
2898
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.12 DECEMBER 2012

PAPER Special Section on Parallel and Distributed Computing and Networking

Mapping Optimization of Affine Loop Nests for Reconfigurable
Computing Architecture∗

Dajiang LIU†, Nonmember, Shouyi YIN†a), Member, Chongyong YIN†, Leibo LIU†,
and Shaojun WEI†, Nonmembers

SUMMARY Reconfigurable computing system is a class of parallel ar-
chitecture with the ability of computing in hardware to increase perfor-
mance, while remaining much of flexibility of a software solution. This ar-
chitecture is particularly suitable for running regular and compute-intensive
tasks, nevertheless, most compute-intensive tasks spend most of their run-
ning time in nested loops. Polyhedron model is a powerful tool to give
a reasonable transformation on such nested loops. In this paper, a num-
ber of issues are addressed towards the goal of optimization of affine loop
nests for reconfigurable cell array (RCA), such as approach to make the
most use of processing elements (PE) while minimizing the communica-
tion volume by loop transformation in polyhedron model, determination of
tilling form by the intra-statement dependence analysis and determination
of tilling size by the tilling form and the RCA size. Experimental results
on a number of kernels demonstrate the effectiveness of the mapping opti-
mization approaches developed. Compared with DFG-based optimization
approach, the execution performances of 1-d jacobi and matrix multiplica-
tion are improved by 28% and 48.47%. Lastly, the run-time complexity is
acceptable for the practical cases.
key words: reconfigurable computing, affine loop, polyhedron model, par-
allel computing

1. Introduction

Reconfigurable computing is a computer architecture comb-
ing some of the flexibility of software with the high perfor-
mance of hardware. During the past decade a large number
of reconfigurable computing architecture have been devel-
oped by the research community, which demonstrated the
high performance for a selected set of applications. For ex-
ample, Morphsys [1] is implemented by a tiny RISC and 8x8
processing array which can be 6.5 times faster than Splash2
on the automatic target recognition processing; Garp [2] is a
fine grain 1-D reconfigurable architecture which is 9 times
faster than UltraSPARC on image dithering;Rapid is a 1-D
pipeline coarse grain processor which performs very close
to its peak of 1.6 GOPS on 2-D DCT; and REMUS [3], a
reconfigurable multi-processor SoC for media application
consisting of 512 processing engines and two ARMs, is also
been implemented to accelerate the decoding of H.264 high-
profile streams. With the presence of reconfigurable pro-

Manuscript received December 26, 2011.
Manuscript revised April 28, 2012.
†The authors are with Institute of Microelectronics, Tsinghua

University, Beijing, China.
∗This work was supported by NNSF of China grant 60803018,

the National High-Technology Research and Development Pro-
gram (863 Program) of China grant 2009AA011702 and the Inter-
national S&T Cooperation Project of China grant 2012DFA11170

a) E-mail: yinsy@tsinghua.edu.cn
DOI: 10.1587/transinf.E95.D.2898

cessor unit (RPU) in these architecture, high performance
of computation on some compute-intensive applications is
achieved.

Reconfigurable computing system are typically based
on reconfigurable processing units (RPUs) acting as copro-
cessor units and coupled a host processor. To exploit the
computation power of the hybrid architecture, efficient re-
configurable compilers are badly needed to leverage the
synergies of the reconfigurable architectures. Program-
ming reconfigurable architecture is a well-known challenge
work, as the traditional sequential programming pattern is
no longer suitable for this architecture. Generally, parti-
tioning the computation between the host system and RPU
is a key aspect in the middle-end compilation of recon-
figurable architecture. As a result, the original computa-
tions are partitioned into a software component and a re-
configware component. The software component is com-
piled with traditional compilers. Then the hardware compo-
nent will be mapped to RPUs with special representations.
In the middle-end of compilers, architecture-driven trans-
formations (e.g., loop transformations) is very important to
exploit the parallelism of code.

For the compiling for the hybrid architecture, several
compilers have been proposed, ranging from a software as-
sisting in manual circuit creation to an automatic high level
programming language compiler. The NAPA C [4] com-
piler is a low-level circuit generator and pragma-based di-
rectives are provided by programmer manually to specify
where data is to reside and where computation is to oc-
cur. Thus, this low-level compiler limits the widespread
use for reconfigurable computing system. In SA-C [5], a set
of data-parallel semantics are defined to hide the reconfig-
urable hardware details, however, the performance still re-
lies on the programmer’s capability and runtime configura-
tion executable file could not be generated. High level com-
pilers, e.g., Garp C compiler [6], NEC electronics’ Muske-
teer [7] and Template-based compiler [8] are also proposed
recently. In all these compilers, partitioning the computa-
tions between the processor and an RPU (hardware part)
is a necessity of the compiling flow. After the partition, a
large data flow graph (DFG) is generated from the hardware
part. Then the large DFG is partitioned into small sub-graph
with its size corresponding to the reconfigurable cell array
(RCA) size where optimization for communication and syn-
chronization is under consideration. However, the level of
optimization based on the large DFG is not so high because

Copyright c© 2012 The Institute of Electronics, Information and Communication Engineers

LIU et al.: MAPPING OPTIMIZATION OF AFFINE LOOP NESTS FOR RECONFIGURABLE COMPUTING ARCHITECTURE
2899

that the optimization opportunity in the step of DFG gener-
ation is of little thought. Not only that, the regular source
code of front-end is disorganized. As a result, less opportu-
nity could be embraced from the DFG-based optimization,
e.g., communication volume, utilization rate of processing
elements (PE).

