
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.12 DECEMBER 2012
2919

PAPER Special Section on Parallel and Distributed Computing and Networking

Design and Implementation of a Handshake Join Architecture on
FPGA

Yasin OGE†a), Nonmember, Takefumi MIYOSHI†b), Member,
Hideyuki KAWASHIMA††c), Nonmember, and Tsutomu YOSHINAGA†d), Member

SUMMARY A novel design is proposed to implement highly parallel
stream join operators on a field-programmable gate array (FPGA), by ex-
amining handshake join algorithm for hardware implementation. The pro-
posed design is evaluated in terms of the hardware resource usage, the max-
imum clock frequency, and the performance. Experimental results indicate
that the proposed implementation can handle considerably high input rates,
especially at low match rates. Results of simulation conducted to optimize
size of buffers included in join and merge units give a new intuition regard-
ing static and adaptive buffer tuning in handshake join.
key words: FPGA, data stream processing, window join operator, accel-
erator, handshake join

1. Introduction

Nowadays, stream data processing systems demand more
functionality. Many data processing tasks, such as financial
analysis, traffic monitoring and data processing in sensor
networks, are required to handle a huge amount of data with
certain time restrictions. Low-latency and high-throughput
processing are key requirements of systems that process un-
bounded and continuous input streams rather than fixed-size
stored data sets.

Most of the modern relational database management
systems (DBMSs) have been added superfluous features.
All of them should provide basic set operations including
union, intersection, difference and Cartesian product. More-
over, they support other operations such as join, selection,
projection and division. Likewise, stream databases also
support similar operations and one of these fundamental op-
erations is called stream join or window join [1] that in-
troduces window semantics besides value-based join pred-
icates.

Stream databases deal with infinite streams of data that
have to be processed immediately for real-time applications.
It is stated in [1] that processing a join over unbounded input
streams requires unbounded memory since every tuple in
one infinite stream must be compared with every tuple in

Manuscript received January 5, 2012.
Manuscript revised May 23, 2012.
†The authors are with the Graduate School of Information Sys-

tems, The University of Electro-Communications, Chofu-shi, 182–
8585 Japan.
††The author is with the University of Tsukuba, Tsukuba-shi,

305–8577 Japan.
a) E-mail: oge@comp.is.uec.ac.jp
b) E-mail: miyoshi@is.uec.ac.jp
c) E-mail: kawasima@cs.tsukuba.ac.jp
d) E-mail: yosinaga@is.uec.ac.jp

DOI: 10.1587/transinf.E95.D.2919

the other. It is clear that this causes practical problems. To
solve the problem, the window semantic is introduced for
practical applications. That is to say, a finite subset of the
unbounded input data is defined as a window for each input
stream, and a join predicate is evaluated over the windows.

Teubner and Mueller have provided new insight into
stream join algorithm, and proposed a novel approach,
namely handshake join. It is a stream join algorithm that
can support very high degrees of parallelism and attain un-
precedented success in throughput speed [2]. They demon-
strate a software implementation using a modern multi-core
CPU. It considerably outperforms CellJoin [3], which is an-
other well-known implementation of window-based join for
the Cell processor. They also mention that handshake join
can naturally leverage available hardware parallelism even
though a complete hardware design of handshake join is not
provided in [2].

Handshake join enables us to parallelize the matching
process in a very elegant way; however, there is a practi-
cal problem of the approach: results of parallel processes
should be collected and merged into a single output stream.
In addition, the parallel execution of joins can result in a
higher output rate than a sequential execution because the
same number of results is produced in a shorter time. In
other words, a larger number of results can be produced per
unit time, and the merging process would be quickly over-
loaded. This is the case, for example, with such applica-
tions as TCP SYN Flood detection [4] where a volume of
output may be instantaneously generated, depending on the
dynamic characteristics of input streams. Following design
issues should be taken into account when it comes to imple-
menting handshake join hardware:

1. a scalable mechanism (in terms of the resource usage
and the signal delay) that merges results into a single
output stream,

2. a flow control mechanism (between all join cores and
the output port) that avoids buffer overflows,

3. and a control mechanism that rejects new input tuples
when they lead to an overload.

The objective of this paper is to address the above is-
sues and evaluate a hardware implementation of handshake
join architecture. The proposed design is implemented on
an FPGA and evaluated as a case study. In our view, the ma-
jor contribution of the paper is to identify the problems en-
countered in the design of handshake join hardware. To the

Copyright c© 2012 The Institute of Electronics, Information and Communication Engineers

2920
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.12 DECEMBER 2012

best of our knowledge, this is the first paper that proposes a
complete design of handshake join, implements it as a ded-
icated hardware on an FPGA device, and indicates buffer
tuning for join and merge units. This paper is an extended
version of the authors’ previous work [5]. The present ver-
sion shows further analysis regarding buffer-size optimiza-
tion, and discusses static and adaptive buffer tuning for the
proposed design.

