the tube. We thus selected ν-SVR for our prediction method.
We can apply the kernel trick [21] in SVR without ever hav-
ing to compute the mapping explicitly. The value of the
kernel is equal to the inner product of two vectors xi and x j

in the feature space φ(xi) and φ(x j). Commonly used kernel
functions are linear, polynomial, and radial basis. In our pre-
diction method, we use the polynomial function to consider
the non-linear characteristics of traffic. It is given by

k(xi, x j) = (< xi · x j > +1)d (4)

where d is degrees.

5.2 Building SVR Predictor

We introduce here our prediction method using ν-SVR
and the polynomial kernel. A linear regression curve for
throughput prediction would be inappropriate. Various

types of traffic, such as mice and elephants [1], [2], co-exist
in current networks, and spikes that correspond to large and
abrupt throughput are occasionally caused by the elephants.
The distribution of traffic fluctuation is close to long-tail by
the above characteristics. In particular, the marginal dis-
tribution of the traffic is not Gaussian [1]. Again, the actual
throughput was changed monotonically and there was noise.
Then, ε-SVR would be inappropriate because it calculates
the distance of data points for the shape of the tube. The
proposed method uses ν-SVR to deal with noise. The radial
basis function (RBF) has been introduced for the purpose
of function interpolation, and it can also be used for non-
linear characteristics. In comparison with the polynomial
kernel, the RBF would be undesirable when there is noise
or a paucity of data. Because of this, we apply the polyno-
mial kernel of degree 3 into the proposed method to consider
a non-linear and continuous monotonic function. The SVR
predictor for node pair (η, θ) is shown in Fig. 7. The number
of support vectors is 2472, and the other data points are used
for the tube of the regression curve. Although there is noise,
the SVR predictor reflects the characteristics of a non-linear
and continuous monotonic function. The other node pairs
are similar to the above case. The e1071 package [22] in

(a) Support vectors

(b) Tube of regression curve

Fig. 7 SVR predictor at node pair (η, θ).
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R [23] is used for the predictor. It offers an interface to the
libsvm library [24], which is a popular SVM tool. The other
parameters in the package are set to the default values.

6. Comparison of Prediction Results

To evaluate the accuracy of an individual throughput predic-
tion result at the predictors, we used the relative prediction
error (RPE) [10], which is defined as

RPE =
R̂ − R

min(R̂,R)
(5)

where R̂ is the predicted throughput and R is the actual
throughput. We show the fraction of RPE within 10% or
less, which is written as

Fraction o f RPE =
�{r| − 0.1 < RPE(r) < 0.1}

�{r} (6)

where r is the input set. To evaluate the entire input data
sets and the entire additional input data sets, we used the
root-mean-square error (RMSE). It provides an error for the
entire input sets. The minimum error value would be one
key criterion in selecting a precise predictor.

RMSE =

√√
1
n

n∑
i=1

(R̂ − R)2 (7)

where n is the number of connection pairs at the input set,
and R̂ and R are the same as for RPE. To summarize, we
compare the individual prediction result through RPE and
the entire prediction results through RMSE. The fraction of
RPE within 10% or less for the input data sets is shown in
Fig. 8. At node pair (μ, ν), 49.8% of the CDF predictor has
an RPE of 10% or less while 89.3% of the SVR predictor
has an RPE of 10% or less. In the other input data sets, the
fraction of RPE with SVR was higher than that with CDF.
Moreover, the RMSE with SVR (Table 4) was also smaller
than that with CDF. From these results, the SVR predictor
is more precise than the CDF predictor. Next, prediction
results at node pair (η, θ) are shown in Fig. 9. The regression
curve of the SVR predictor is more accurate than that of
the CDF predictor. Thus, the noise had little effect on the

Fig. 8 Fraction of RPE within 10% or less for input data sets.

SVR predictor. The fraction of RPE within 10% or less and
the RMSE for the additional sets are shown in Fig. 10 and
Table 5 respectively. For the additional sets, the fraction of
RPE with SVR was higher than that with CDF. Although
the fraction of RPE with the SVR predictor decreased, the
range of the drop was small in comparison with that of the
CDF predictor. In the fraction of RPE with CDF, the range
of the drop at node pair (κ, λ) was 33.9%, the largest value.
Furthermore, the RMSE value with SVR was also smaller
than that with CDF. These results are sufficient to show that

Table 4 Root-Mean-Square error of input data sets.

Node pair SVR Predictor CDF Predictor
α, β 94.6 113.3
γ, δ 27.0 51.4
ε, ζ 40.9 79.7
η, θ 155.7 187.5
κ, λ 168.1 203.0
μ, ν 102.7 157.2

Fig. 9 Prediction results at node pair (η, θ).