To get more optimization opportunity for the compiling
of reconfigurable computing system, our attention is turned
to the original source code. In the source code of compute-
intensive programs, nested loop costs most of the running
time. A mathematic model, the polyhedron model, offers
a powerful abstraction to give a unified framework for de-
pendence analysis and transformation of loop with affine
bounds and array access functions (regular code). A dy-
namic instance of each statements in a loop nest is pre-
sented as an integer point in a well-defined space which
is the statement’s polyhedron. Using linear integer pro-
gramming, an optimal loop transformation under some con-
strictions could be worked out to exploit the computation
power of parallel architecture. Tiling is a key transforma-
tions in optimizing for data locality, parallelism, communi-
cation volume and synchronization. Tiling for data locality
optimization requires grouping points in an iteration space
into smaller blocks to maximize data reuse. Tiling for par-
allelism and synchronization is mainly used to partition the
iteration space into small tiles that maybe concurrently ex-
ecuted on different processors with reduced communication
volume and synchronization times. Hence, we focus on the
key aspects of loop transformation, tilling for reconfigurable
cell array (RCA).

This paper focuses on RCAs in reconfigurable pro-
cessor unit (RPU) and addresses the optimization of map-
ping affine loop nests on a two dimensional (2-D) RCA.
The proposed optimization approaches include: finding two
proper hyperplanes for a two dimensional RCA for the tar-
get of making best use of PEs and minimizing the commu-
nication volume between RCA, determining the tile form
(length/width ratio) and determining proper tile size to fill
up an RCA. The proposed approaches make most use of
PEs in an RCA and improve the PE utilization rate of RCA.
In addition, communication volume between different oper-
ation instances of the same RCA or different RCAs is mini-
mized to reduce the memory access time.

The rest of this paper is organized as follows. In Sect. 2,
we briefly describe the current architecture for reconfig-
urable computing platforms. In Sect. 3, we analysis the key
factors that affect the performance of RCA. In the next sec-
tions, the optimization for the tiling shape is discussed and
in Sect. 5 the tiling form and size are determined. Then,
Sect. 6 gives experiments results that demonstrate the effec-
tiveness of our optimization works. At last, we conclude in
Sect. 7.

2. Overview of Reconfigurable Computing Architec-
ture

2.1 General Architecture of Pipelined Coarse-Grained Re-
configurable Computing System

There are two main types of reconfigurable computing hard-
ware architecture according to granularity. In this paper,
we distinguish efforts on fine-grained RPUs, for example,
field-programmable gate array (FPGAs), from the ones tar-
geting coarse-grained RPUs and we focus on the coarse-
grained reconfigurable computing architecture. The gen-
eral architecture of pipelined coarse-grained reconfigurable
computing is typically based on reconfigurable processing
units (RPUs) as roles of coprocessor and coupled to a host
processor, where the host processor controls the execution
of the whole system. Each RPU consists of one or more
RCAs, a data memory, a configuration memory, a control
unit, etc. The configuration memory stores the configuration
context and control unit controls the reconfiguration and ex-
ecution of RCAs. The data memory provides operand data
to RCA through high bandwidth data bus and the RCA runs
in a pipelined way.

Since our proposed optimization approach is based on
the general reconfigurable computing architecture described
above, it can be apply to most of the pipelined coarse-
grained reconfigurable computing with two-dimensional
RCAs.

2.2 REMUS

REMUS [3], a reconfigurable multi-media system, consists
of one RISC processor, two RPUs and some assistant mod-
ules, which is depicted in Fig. 1. An ARM11, a typical em-
bedded RISC, is chosen as the host system for application
control and reconfigurable schedule. An RPU is a powerful
dynamic reconfigurable system consisting of four RCAs and
each RCA has 8x8 two dimensional (2-d) PEs. Algorithms

Fig. 1 The brief architecture of REMUS.

2900
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.12 DECEMBER 2012

Fig. 2 RC and Route.

can be mapped into an RPU simultaneously and be executed
independently to achieve high performance. An RCA Input
FIFO (RIF) and an RCA Outpur FIFO (ROF) are directly
connected to RCA for data buffer and a RIM is designed for
the data exchange of different running instances of the same
RCA. With a Macro Buffer (MB), different RCAs could
exchange data with each other. The SRAM is an off-chip
memory taking charge of the data exchange between host
processor and RPUs.

RCA8x8 is the basic unit in an RPU, defined as the
minimal function block,which has three parts: a DBI, a con-
text interface and a 2-dimension PE array. A DBI is a flexi-
ble data exchange unit to prepare data from internal or exter-
nal memory for RCA. A context interface mainly reads con-
text from configuration memory to change the data path of
RCA to support kinds of applications. RCA8x8 is a coarse-
grained reconfigurable computing array of 8/16 bits, 64 cells
and routes consists of a reconfigurable network, where the
reconfigurable cells (equivalent to PE in this paper) and
routes that can be re-functioned and restructured by the con-
text interface. As shown in Fig. 2, a common ALU architec-
ture with arithmetic operations is adopted. A temp register
is also designed to retain data in a operation step for further
process. With the input select MUXA and MUXB, the ALU
could choose data from input data FIFO, temp registers of
any PE in the previous rows and the operation result of any
PE in the previous rows and thus the routes could transmit
data between two nearby rows, point-to-point.

3. Performance Characterization of Reconfigurable
Computing

In this section, the architecture of RPU will be analyzed in
detail to characterize key factors that affect the performance
of RPU and then the implications for compiler optimization
be discussed. Before further discussion, we identify that
the phrase “row” and “column” indicate the line parallel to
the axis π in Fig. 3 and the line parallel to θ respectively. θ

Fig. 3 The legal routing of the PE in RCA.

and π are two axis of two-dimensional Cartesian coordinate
system indicating the location of PEs in an RCA.