The rest of the paper is organized as follows: Sect. 2
gives a background and briefly reviews the previous work.
Section 3 introduces handshake join and the design issues on
an FPGA. Section 4 proposes the details of handshake join
architecture. Then, Sect. 5 evaluates the proposed design.
After that Sect. 6 gives some discussions, and finally, Sect. 7
gives conclusions and identifies future work.

2. Background and Related Work

Due to increasing demand for processing data streams,
DBMS researchers have expanded the data processing
paradigm from the traditional store and then process model
towards the stream-oriented processing model. An exten-
sive range of research is conducted for new problems owing
to the nature of streams.

It is shown in [6] that FPGAs are a viable solution for
data processing tasks. For example, Sadoghi et al. present
an efficient event processing platform called fpga-ToPSS,
which is built over FPGAs to achieve line-rate process-
ing [7]. They demonstrate high-frequency and low-latency
algorithmic trading solutions based on the event processing
platform [8]. It is stated in [8] that the FPGA-based so-
lution provides a superior end-to-end system performance
by eliminating the operating system. They also focus on a
multi-query stream processing to accelerate the execution of
SPJ (Select-Project-Join) queries [9]. There are other works
where FPGA is used as a platform for building application-
specific hardware [10]–[12].

How to implement stream joins is a challenging task in
stream databases. It is mentioned in [2] that the M3Join pro-
posed by Qian et al. [13] implements the join step as a single
parallel lookup; however, this approach causes the signifi-
cant performance drop for larger join windows. Terada et
al. [14] suggest an implementation of a window join opera-
tor on an FPGA. Nevertheless, only two join processes are
concurrently executed since the approach adopted in [14]
is based on sequential execution. On the other hand, the
pipelining approach and the data flow model of handshake
join do not suffer from these limitations. Details of the hand-
shake join are discussed in the following section.

3. Design of Handshake Join

3.1 Handshake Join

The basic idea of the handshake join [2] is to consider two
input streams which are allowed to flow in opposite direc-
tion. With this approach, we obtain significant advantages

regarding parallelization and scalability. It is stated in [2]
that the parallel evaluation of the matching processes be-
come possible because the approach adopted in handshake
join converts the original control flow problem (or its pro-
cedural three-step description given below) into a data flow
representation. It is also stated that there is no hot spot that
could become a bottleneck if handshake join is scaled up [2].

Assuming two input streams (stream R and S) and a
newly arrived tuple r from stream R, each step of the three-
step procedure, presented by Kang et al. [1], can be de-
scribed as follows:

1. Scan the window for S to find tuples matching r.
2. Insert the new tuple r into the window for R.
3. Invalidate all expired tuples in the window for R.

It should be noted that a new tuple arriving from stream S is
handled symmetrically.

The three-step procedure satisfies the semantics of
window-based join, which is described as follows: A win-
dow join operator takes two streams (R and S) as inputs and
produces output tuples (r, s), where r is from stream R and s
is from stream S, such that;

1. r and s satisfy the join predicate,
2. and r is in the window for stream R at the same time

that s is in the window for stream S.

It is mentioned in [2] that, in general, the three-step
procedure corresponds to a nested loops-style join evalua-
tion; however, the nature of the nested loops-style join eval-
uation makes it difficult to scale up to a large numbers of
processing units. In fact, this is the main reason why only
two join processes are executed in [14]. To solve the prob-
lem, the distributed data flow-style processing model with-
out a dedicated centralized coordinator is proposed with
the handshake join approach. It is indicated in [2] that
handshake join produces the same output tuples as classical
window-based stream join procedure, and it can be regarded
as a safe substitute for traditional window join implementa-
tions.

The parallelization of the handshake join operation is
illustrated in Fig. 1. In this figure, each rectangular box rep-
resents a tuple from two input streams. As shown in the
figures, by increasing the number of processing units, the
degree of parallelism can be easily increased a higher level
than ever achieved before. Since each core is responsible
for only its own segment of the two stream windows, all
tuple comparisons and evaluation of the join condition are
carried out locally and independently. Theoretically, it can
be readily scaled up in order to support large window sizes,
achieve high throughput rates, and/or handle compute inten-
sive functions of the join conditions.