Fig. 10 Fraction of RPE within 10% or less for additional input data sets.

Table 5 Root-Mean-Square error of additional input data sets.

Node pair SVR Predictor CDF Predictor
α, β 137.7 180.3
γ, δ 35.0 98.2
ε, ζ 56.1 137.7
η, θ 183.0 230.0
κ, λ 182.6 251.9
μ, ν 100.8 192.5
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Fig. 11 Prediction results at node pair (κ, λ).

Table 6 Fraction of RPE of degrees for input data sets. (Deg. is degree).

Node Fraction of RPE [%]
pair Deg. 2 Deg. 3 Deg. 4 Deg. 5
α, β 96.0 96.0 96.0 96.0
γ, δ 98.8 98.8 98.8 98.5
ε, ζ 98.7 98.7 98.3 98.3
η, θ 81.5 81.1 80.2 79.9
κ, λ 48.9 50.2 51.8 53.8
μ, ν 89.0 89.3 89.6 89.6

our SVR predictor is precise, robust, and better performing
than the CDF predictor.

While the CDF predictor deals with all data that in-
clude noise, our SVR predictor uses only characteristic fea-
tures in the training set. This explains its better prediction
results. The regression curve of the SVR predictor at node
pair (κ, λ) (Fig. 11) was also closer to the input data set in
comparison with that of the CDF predictor. Because com-
putational resources and the I/O device of the node on the
virtualized testbed are shared by many slices, the sharing
can affect the prediction results. Moreover, a congested net-
work state for the node pair can also affect the prediction
results. We should clarify what effects lead to the changes
in the prediction results, and investigation of this is one of
our future works.

To investigate the adequacy of degree 3, we performed
the same experiments by varying the degree from 2 to 5. We
omitted the polynomial kernels of degree 6 and above be-
cause the regression curve could be fitted to a complicated
curve, consequently resulting in overfitting. Moreover, it is
time-consuming to determine the regression curve with ker-
nels of high degree. The evaluation results are summarized
in Table 6. These results show that there are no significant
differences in the RPE, except in the case at node pair (κ,
λ). Thus, in this study, we concluded that the 3-degree poly-
nomial kernel, which is the default value, is a reasonable
choice for our prediction method. Next, from the results ob-
tained with degree 5 at node pair (κ, λ), we found that the
5-degree kernel could achieve better RPE results than the
3-degree kernel. Figure 12 shows the regression curves of
both 3- and 5-degree kernels. From this figure, we observe
that although both the curves do not fit ideally, the discrep-

Fig. 12 Prediction results with degree 3 and 5 at node pair (κ, λ).

ancy is small when we use the 5-degree kernel. In future, we
intend to investigate the reason why kernels of higher degree
can outperform in such cases.

To summarize, the actual throughput for the connection
pair had noise and non-linear characteristics, and the CDF
predictor was unsuitable for considering the above charac-
teristics. In our prediction method, ν-SVR and the polyno-
mial kernel are used to deal with a non-linear and continu-
ous monotonic function. These lead to the improved predic-
tion results. In the evaluation, we showed that our proposed
method is better performing than the CDF predictor through
RPE and RMSE.

7. Conclusion

In this work, we focused on measurements, analyses, and
modeling for precise prediction results. The appropriate
probe for the connection pair was selected through the rank
correlation coefficient. Due to the impact of virtualization,
an incorrect probe size was first selected. After filtering the
negative effects, the 256-KB probe was selected as the ap-
propriate probe size. The actual throughput with the 256-
KB probe was non-linearly and monotonically changed with
noise. We first built a predictor based on an existing pre-
diction method [9] for the same data sets as for our method
to evaluate whether it produces precise prediction results.
We found that the existing prediction method was unsuit-
able when actual throughput was non-linearly and monoton-
ically changed with noise. We thus proposed a throughput
prediction method for precise prediction results. The pro-
posed method uses ν-SVR and the polynomial kernel to deal
with prediction models represented as a non-linear and con-
tinuous monotonic function. The prediction results of our
proposed method are more accurate than those of the exist-
ing one. Furthermore, it is more robust than the existing
one under an unstable network state. To summarize, 256-
KB probes are appropriate for the current networks, and our
SVR predictor is accurate, robust, and suitable for its pur-
pose.

In future work, we intend to investigate what effects
lead to the change in the prediction results and find appro-
priate parameters for SVR using grid search for the more
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precise results. Next, we will gather data sets from multiple
sites on the virtualized network testbed and non-virtualized
environments to improve our prediction method, and com-
pare the prediction results with those of other prediction
methods. We will also design and implement a network
throughput prediction system for network-aware applica-
tions.
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