3.1 The Routing Style in RCAs

The RCA is an important component in an reconfigurable
computing system. It consists of many 1-dimensional or
2-dimensional reconfigurable array. A PE in the RCA is
mainly composed of an ALU and a local register and it could
communicate with other PEs in the nearby rows.

From the inherent character of the PEs and Routes, sev-
eral mapping constraints could be figured out. To expatiate
this, an RCA is depicted in Fig. 3. A combination of the
framed R and circled + indicates an PE while the framed
R and circled + mean a temp register and an ALU respec-
tively. In addition, the horizontal bars between two nearby
rows of PE means the routes. The arrows in Fig. 3 demon-
strates some data dependence between PEs when the routes
are once configured. The solid arrow and dotted arrow in-
dicate a valid data dependence and an invalid dependence
respectively. From the hardware features of the RCA, we
can find the flowing constraints of data dependence on the
RCA.

A. A dependence must have positive θ axis part. As the
rows in a RCA corresponds to the control step of time
when operators mapped on to the RCA. Thus, the op-
erators in the upper rows should be executed before the
operators in the lower row.

B. Data dependence from the same rows is forbidden, in
another word, the vertical part (the part along θ axis)
of dependence could not be zero. In the direction of π
axis, operations in the same row are executed concur-
rently and operation sets are executed row by row along
the θ axis. So operations mapped to the same row are
belong to the same control step in data path and could
not depend on each other. For example, the dependence

LIU et al.: MAPPING OPTIMIZATION OF AFFINE LOOP NESTS FOR RECONFIGURABLE COMPUTING ARCHITECTURE
2901

�x in the last row in Fig. 3 is prohibitory.
C. A long dependence traversing more than one row in an

RCA means more cost of temp register, subsequently,
lower utilization rate of PEs. As the routes could just
connect two PEs from two nearby rows, the life time
of internal registers in RCA is one cycle. If a tempo-
rary value should maintain more than one control step,
it will be passed by temp register step by step until it
is consumed by an ALU operation. Thus, in an RCA,
the longer the life time a temporary value is, the more
number of temp register will be used. Once all the
temp register in the row in occupied, some ALU will
be wasted because of lacking of temp register to pass
temporary value. As a result, ALUs would be wasted
in RCA because of long dependence along the axis θ.
The utilization rate of PEs in an RCA is a crucial fac-
tor affecting the performance of an RPU because low
utilization rate of PEs means more number of RCA
operation times. However, free dependence along θ is
also not recommended because free dependence along
θ cause the result output of internal PEs and more over-
head of memory access. Thus, those dependence that
traversing one row is highly recommended for the con-
sideration of PE utilization rate. For example, in Fig. 3,
there is a data dependence �a traversing three columns,
the dependence will be transformed into dependence �b,
�c and �d with two temp register transferring temporary
value. The same objection applies to the dependence �e.
We presume that a program is full of dependence like
this. In this case , two temp registers in the same row
are needed to transfer temporary data because of the
overlap of dependence in the direction of axis θ. Thus,
the ratio of temp register number and ALU number is
2 : 1, and half of the ALU in RCA will be wasted.

D. A long dependence traversing more than one columns
have very small data transfer cost in an RCA. As there
is a MUX for every PE to select any data from the
previous column, the long dependence traversing more
than one columns in RCA almost has no transfer cost
except for the delay on MUX. For example, the depen-
dence �m, �r, �s and �t in Fig. 3 are all valid and have low
transfer cost.

The constraints of dependence above in RCA exposes im-
portant optimization opportunity in compiling for reconfig-
urable computing system, especially for loop transformation
stage of compute-intensive programs.

3.2 The Latency of Memory Access

In this architecture, although it takes only fixed cycles to
accomplish an RCA operation for 8 rows of operators, the
memory access latency time due to input and output of RCA
is not allowed to be neglected. The latency is generally pro-
portional to the number of input and output data of an RCA.
Let Min, Mout, P, R, be the number of input data, number
of output data, total number of operators of a program and

utilization rate of RCA respectively. Then the total running
cycles in rough estimation of the program could be given by:

T = ((�Min + Mout)/α� + β) · �P/(γ · R)� (1)

where the α is an experience parameter (generally 6 for
REMUS) indicating the bandwidth of input and output data
considering the influence of all the memory. β indicates the
operate cycles for an RCA operation (generally 8 for RE-
MUS [3]). γ is the total number (64 for REMUS [3]) of PEs
in an RCA. We also presume that the data path structure
and the input&output number are the same between differ-
ent RCA operations, which is reasonable for the tiled big
affine loop nests because of the similarity of tiles. In this
estimation model, we could find a synthetical influence of
PE utilization rate and communication cost.

Having identified the key factors that influence the per-
formance of RCA, we now discuss the compile-time opti-
mization to address these issues. We mainly focus on affine
loop nests since loop nests taking up most of run time in
compute-intensive applications.

4. Optimization of Tile Shape

In this section, an approach is proposed and developed to op-
timize the compilation for performing program (i.e., affine
loop nests) transformations that enable make good use of
PEs of RCA while minimizing the communication volume
of RCA. This approach is based on the polyhedron model, a
powerful algebraic framework for presenting programs and
transformations. Regular affine loop nest that loop bounds
are affine functions of outer loop indices and global param-
eters are the objective our research since it takes up most of
the running time in compute-intensive programs.

4.1 The Background and Notation of Polyhedron Model

This subsection gives a quick overview of polyhedron
model, and the vocabulary and notations will be interpreted.
The bold font letter indicates a vector.

The polyhedron model is convenient alternative rep-
resentation which combines analysis power, expressiveness
and high flexibility. It is based on three main concepts: the
iteration domain, the scattering and the access function. A
program part that can be represented using the polyhedron
model is called a S tatic Control Part or S CoP for short.