3.2 Design Issues of Handshake Join

Figure 2 (adopted from [2]) illustrates the general overview
of the handshake join with tuple-based window. As shown
in Fig. 2, join cores are aligned side by side so that tuples

OGE et al.: DESIGN AND IMPLEMENTATION OF A HANDSHAKE JOIN ARCHITECTURE ON FPGA
2921

Fig. 1 The parallelization of the handshake join.

Fig. 2 Overview of the handshake join (adopted from [2]).

of the stream R and S flow in opposite direction. It can be
easily noticed that the windows of the two input streams are
divided into n sub-windows over n join cores. Furthermore,
FIFO buffers (indicated as in the figure) are included in
each of the join cores and mergers. Three design issues have
to be considered in order to implement handshake join hard-
ware based on Fig. 2.

First, result collection is a main design issue for hand-
shake join hardware. As illustrated in Fig. 2, the result merg-
ing logic is placed on top of the join cores. It is not imple-
mented in [2] even though it is stated that a merging network
should merge all sub-results generated by each join core.

The second issue is the limitation of the bandwidth of
the output channel (bandwidth refers to the amount of data
transferred per unit time). There is a possibility that output
rates exceed the bandwidth of the output channel, depending
on the characteristics of the input streams. It is important
for handshake join hardware to be prepared to handle such
cases.

Finally, the limitation of the size of the FIFO buffers
is considered as a critical issue. Even if most of the mean-
ingful queries would produce a small amount of results, a
possibility of buffer overflow still remains in some appli-
cations. For instance, a number of tuples satisfying a join

condition can arrive from input streams in TCP SYN Flood
detection [4]. In fact, it depends on the dynamic character-
istics of input streams, particularly whether or not a TCP
SYN Flood attack [15] occurs. This causes an instantaneous
overload of the merging network which leads to the risk of
buffer overflow. In this case, some of the results overflow
out of the buffers and they are permanently lost. Whether or
not the problem would occur really depends on application
parameters (e.g., input data rate, match rate, and window
size); however, handshake join hardware should be prepared
to avoid overflow of the FIFO buffers.

3.3 Design Strategy of Handshake Join

The following components are introduced in the design:

1. join core,
2. merger,
3. merging network,
4. and admission control.

Join cores and mergers are shown in Fig. 2. These are funda-
mental components for join operation and merging results.
Merging network is a result merging logic consisting of a
number of merger units. It should be scalable to merge re-
sult tuples even if the number of join cores is increased. Ad-
mission control mechanism provides a flow control between
join cores and the output port to prevent data loss due to
the buffer overflow. Moreover, the mechanism rejects input
tuples when it is difficult to handle high-rate streams caus-
ing an overload. It is designed in a way that the proposed
approach can be suitably integrated with a load shedding
scheme.

It should be also emphasized that join cores only re-
quire local core-to-core or core-to-merger communication
for data transferring. They concurrently perform the same
task in a synchronous manner. From this point of view, join
cores can be regarded as a one-dimensional systolic array.
Kung and Leiserson [16] proposed the idea of systolic array
that is a structure composed of an array of processors for
VLSI implementation. It is stated in [16] that processing
units of a systolic array rhythmically compute and pass data
through the system. The data processing and communica-
tion model of join cores are consistent with the properties of
systolic arrays. In fact, the data flow model of the handshake
join is very similar to that of the join arrays [17] proposed
for relational databases. On the other hand, the proposed
design is composed of not only join cores but also the merg-
ing network and the admission control mechanism. This is
the main difference between a traditional simple systolic ar-
ray and the proposed design.

4. Architecture of Handshake Join

4.1 Join Core

Join cores evaluate the join condition over the tuples in
the windows and generate output tuples. Each segment of

2922
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.12 DECEMBER 2012

the windows is implemented as a shift register. In addi-
tion, there are one-bit valid flag fields for each tuple in the
windows indicating whether the corresponding tuple field is
valid or not. Besides the shift registers, it is necessary to
implement an output buffer that stores the result tuples.

A circular FIFO queue is implemented as a buffer in
each join core. The implementation of the FIFO buffer is
based on a dedicated Block RAM (BRAM) primitive that
are readily available in FPGAs. Each FIFO buffer has two
address registers: read-address register and write-address
register. In addition, two state flags, namely empty and full,
are included in a FIFO buffer. Although the address reg-
isters and the state flags would seem self-explanatory, one
point should be noted that full flags are asserted whenever
corresponding buffers become full or almost full (i.e., there
are only few locations left).

When a new tuple comes to a join core, it shifts its own
segment of the window one-step to the side. After that, the
key value of the received tuple is compared with key values
of all tuples in another segment of the window.