A statement S within a S CoP, surrounded by dS loops
is represented by an dS -dimensional polytope refered to an
iteration space of S , where the dS is depth of the loop nests.
The coordinates of a point (iteration vector iS) in the poly-
tope corresponds to the values of the loop indices of the
surrounding loops, starting from the outermost to the inner-
most. A point in the polytope corresponds to an instance
of statement S in program execution. The iteration space
is defined by a system of affine inequalities, DS (iS) ≥ 0,
derived from the bounds of loops surrounding S . Using ma-
trix to present the inequalities, the iteration space polytope
is presented as:

2902
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.12 DECEMBER 2012

DS ·

⎛⎜⎜⎜⎜⎜⎜⎜⎝
iS
gS

1

⎞⎟⎟⎟⎟⎟⎟⎟⎠ ≥ 0 (2)

where DS is a matrix of n affine constraints on the ex-
ecution of statement S. iS is the iteration vector and gS is a
vector of global parameters.

The scattering function gives the execution order
of the instances in loop nests. A very useful ex-
ample of multi-dimensional scattering functions is the
scheduling o f the original program. The idea is to build
an abstract syntax tree (AST) [9] of the program and to read
the scheduling for each statement.

Each reference in a statement is also affine functions
of loop indices and global parameters, which could also be
represented using matrices. if FkAS (iS) represents the access
function of the kth reference to an array A in statement S ,
then

FkAS (iS) = FkAS .

⎛⎜⎜⎜⎜⎜⎜⎜⎝
iS
gS

1

⎞⎟⎟⎟⎟⎟⎟⎟⎠ (3)

Where FkAS is a matrix representing an affine mapping
from the iteration space of statement S to the data space of
array S . Each row in the matrix defines a mapping corre-
sponding to one dimension of the data space.

An array is said to have an order of magnitude reuse
if the rank of the access matrix of the array reference is
less than the iteration space dimensionality of the statement
in which it is accessed. Thus, the condition for magni-
tude reuse of an array A due to a reference FkAS (iS) is:
rank(FkAS) < dim(iS). Loops whose iterations do not oc-
cur in the affine access function of a reference are said to be
redundant loops for the reference.

Polyhedron compiling usually involves three steps:
first input programs should be represented into polyhedron
formalism, then apply a transformation to this representa-
tion, and finally generate the target code.

Affine transformation of a statement S is defined as an
affine mapping that maps an instance of S in the original
program to an instance in the transformed program. The
transform function of a statement S is given by

Φ(iS) = TS .

⎛⎜⎜⎜⎜⎜⎜⎜⎝
iS
gS

1

⎞⎟⎟⎟⎟⎟⎟⎟⎠ (4)

Where T is a row vector, the affine transformation is
a one-dimensional mapping. Φ(iS) can also be called an
affine hyperplane. An n-dimensional mapping can be rep-
resented as a combination of n (linearly independent) one-
dimensional mappings, in which case T is matrix with n
rows. In the architecture of RCAs, we use ΠS to denote the
space tiling (to PEs in a row of RCA) and ΘS to denote the
time tiling (to PEs belonging to different control step in the
data path of RCA).

A lot of work has been done to analyze the dependence
in polyhedron. The dependence model here is the same as

the one used in [10], [11] and [12]. The Polyhedron Depen-
dence Graph (PDG) is used in most polyhedron compiling
work, which is a directed multi-graph with each vertex rep-
resenting a statement, and an edge, e ∈ E, from node S i to
S j representing a polyhedron dependence from a dynamic
instance of S i to one of S j. It is characterized by a polyhe-
dron, Pe, called the dependence polyhedron that captures
the exact dependence information corresponding to e.

In our work, we mainly focus on finding two good hy-
perplane (Π and Θ) of a affine loop nests to satisfy the con-
straint conditions of RCA in reconfigurable computing sys-
tem. The hyperplane Θ is normal to axis θ in Fig. 3 and
indicates the row of an RCA. The hyperplane Π is normal to
axis π in Fig. 3 and indicate the column of an RCA.

4.2 Finding Good Θ Hyperplane

Based on the theory of polyhedron model in the previous
subsection, we propose an algorithm to find two hyperplanes
to split the affine loop nests and map the split tile to the
RCAs of RPU. Considering the constraints of data depen-
dence in RCA in Sect. 3, the 1st and 2nd are the most rigid
one because the row by row control step means the operator
in lower row must be executed after the operator in the up-
per row. Thus, the hyperplane Θ normal to the θ axis is of a
prior consideration in the hyperplane finding process.

As the work in [12], we should first give the constraints
of good transformations. Let there be a dependence from
statement instance s of S i to t of S j corresponding to an edge
e of PDG of a program. After exact dependence analysis, we
get

s = he(t), t ∈ Pe (5)

Where Pe, described in [13], indicates the dependence poly-
hedron that capture the exact dependence information cor-
responding to e and he here represents the h-transformation
(affine transformations mapping the iteration vector t of tar-
get to source s).

As analyzed in Sect. 3, the operations are executed row
by row corresponding to the time control step. So we first
need to find a hyperplane Θ that all the dependence travers-
ing at least one hyperplane. So the time control step con-
straint is defined as :

ΘS j (t) − ΘS i (s) ≥ 1, t ∈ Pe (6)

With this condition, the characterization of RCA that
the operation in upper rows should be executed before that
in lower rows could be satisfied. In another word, the depen-
dent operation could be executed without the change of their
dependent relations, which is of most important to guarantee
the correctness of a program.

In order to deduce an optimal target, we define the same
cost function as it in [12]:

δe(t) = ΘS j (t) − ΘS i (he(t)), t ∈ Pe (7)

The affine form δe(t) means the number of hyperplanes

LIU et al.: MAPPING OPTIMIZATION OF AFFINE LOOP NESTS FOR RECONFIGURABLE COMPUTING ARCHITECTURE
2903

the dependence e traverses along the hyperplane normal in
mathematic which is the same as the work in [13], however,
it has a totally different physical meaning in reconfigurable
computing system (i.e. REMUS here). δe(t) also indicates
the number of temp registers used. Further more, it also
indicates the number PEs have been “wasted” in the RCA.
For example, in the case of mapping a loop nest with only
one operator in its body statement to RCAs with one temp
register per PE, δe(t) with the value of one means there is
no temp register is used and no PE “wasted”. δe(t) with the
value of two means that one temp register will be used to
transmit temporary value and no PE will be “wasted”. δe(t)
with the value of three means that two temp register will be
used to transmit temporary value and one PE nearby will be
“wasted” because of lacking of temp register.

As the work in [12], we also use the bounding function
approach to find a good tile shape out of several possibilities.
Since the loop variables themselves are bounded by affine
functions of the parameters, an affine form in the program
parameters, p, that bounds δe(t) for every dependence edge
e could be always found. i.e., there exists v(p) = u · p + w,
such that

ΘS j (t) − ΘS i (he(t)) ≤ v(p), t ∈ Pe,∀e ∈ E

i.e., v(p) − δe(t) ≥ 0, t ∈ Pe,∀e ∈ E (8)

Now Farkas Lemma can be applied to Eq. (8).

v(p) − δe(t) ≡ λe0 +

me∑

k=1

λekPk
e, λ

T
ek ≥ 0 (9)

Where Pk
e is the face of Pe. The above is an identity

and the coefficients of each of the loop indices in t and pa-
rameters in p on the left and right hang side can be gathered
and equated, to get linear equalities entirely in coefficients
of affine mappings for all statements, u and w. Using integer
linear programming system, the above inequalities can be at
once be solved by finding lexicographic minimal solution
with u and w in the leading position and other variables:

minimize≺ (u1, u2, . . . , uk, w, . . . , c
′

i s, . . .) (10)

Using parameter integer programming (PIP) [14] soft-
ware, the lexicographic minimal solution could be found
easily under the time step constraint condition in (6). The
solution gives a optimal Θ hyperplane for along the direc-
tion of θ axis in Fig. 3.

4.3 Finding Good Π Hyperplane

After the determination of the time step hyperplane Θ, now
move on to find a space hyperplane Π, independent of the
hyperplaneΘ, and normal to π axis under the constraint con-
dition analyzed in Sect. 3. At first, the constraint conditions
is different from (6) as different hardware constraint. The
new constraint condition is given by:

ΠS j (t) − ΠS i (he(t)) ≥ 0 (11)

With this constraint condition, the target loop in the
transformed iteration space can be blocked rectangularly as
all dependence have positive components along that hyper-
plane.

In addition, this hyperplane Π must be independent of
the first hyperplane ΘS , the sub-space orthogonal to ΘS is
given by:

Π = I − ΘT
S (ΘSΘ

T
S)−1ΘS (12)

This new constraints make sure of independence with
the found hyperplane solution Θ. Π · Θ ≥ 1 or Π · Θ ≤ −1
gives the necessary constraint to be added for statement S to
make sure thatΠ has a non-zero component in the sub-space
orthogonal to Θ. With new constraints (11)(12), we run PIP
software again to find the new solution corresponding to the
hyperplane Π that the dependence length at the fringe of a
tile has been minimized. Thus, the communication volume
between RCA and memory(e.g., RIM, MB and SRAM) has
been optimized.

4.4 Complexity of Hyperplane Determination Algorithms

In the Algorithms of finding the two independent hyper-
planes, all the constraints, such as Eqs. (6)(8)(9)(11)(12), are
linear inequalities or equalities. And the optimization target
Eq. (10) is the lexicographic minimum of the unknowns in
the inequalities. Therefor, we can find the optimal integer
solution for the transformation coefficients by solving a pa-
rameter integer programming problem [15]. Although the
theoretical complexity of solving a parameter integer pro-
gramming [14] is quite high, in practice, we have found it to
share the well known property of the simplex, which while
exponential in the worst case, has a high probability of being
polynomial.

5. Optimization of Tile Form and Size

Having fixed the shape of the tile mapping to an RCA, now
we go on to get the form (i.e., the length/width ratio) and
size of the tile.

As shown in Fig. 1, the RCA in REMUS [3] has 8x8
square PEs with each of them representing an operator in
programs. If a statement has only one operator, an instance
of the statement could be mapped to a PE in RCA directly.
Actually, in most of the case, their are more than one oper-
ator in a statement, e.g., their are two operator in statement
S 1 in Fig. 4. Through analyzing the operator data depen-
dence of intra-statement, we obtain the length/width ζS /ηS (a
rectangular of PEs with length of ζS and width of ηS) of loop
statement.

In Fig. 4, the two operator should be executed in differ-
ent control step (i.e. different rows nearby of PE in RCA).
Thus, an instance of statement S would occupy 2×1 PEs
(two for adders). As the shape of RCA is square, the ra-
tion (L/W)of tile should be inversely proportional to the ra-
tio (L/W) of the statement. In Fig. 4, the tile form is 1×2
as the ration of S 1 is 2×1. Make a step forward, the length

2904
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.12 DECEMBER 2012

Fig. 4 An 2-dimensional loop nests example.

and width of the tile could be calculated. Let the length (to-
tal control step) of RCA be LRCA and the width of RCA is
WRCA, we obtain the tile sizes:

Ltile = LRCA/ζS

Wtile =WRCA/ηS (13)

Where Ltile (round down value) is the length of the tile and
Wtile (round down value) indicates the width of the tile. In
Fig. 4, Ltile = 4 and Wtile = 8. Obviously, the algorithm
of optimization of tile form and size is quite simple and is
within polynomial time.