4.2 Merger

In the proposed design, a simple structure is adopted for
merger units. Each merger has two input and one output
ports so as to merge two streams into a single stream. All
mergers share a common clock signal with join cores and
each of them includes a FIFO buffer, two input-buffer regis-
ters, and corresponding flags indicating whether or not data
contained in the registers is valid. Result tuples arriving at
the input ports are stored to the input-buffer registers, and
the corresponding flag is asserted (set to logic 1). After
loading the data from the input ports, the data stored in each
register transferred to the FIFO buffer one by one only if the
flags are asserted.

4.3 Merging Network

The proposed design adopts a binary tree network as the
merging network of handshake join hardware. Figure 3
demonstrates how to connect join cores with the correspond-
ing merging network. Notice that the number of join cores
and the size of the merging network will not affect the ap-

Fig. 3 Connection between join cores and merging network.

proach adopted in Fig. 3. As shown at the top of the figure,
the results of the join operation are obtained as a single out-
put stream from output port of the root node, i.e. merger1.

4.4 Admission Control

Admission control mechanism addresses the problem re-
garding the limitation of the bandwidth of the output chan-
nel and the size of the FIFO buffers. The mechanism avoids
buffer overflows leading to loss of the results. All of the
results generated by join cores are transferred to the out-
put port by rejecting newly arrived tuples when the output
rate exceeds the bandwidth of the channel and/or any of the
buffers is close to overflow.

Each FIFO buffer included in a join core or a merger
has a full flag. It is asserted when the corresponding buffer
is almost full (or completely full). The admission control
mechanism is summarized as follows:

1. If a full flag is asserted, newly arrived tuples are re-
jected, and all join cores are suspended until all of the
full flags are de-asserted (set to logic 0).

2. Furthermore, if any full flag of mergers is asserted, in-
put ports of the corresponding merger are disabled until
its own full flag is de-asserted again.

The overhead of the admission control is as follows. All full
flags are ANDed together, and the result is stored in a flip-
flop. In addition, the output of the flip-flop is connected to
each join core. For example, if the number of join core is 4
(as shown in Fig. 3), there are 4 bit signals from the full flags
of join cores and 3 bit signals from the full flags of mergers.
A total of 7 bit signals are ANDed together, and the result
is stored in a one-bit flip-flop. This one-bit of information
indicates whether or not all of the full flags are de-asserted.
With the one-bit signal connected to 4 join cores, each of the
join cores can determine whether to suspend the matching
process.

Notice that the problem regarding the bandwidth of the
output channel could be resolved by the admission control.
For example, in Fig. 3, the FIFO buffer of the merger1 be-
comes full when the bandwidth of the output channel is not
enough to transfer all results, and the corresponding full flag
is asserted. Consequently, the admission control mechanism
takes effect in order to prevent loss of the results due to
buffer overflow.

What the admission control provides is the flow con-
trol between each join core and the output channel. With
the admission control mechanism, the proposed handshake
join operator takes responsibility for input tuples accepted
by join cores. This means that all results derived from the
accepted tuples are transferred to the output channel. In
other words, no data loss occurs between each join core and
the output channel. On the other hand, this does not always
prevent loss of actual join results. The loss of the results can
occur when the join operator could not keep up with a high
input data rate. It is the fact that a lossless flow of all join
results is impossible in such cases since some of the input

OGE et al.: DESIGN AND IMPLEMENTATION OF A HANDSHAKE JOIN ARCHITECTURE ON FPGA
2923

tuples would be rejected (because of the admission policy).
It is stated, however, in [2] that load shedding [18] or distri-
bution [19] can be used if handshake join alone is not suf-
ficient to sustain load. The admission control is consistent
with load shedding techniques even though implementation
of such a mechanism is out of scope of the paper. The hand-
shake join operator can produce more valuable results once
a load shedding mechanism reduces the load of the system
because what the admission control guarantees is the join
results of the input tuples accepted by the join operator.

5. Evaluation

The design is implemented on a Xilinx XC6VLX240T-1
chip (Table 1). The FPGA design software used in this work
is Xilinx ISE 13.1 Logic Edition.

5.1 Resource Usage and Signal Delay

The hardware resource usage and the clock frequency are
evaluated for 6 different configurations. The different num-
ber of join cores (2i where i = 1, . . . , 6) are instantiated
on the FPGA. The parameters used during the instantiation
process are as follows. The window size of each join core
is set to 8 tuples. Each input tuple consists of 64-bit of data
half of which is join key and the remainder is allocated for
payload field. A result tuple is composed of 32-bit join key
and two payload fields, a total of 96-bit data.