6. Experimental Results

To verify and evaluate the proposed optimization approach,
we conduct our experiments on REMUS [3]. REMUS is a
reconfigurable multi-media processor with four RCA8x8 in
an RPU cloked at 200 MHz, tape-out in SMIC 130 nm. To
understand the proposed algorithm better, every step of the
algorithm is demonstrated through the example of 1-d Ja-
cobi. Then a serial of experiments are carried out to eval-
uate the performance of the polyhedral optimized mapping
algorithm.

6.1 Case Study

We take a perfectly nested version of 1-d Jacobi in Fig. 4 as
example to demonstrate the optimization flow. The original
loop nest is depicted in Fig. 5. Dependence analysis pro-
duces the h-transformation and dependence polyhedron:

f low : a[i′][j′] −→ a[i − 1][j]

h : i′= i −1, j′= j; D1 : 1 ≤ i ≤N − 1, 2 ≤ j≤N − 2

f low : a[i′][j′] −→ a[i − 1][j − 1]

h : i′= i−1, j′= j−1; D2 : 1 ≤ i ≤N − 1, 2 ≤ j≤N − 2

f low : a[i′][j′] −→ a[i − 1][j + 1]

h : i′= i−1, j′= j+1; D3 : 1 ≤ i ≤N − 1, 2 ≤ j≤N − 2

A. Finding the Θ hyperplane for time control step.
Dependence 1: Tiling constraint Θ:

cii+c j j−ci(i−1)−c j j≥1 ⇒ ci≥1 (14)

The bonding constraint is w − ci ≥ 0 here because it is
a constant dependence.
Dependence 2: Tiling constraint:

cii+c j j−ci(i−1)−c j(j−1)≥ 1 ⇒ ci+c j ≥ 1 (15)

The bonding constraint is w − ci − c j ≥ 0.

Fig. 5 The original loop nests of 1-D jacobi.

Fig. 6 The transformed loop nests of 1-D jacobi.

Dependence 3: Tiling constraint:

cii+c j j−ci(i−1)−c j(j+1)≥1 ⇒ ci−c j≥1 (16)

The bonding constraint is w − ci + c j ≥ 0. Collecting
all the constraints and optimization target together, we
obtain:

ci ≥ 1

w − ci ≥ 0

ci + c j ≥ 1

w − ci − c j ≥ 0 (17)

ci − c j ≥ 1

w − ci + c j ≥ 0

minimize ≺ (w, ci, c j)

The lexicographic minimal solution for vector
(w, ci, c j) = (1, 1, 0). Thus, we obtain ci = 1, c j = 0

B. Finding the Π hyperplane. The next solution for hyper-
plane Π must meet the constraint in 11 and 12 (inde-
pendent constraint). As the flow of finding hyperplane
Θ, we get the lexicographic minimal solution for hy-
perplane Π: ci

′ = 1, c j
′ = 1.

C. Determining the tile form and size. Through intra-
statement dependence analysis, we find that the state-
ment S 1 has two operators at different control step
which implies a temp register is needed to pass the tem-
porary value from operator1 to operator2. operator1
and operator2 indicate the first addition operator and
the second addition operator in the statement S 1 in

LIU et al.: MAPPING OPTIMIZATION OF AFFINE LOOP NESTS FOR RECONFIGURABLE COMPUTING ARCHITECTURE
2905

Fig. 7 The mapping of the tiled loop nests.

Fig. 4, respectively. Thus, a PEs 2 × 1 are occupied for
an instance of statement S 1. Using the tile size deter-
mining algorithm described in Sect. 5, the length (Ltile)
and width (Wtile) of a tile are 4 and 8 respectively. The
tiled loop nest is depicted in Fig. 6.

D. Mapping a tile to an RCA. After the step 1, 2 and 3, the
shape and size of the tile is determined. Now the tile
could be mapped onto the RCA easily since we don’t
beak the regularity of loop in the transformation. For
example, in Fig. 6 , only the tiles at the fringe of the
tiled loop nest (e.g., T0, T1, T2 and T4) are not regular
and the internal tile (e.g., T3) is very regular. Actually,
there are a lot of regular tiles when the size of a pro-
gram (i.e., global parameter n here) is very large. In
Fig. 7, a complete and regular tile (T3) is mapped onto
RCA 8 × 8, where the circled “+”, grid circled “+”,
framed R indicate the operator1, the operator2 and a
temporary register, respectively.

In this tiling example, a complete optimization and
mapping of affine loops on reconfigurable computing sys-
tem is demonstrated. With proposed algorithm, a regular
affine loop nest could be optimized for PE utilization rate
maximization and communication volume minimization for
REMUS [3] RCA without broken the regularity of original
program and they could be easily mapped onto an RCA.

6.2 Performance Evaluation of Polyhedral Optimized
Mapping Algorithm

We use several loop nests program as the test examples to
evaluate the performance of our proposed optimization al-
gorithm. At first, Some notations used in performance eval-
uation are described in Table 1.

The comparison of the same affine loop nests program
mapped with DFG-based optimization approach [8] and our
proposed front-end source code based optimization algo-

Table 1 Notations for performance evaluation.

Notations Explanation
tin represents RCA input data transfer delay cycles
tout represents RCA output data transfer delay cycles

tcommu = tin + tout represents the communication cycles
rpe represents the PE utilization rate in an RCA
tc fg represents the configuration cycles
top represents the total operation cycles of an RCA

ttotal=tc fg+top

+tcommu
represents the total execution cycles

Table 2 The comparison of PE utilization rate and communication cost.

Test Example
DFG-based

mapping
Our proposed

mapping Improvement

rpe

(%)
tcommu

(cycles)
rpe

(%)
tcommu

(cycles)
rpe

(%)
tcommu

(%)
1-d jacobi
500 × 500 85.2% 5.83e4 99.2% 3.17e4 16.4% 45.6%

Matrix multiplication
A100x100 × B100x100

46.87% 2.65e5 99.7% 1.57e5 109.2% 40.54%

Table 3 The comparison of total execution cycles.

Mapping Approaches
1-d Jacobi
500 × 500

Matrix Multiplication
A100x100 × B100x100

DFG-based
mapping

top(cycles) 7.42e4 5.30e5
tc fg(cycles) 85 65

tcommu(cycles) 5.83e4 2.65e5
ttotal(cycles) 1.32e5 7.96e5

Our proposed
mapping

top(cycles) 6.29e4 2.52e5
tc fg(cycles) 45 10

tcommu(cycles) 3.17e4 1.58e5
ttotal(cycles) 9.54e4 4.10e5

Improvement ttotal(%) 28% 48.47%

rithm are shown in Table 2 and 3. DFG-based optimization
approach is an algorithm that directly transfer the compute-
intensive part of programs into a large Data Flow Graph
(DFG) with loop unrolling, scalar replacement and other
technologies. In this step, optimization for data depen-
dence is almost not under consideration and the regularity of
source code is gummed up. Then, from the generated large
DFG, optimization opportunity is explored by hard work for
DFG partition.

In the experiments, a 1-d jacobi loop nest with totally
496006 operators and a matrix multiplication with 1.99e+6
operators are carried out with our optimizing approach and
DFG-based optimization approach, where the sizes of the
two matrix are both 100 × 100.

As the comparison shown in Table 3, our proposed ap-
proach can obviously improve the operation performance of
REMUS on the computation of affine loop nests, where the
execution performance of 1-d jacobi and matrix multiplica-
tions are improved by 28% and 48.47% respectively.

The total execution cycles are the sum of operation cy-
cles (top), communication cycles (tcommu) and the reconfig-
uration cycles (tc fg). First, we find that the tc fg in our pro-
posed approach is smaller than that of DFG-based approach
despite that both approach have very small proportion in the
total execution cycles (ttotal). For DFG-based optimization
mapping approach, template-based [8] technologies (tem-

2906
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.12 DECEMBER 2012

Table 4 The complexity on 1-d jacobi and matrix multiplication.

Mapping Approach
1-d Jacobi
500 × 500

(3 dependence)

Matrix Multiplication
A100x100 × B100x100

(1 dependence)

Runtime
(seconds)

Our Proposed
Approach

1.26 0.39

DFG-based
Approach [8]

0.89 0.18

plate extraction and template matching) are used on the gen-
erated DFG in the executable synthesis to reduce the recon-
figuration cost. On the other hand, optimization opportunity
is directly exploited from the front-end source code using
Polyhedral Model in our proposed approach. Our approach
tiles the original loop nests into structural similar tiles with
its size corresponding to the size of an RCA. Thus, the data
path of RCA hardly need to be changed and the reconfigu-
ration cost is reduced. Then, the RCA operation cycles (top)
in our proposed approach is also smaller than that in DFG-
based optimization approach, where top is inversely propor-
tional to PE utilization rate rpe. In Table 2, we could find
that the utilization rates of 1-jacobi and matrix multiplica-
tion optimized using our approach are improved by 16.4%
and 109.2% compared that using DFG-based approach. In
our approach, the data dependence of time control step part
is minimized with time constraints. Thus, an optimal hyper-
plane is found to make full use of the PE’s ALU function.
As a result, our proposed approach has more PE utilization
rate and less RCA operation cycles. At last, communication
cost of 1-d jacobi and matrix multiplication is also improved
by 45.6% and 40.54%, respectively. The improvement of
communication cost is contributed in two aspects. One is
the minimization of the length of data dependence, which is
carried out by finding the direction of hyperplanes where de-
pendence could traverse fewer of them. The other one is also
the maximization of PE utilization rate. For the program
with a specific number of operator, the higher the PE uti-
lization rate is, the less RCA operation number of times the
program costs. Thus, the communication cost for in whole
execution process is also reduced because of less number of
times of RCA operation.

For the above reasons, the execution performances of
REMUS on 1-d jacobi and matrix multiplication are im-
proved a lot with our proposed approach.

6.3 Run-Time Complexity

In our proposed algorithm, the complexity of finding hyper-
plane Θ and hyperplane Π is in polynomial time and the de-
termination of tile form and size is also in polynomial time.
In practice, the run-time is less than two seconds four our
experiment cases. The complexity of 1-d jacobi and matrix
multiplication optimized by different approaches is given in
Table 4.

Table 4 shows the complexity of our approach is ac-
ceptable in in the case of 1-d Jacobi and matrix multiplica-
tion even though that the execution time is slightly longer

than that of DFG based scheme [8]. In addition, we find that
the runtime of optimization is closely related to the number
of dependence reference because more dependence give rise
to more inequality constraints in the PIP problem [15].

7. Conclusion

In this paper, a front-end source code based optimization
algorithm for PE utilization rate and communication vol-
ume using Polyhedron Model for reconfigurable comput-
ing architecture is proposed. By analyzing the key factors
that influence the performance of RCA operation, a perfor-
mance evaluation model is deduced. Then we use polyhe-
dron model to optimize affine loop nest for both PE utiliza-
tion rate and communication volume. Next tilling form and
size are determined by RCA size and intra-statement opera-
tor dependence. At last, some typical examples are carried
out to demonstrate the effectiveness of our proposed algo-
rithm within acceptable rum-time complexity .