The maximum clock frequency of the prototype system
is shown in Fig. 4. The x-axis and the y-axis represent the
number of join cores and the clock frequency, respectively.
As shown in Fig. 4, the graph is almost constant at 150 MHz
and the frequency is not declined with increased number of
join cores.

The hardware resource usage is given in Fig. 5. In this
graph, the y-axis represents the percentage of the number of
occupied slices. As shown in the figure, the graph is almost

Table 1 Specifications of XC6VLX240T-1.

of Slice Registers 301,440
of Slice LUTs 150,720
of Slices 37,680
of BRAM (36 Kbit) 416
of DSP48 768

Fig. 4 Maximum clock frequency.

linear, and it can be understood that up to 64 join cores can
be instantiated on the FPGA.

The results of the Figs. 4 and 5 lead us to the conclusion
that the proposed design is scalable in terms of the resource
usage and the signal delay.

5.2 Performance Evalutaion

A simple evaluation model can be used as shown in Fig. 6
to evaluate the throughput performance of the architecture.
A number of input tuples are generated according to match
rates and stored in the input buffer in a random order (ac-
cording to a uniform distribution). After that, input tuples
are transferred to the handshake join operator. While pro-
cessing the input tuples, it generates result tuples, and they
are stored to the output buffer.

The following parameters are used in the evaluation.
The handshake join operator includes 64 join cores, and it
runs at 100 MHz. The size of the input buffer is set to 512
tuples, which is the same as the total size of the window. The
sizes of the FIFO buffers included in each join core and each
merger are set to 8 and 4 tuples, respectively. It should be
noted that all results generated by join cores are transferred
to the output buffer owing to the admission control. This is
confirmed by counting the number of results stored in the
output buffer. It is showed that the admission control can
work properly (no overflow occurs) even if the sizes of the
FIFO buffers are set to such a small value.

The throughput performance is shown in Fig. 7. The
line labeled nested loop join is the performance estimation
of nested loops-style join implemented in [14]. The same
parameters as handshake join are used for performance com-
parison: the size of the input buffer is 512 tuples and it also
runs at 100 MHz. The y-axis of Fig. 7 represents the max-

Fig. 5 Overall slice usage.

Fig. 6 Evaluation of the handshake join architecture.

2924
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.12 DECEMBER 2012

Fig. 7 Maximum input throughput.

imum throughput of input streams that can be handled by
each join operator without dropping any input tuple.

Three critical points where an overload can occur
should be considered to understand Fig. 7. The first point
is between input ports and join cores. As shown in Fig. 6,
two input streams (R and S) flow into the join cores. The sec-
ond point is between the join cores and the merging network
where each join core transfers its sub-results to the merging
network. Finally, the third point is between the merging net-
work and the output port. It is the fact that the throughput
of the join cores should not depend on match rates. On the
other hand, the output rate of the join cores does vary de-
pending on match rates even if the throughput of the input
streams remains the same. Furthermore, the parallel execu-
tion of joins results in a high output rate because a larger
number of results can be produced per unit time (compared
to nested loops-style join evaluation) even though the total
number of results is not affected by the execution method.
With increasing match rates, the join cores produce a con-
siderable number of results, and therefore the second point
tends to overload. In addition, the bandwidth of the output
channel strictly limits the throughput of the merging net-
work, and this causes an overload in the third point. In fact,
what determines the throughput of the entire system is not
the join cores but the merging network, especially at a high
match rate. This is because the merging network becomes a
critical bottleneck as match rate increases.

On the other hand, low match rates lead to low output
rates of the join cores. In such cases, the load of the merging
network decreases, and the merging network is no longer the
critical bottleneck of the overall system. When a new input
tuple arrives in the system, matching processes can be com-
pleted in a shorter period of time than the nested loops-style
join, taking advantage of the parallel execution of the join
cores. That’s why the handshake join can achieve higher
throughput than the nested loops-style join when match rate
is low.

6. Discussion on Buffer Size Tuning

There is a close relation between the size of the FIFO buffers
and the frequency of interruption caused by the admission
control. Theoretically, the admission control never sus-

pends the join cores provided that there is enough space in
the buffers. On the other hand, limitations of hardware re-
sources should be considered in practice, and allocation of
finite buffer space has become an important design issue.
It is necessary to clarify how buffer sizes affect the overall
performance of the architecture.

In order to investigate the effect of the buffer sizes, we
use a cycle-accurate simulator of the architecture as a sim-
ulation platform. The buffer sizes can be easily modified
and this enables us to evaluate the architecture for differ-
ent buffer size configurations more easily. A huge memory
block can be allocated for each buffer of join core or merger
by using the software model. As a result, it is also possible
to evaluate the architecture in the ideal condition regarding
buffer sizes.