References

[1] H. Singh, M. Lee, G. Lu, F. Kurdahi, N. Bagherzadeh, and E.
Chaves Filho, “Morphosys: an integrated reconfigurable system for
data-parallel and computation-intensive applications,” IEEE Trans.
Comput., vol.49, no.5, pp.465–481, 2000.

[2] J. Hauser and J. Wawrzynek, “Garp: A mips processor with a recon-
figurable coprocessor,” FPGAs for Custom Computing Machines,
1997. Proceedings., The 5th Annual IEEE Symposium on, pp.12–
21, IEEE, 1997.

[3] M. Zhu, L. Liu, S. Yin, Y. Wang, W. Wang, and S. Wei, “A recon-
figurable multi-processor soc for media applications,” Proc. 2010
IEEE International Symposium on Circuits and Systems (ISCAS),
pp.2011–2014, IEEE, 2010.

[4] M. Gokhale and J. Stone, “Napa c: Compiling for a hybrid risc/fpga
architecture,” Proc. IEEE Symposium on FPGAs for Custom Com-
puting Machines, 1998, pp.126–135, IEEE, 1998.

[5] W. Böhm, J. Hammes, B. Draper, M. Chawathe, C. Ross, R. Rinker,
and W. Najjar, “Mapping a single assignment programming lan-
guage to reconfigurable systems,” J. Supercomputing, vol.21, no.2,
pp.117–130, 2002.

[6] T. Callahan, J. Hauser, and J. Wawrzynek, “The garp architecture
and c compiler,” Computer, vol.33, no.4, pp.62–69, 2000.

[7] T. Toi, N. Nakamura, Y. Kato, T. Awashima, K. Wakabayashi, and
L. Jing, “High-level synthesis challenges and solutions for a dynami-
cally reconfigurable processor,” Proc. 2006 IEEE/ACM international
conference on Computer-aided design, pp.702–708, ACM, 2006.

[8] C. Yin, S. Yin, L. Liu, and S. Wei, “Compiler framework for recon-
figurable computing architecture,” IEICE Trans. Electron., vol.E92-
C, no.10, pp.1284–1290, Oct. 2009.

[9] P. Feautrier, “Some efficient solutions to the affine scheduling prob-
lem. part ii. multidimensional time,” Int. J. Parallel Programming,
vol.21, no.6, pp.389–420, 1992.

[10] A. Lim and M. Lam, “Maximizing parallelism and minimizing
synchronization with affine partitions,” Parallel Computing, vol.24,
no.3-4, pp.445–475, 1998.

[11] A. Lim, G. Cheong, and M. Lam, “An affine partitioning algorithm
to maximize parallelism and minimize communication,” Proc. 13th
International Conference on Supercomputing, pp.228–237, ACM,
1999.

[12] U. Bondhugula and J. Ramanujam, “Pluto: A practical and fully
automatic polyhedral parallelizer and locality optimizer,” 2007.

[13] U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sadayappan, “A

LIU et al.: MAPPING OPTIMIZATION OF AFFINE LOOP NESTS FOR RECONFIGURABLE COMPUTING ARCHITECTURE
2907

practical automatic polyhedral parallelizer and locality optimizer,”
ACM SIGPLAN Notices, vol.43, no.6, pp.101–113, 2008.

[14] P. Feautrier, “Pip/piplib, a parametric integer linear programming
solver, 2006.”

[15] P. Feautrier, “Parametric integer programming,” RAIRO Recherche
opérationnelle, vol.22, no.3, pp.243–268, 1988.

Dajiang Liu was born in 1986. He received
the B.S. degree from the School of Microelec-
tronics and Solid-state Electronics in University
of Electronic Science and Technology of China,
Chengdu, China, in 2009. Currently he is work-
ing toward the Ph.D. degree in the Institute of
Microelectronics, Tsinghua University, Beijing,
China. His research interests include reconfig-
urable computing and optimization of compiler
for reconfigurable computing.

Shouyi Yin received the B.S., M.S. and
Ph.D. degree in Electronic Engineering from Ts-
inghua University, China, in 2000, 2002 and
2005 respectively. He has worked in Imperial
College London as a research associate. Cur-
rently, he is with Institute of Microelectronics at
Tsinghua University as an associate professor.
His research interests include mobile comput-
ing, wireless communications and SoC design.

Chongyong Yin was born in 1984. He
received the B.S. degree from the Department
of Microelectronics, Xi’dian University, Shanxi,
China, in 2006. Currently, he is working toward
the Ph.D. degree in the Institute of Microelec-
tronics, Tsinghua University, Beijing, China.
His research interests include reconfigurable
computing and its compiler design.

Leibo Liu received the B.S. degree in
electronic engineering from Tsinghua Univer-
sity, Beijing, China, in 1999 and the Ph.D. de-
gree in Institute of Microelectronics, Tsinghua
University, in 2004. He now serves as an as-
sociate professor in Institute of Microelectron-
ics, Tsinghua University. His research interests
include reconfigurable computing, mobile com-
puting and VLSI DSP.

Shaojun Wei was born in Beijing, China
in 1958. He received Ph.D. degree from Fac-
ulte Polytechnique de Mons, Belguim, in 1991.
He became a professor in Institute of Microelec-
tronics of Tsinghua University in 1995. He is a
senior member of Chinese Institute of Electron-
ics (CIE). His main research interests include
VLSI SoC design, EDA methodology, and com-
munication ASIC design.