The same parameters as in Sect. 5.2 are used in the sim-
ulation except for the FIFO buffers. The size of the input
buffer is 512 tuples, and there are 64 join cores one of which
can store up to 8 tuples for each stream. Input and result
tuples are 64-bit and 96-bit wide, respectively.

6.1 Static Tuning

As shown in Table 1, there are 416 BRAMs each of which
can store up to 36 Kbit data in XC6VLX240T-1 chip. That is
to say, we can allocate up to 211 tuples for each join core and
merger when BRAM resources are equally allocated among
all of the FIFO buffers which are included in join cores and
mergers. From this point of view, the total number of cycles
required for completion of the join operation is evaluated for
different buffer sizes (2i where i = 2, . . . , 11). The simula-
tions are performed at the 100% match rate. According to
the results, the numbers of cycles required for the comple-
tion of handshake join are 1464443, 1054029 and 1054012
when the buffer sizes are 22, 23 and 24 respectively. Results
indicate that the total number of cycles remains the same
when the buffer size of each node is equal to or more than 24

tuples. What determines the total throughput of the system
is not the join cores but the merging network at a high match
rate. This is because the merging network becomes a critical
bottleneck as match rate increases. Inputs and the output of
the merging network are critical points, which can become a
bottleneck for the overall system performance. The connec-
tion point between the join cores and the merging network
becomes a major bottleneck when the buffer size of each
node is less than 24 tuples. It is possible, however, to al-
leviate the bottleneck by increasing the buffer size up to 24

tuples. Once it has reached 24 tuples, the main bottleneck is
shifted to the output of the merging network since the band-
width of the output channel strictly limits the throughput of
the merging network. As a result, the increased buffer size
no longer alleviates the bottleneck; thus, the total number of
cycles remains the same when the buffer size is equal to or
more than 24 tuples.

So far, the simulation model assumes the same sizes for
each buffer of join core and merger. In other words, BRAM
resources are uniformly distributed among all FIFO buffers.

OGE et al.: DESIGN AND IMPLEMENTATION OF A HANDSHAKE JOIN ARCHITECTURE ON FPGA
2925

Table 2 Buffer size configurations.

Level of the tree #. of nodes config1 config2 config3

0 (root node) merger x 1 22 210 28

1 (nodes at depth 1) merger x 2 22 26 27

2 (nodes at depth 2) merger x 4 22 25 26

3 (nodes at depth 3) merger x 8 23 24 25

4 (nodes at depth 4) merger x 16 24 23 24

5 (nodes at depth 5) merger x 32 24 22 23

6 (leaf nodes) join core x 64 24 22 22

Fig. 8 Results of the simulation for different configurations.

As the next step, the total number of cycles for non-uniform
configuration is evaluated. The details of the 3 different con-
figurations are given in Table 2. The first column represents
level of the tree. Here, the depth of a node is defined as the
length of the path from the root to the node. As a special
case, the depth of the root node is 0. The set of all nodes at
a given depth is called level of the tree. In these configura-
tions, the buffer size of all nodes at the same depth is equal,
and each row of the Table 2 corresponds to the size of each
buffer in the same level.

The total buffer sizes of the each configuration 1, 2, and
3 are 1884, 1920, and 1792 tuples, respectively. Note that
the total buffer size is 2032 when the buffer size of each node
is equal to 24. We compare the number of cycles required for
completion of the operation for these 4 buffer configurations
under different match rates in order to clarify the effect of the
difference of the buffer allocation method.

The results of the cycle-accurate simulation are shown
in Fig. 8. Results indicate that the buffer allocation methods
may have great impact on the performance of the handshake
join architecture. It is predictable from these results that the
buffer sizes of nodes closer to the root should be relatively
larger than other nodes located in deeper levels so as to uti-
lize the limited resources efficiently.

6.2 Adaptive Tuning

In the previous subsection, we focus on the static buffer tun-
ing in order to investigate the relation between the buffer
sizes and the performance of the architecture under the con-
dition of limited hardware resources. In this subsection, we
consider the possibility of the adaptive buffer tuning for the

architecture.
In this evaluation, we assume that the admission con-

trol mechanism never interrupts the handshake join oper-
ation. Relatively large memory blocks are allocated for
buffers of join cores and mergers. In fact, the buffer size of
each node is equal to or more than 216 tuples. These values
guarantee the above mentioned assumption.

In this simulation, the architecture is evaluated with in-
put streams of 3 different characteristics so as to investigate
the relation between the characteristic of the input streams
and the number of tuples inserted into each buffer. Input tu-
ples which satisfy the join condition are located in the input
buffer as follows:

1. according to a uniform distribution,
2. according to a Gaussian distribution,
3. and burst inputs (consecutive tuples that satisfy the

condition).

The results of the cycle-accurate simulation are shown
in Fig. 9. In each graph, the x-axis represents the cycles, and
the y-axis stands for the number of tuples stored in the buffer
at each cycle. Each graph in Fig. 9 corresponds to the nodes
at depth 3 in the binary tree (merging network). Results
indicate that the number of tuples stored in the buffer differs
from each other.

These data lead us to the conclusion that the adap-
tive buffer tuning can be applied to the architecture because
sufficient space is available in some buffers when some of
the others store a relatively large number of tuples. These
observations imply that some load-balancing methods such
as Dynamically Allocated Multi-Queue Buffers [20] can be
used for the purpose of adaptive tuning.

7. Conclusions and Future Work

In this paper, a complete design and implementation of
handshake join is presented based on [2]. In handshake
join, it is necessary to take into account the result merg-
ing logic, and the problems with regard to the limitation
of the bandwidth of the output channel and the size of the
buffers included in join cores and mergers. The three de-
sign issues mentioned in the introduction are addressed by
the proposed design including the binary tree network and
the admission control mechanism. The proposed additional
mechanism contributes to solving the buffer overflow prob-
lem in the handshake join operator.

The proposed implementation is evaluated in terms of
the hardware resource usage, the maximum clock frequency,
and the throughput performance. The result shows that the
proposed implementation achieves scalability up to 64 cores
as mentioned in [2], even though it includes the merging
network and the admission control mechanism. The per-
formance evaluation results show that the handshake join
handles considerably high input rate compared with nested
loops-style join [14] when the match rate is low. Moreover,
simulation results indicate a new intuition regarding static
and adaptive tuning of the FIFO buffers included in join

2926
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.12 DECEMBER 2012

Fig. 9 Results of the simulation for input streams of 3 different characteristics.

cores and mergers.
Future work is as follows. First of all, the current de-

sign of join cores will be improved in several aspects. In
the proposed design, each segment of the windows for input
streams is implemented using shift registers. As a result, the
total size of the window is severely limited by the available
hardware resources. An alternative implementation tech-
nique should be considered to handle large windows. Fur-
thermore, a load balancing strategy for join cores can be
implemented to enhance the overall performance. For ex-
ample, if certain cores are overloaded, the overloaded cores
would transfer some of their loads to the neighboring cores.
Secondly, the proposed implementation of handshake join
tolerates output latency in order to handle higher input rates.
The latency, however, is not mainly related to the execution
strategy (whether or not join processes are executed in par-
allel). The longer latency occurs in the merging network
after results are produced in each join core; therefore, an
improved network structure can offer much better latency
characteristics than the proposed one. Finally, the perfor-
mance of the proposed implementation will be compared to
another implementation of window joins (e.g., CellJoin). It
should also be evaluated through practical application, de-
termining suitable buffer sizes for join cores and mergers.

Acknowledgement

This work is partially supported by “KAKENHI
(#22700090)”, “KAKENHI (#23700054)”, and “Early-
concept Grants for Exploratory Research on New-
generation Network”.

References

[1] J. Kang, J.F. Naughton, and S. Viglas, “Evaluating window joins
over unbounded streams,” ICDE, pp.341–352, 2003.

[2] J. Teubner and R. Mueller, “How soccer players would do stream
joins,” SIGMOD Conference, pp.625–636, 2011.

[3] B. Gedik, R. Bordawekar, and P.S. Yu, “Celljoin: A parallel stream
join operator for the cell processor,” VLDB J., vol.18, no.2, pp.501–
519, 2009.

[4] T. Johnson, S. Muthukrishnan, O. Spatscheck, and D. Srivastava,
“Streams, security and scalability,” DBSec, pp.1–15, 2005.

[5] Y. Oge, T. Miyoshi, H. Kawashima, and T. Yoshinaga, “An imple-
mentation of handshake join on FPGA,” ICNC, pp.95–104, 2011.

[6] R. Mueller, J. Teubner, and G. Alonso, “Data processing on FPGAs,”
PVLDB, vol.2, no.1, pp.910–921, 2009.

[7] M. Sadoghi, H.A. Jacobsen, M. Labrecque, W. Shum, and H. Singh,
“Efficient event processing through reconfigurable hardware for al-
gorithmic trading,” PVLDB, vol.3, no.2, pp.1525–1528, 2010.

[8] M. Sadoghi, H. Singh, and H.A. Jacobsen, “Towards highly parallel
event processing through reconfigurable hardware,” DaMoN, pp.27–
32, 2011.

[9] M. Sadoghi, R. Javed, N. Tarafdar, H. Singh, R. Palaniappan, and H.
Jacobsen, “Multi-query stream processing on FPGAs,” ICDE, 2012.

[10] J. Teubner, R. Mueller, and G. Alonso, “Frequent item computation
on a chip,” IEEE Trans. Knowl. Data Eng., vol.23, no.8, pp.1169–
1181, 2011.

[11] R. Mueller, J. Teubner, and G. Alonso, “Streams on wires — A query
compiler for FPGAs,” PVLDB, vol.2, no.1, pp.229–240, 2009.

[12] T. Miyoshi, H. Kawashima, Y. Terada, and T. Yoshinaga, “A coarse
grain reconfigurable processor architecture for stream processing en-
gine,” FPL, pp.490–495, 2011.

[13] J. bo Qian, H. bing Xu, Y. Dong, X. jun Liu, and Y. li Wang, “FPGA
acceleration window joins over multiple data streams,” J. Circuits
Syst. Comput., vol.14, no.4, pp.813–830, 2005.

[14] Y. Terada, T. Miyoshi, H. Kawashima, and T. Yoshinaga, “A consid-
eration of window join operator over data streams by using FPGA,”
(in Japanese), IEICE Technical Report, RECONF2010-80, 2011.

[15] CERT, “Advisory CA-1996-21 TCP SYN flooding and IP spoofing
attacks,” 1996.

[16] H.T. Kung and C.E. Leiserson, “Systolic arrays (for VLSI),” Sparse
Matrix Proceedings 1978 (Symposium on Sparse Matrix Computa-
tions, 1978), pp.256–282, SIAM, 1979.

[17] H.T. Kung and P.L. Lehman, “Systolic (VLSI) arrays for relational
database operations,” SIGMOD Conference, pp.105–116, 1980.

[18] N. Tatbul, U. Çetintemel, S.B. Zdonik, M. Cherniack, and M.
Stonebraker, “Load shedding in a data stream manager,” VLDB,

OGE et al.: DESIGN AND IMPLEMENTATION OF A HANDSHAKE JOIN ARCHITECTURE ON FPGA
2927

pp.309–320, 2003.
[19] D.J. Abadi, Y. Ahmad, M. Balazinska, U. Çetintemel, M. Cherniack,

J.H. Hwang, W. Lindner, A. Maskey, A. Rasin, E. Ryvkina, N.
Tatbul, Y. Xing, and S.B. Zdonik, “The design of the Borealis stream
processing engine,” CIDR, pp.277–289, 2005.

[20] Y. Tamir and G.L. Frazier, “Dynamically-allocated multi-queue
buffers for VLSI communication switches,” IEEE Trans. Comput.,
vol.41, no.6, pp.725–737, 1992.

Yasin Oge received his B.E. degrees (Com-
puter Eng. and Telecommunication Eng.) from
Istanbul Technical University, Turkey, in 2010.
Since April 2011, he has been studying infor-
mation network systems at the Graduate School
of Information Systems, UEC, Japan.

Takefumi Miyoshi received his B.E., M.E.,
and D.E. from Tokyo Institute of Technology in
2003, 2005, and 2007, respectively. Since Apr.
2010, he has been with the Graduate School of
Information Systems, UEC, where he is an as-
sistant professor. His research interests are com-
piler techniques, many-core processor architec-
ture, and co-design of hardware and software.
He is also a member of ACM, IEEE, and IPSJ.

Hideyuki Kawashima received Ph.D. from
Science for Open and Environmental Systems,
Graduate School of Keio University, Japan. He
was a research associate at Department of Sci-
ence and Engineering, Keio University from
2005 to 2007. From 2007 to 2011, he was an
assistant professor at both Graduate School of
Systems and Information Engineering and Cen-
ter for Computational Sciences, University of
Tsukuba, Japan. From 2011, he is an assis-
tant professor at Faculty of Information, Sys-

tems and Engineering, University of Tsukuba.

Tsutomu Yoshinaga received his B.E.,
M.E., and D.E. degrees from Utsunomiya Uni-
versity in 1986, 1988, and 1997, respectively.
From 1988 to July 2000, he was a research as-
sociate of Faculty of Engineering, Utsunomiya
University. He was also a visiting researcher
at Electro-Technical Laboratory from 1997 to
1998. Since August 2000, he has been with the
Graduate School of Information Systems, UEC,
where he is now a professor. His research in-
terests include computer architecture, intercon-

nection networks, and network computing. He is a member of IEEE and
IPSJ.

