
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.12 DECEMBER 2012
3017

PAPER

Privacy Preserving Using Dummy Data for Set Operations in
Itemset Mining Implemented with ZDDs

Keisuke OTAKI†a), Student Member, Mahito SUGIYAMA††, and Akihiro YAMAMOTO†, Nonmembers

SUMMARY We present a privacy preserving method based on in-
serting dummy data into original data on the data structure called Zero-
suppressed BDDs (ZDDs). Our task is distributed itemset mining, which is
frequent itemset mining from horizontally partitioned databases stored in
distributed places called sites. We focus on the fundamental case in which
there are two sites and each site has a database managed by its owner. By
dividing the process of distributed itemset mining into the set union and the
set intersection, we show how to make the operations secure in the sense
of undistinguishability of data, which is our criterion for privacy preserving
based on the already proposed criterion, p-indistinguishability. Our method
conceals the original data in each operation by inserting dummy data, where
ZDDs, BDD-based directed acyclic graphs, are adopted to represent sets of
itemsets compactly and to implement the set operations in constructing the
distributed itemset mining process. As far as we know, this is the first tech-
nique which gives a concrete representation of sets of itemsets and an im-
plementation of set operations for privacy preserving in distributed itemset
mining. Our experiments show that the proposed method provides undis-
tinguishability of dummy data. Furthermore, we compare our method with
Secure Multiparty Computation (SMC), which is one of the well-known
techniques of secure computation.
key words: privacy-preserving data mining, distributed itemset mining,
dummy data, set operations, zero-suppressed bdds

1. Introduction

Privacy-Preserving Data Mining (PPDM) is one of the
growing fields in Knowledge Discovery where data
anonymization and secure computation are mainly dis-
cussed for finding useful knowledge without information
leakages. Today, it is becoming more and more general that
many users participate a specific mining task. Each user has
his/her own data stored in a site and try to extract knowledge
from the union of all users’ data without revealing their in-
formation to other users, since some opponents, called ad-
versaries, may participate in the mining task.

In this paper, we present a new privacy preserving
method to overcome two incompatible requirements, dis-
covering and preserving knowledge, in such a scenario. In
particular, we focus on itemset mining, which is a funda-
mental task in Knowledge Discovery. In the task, we want to
find sets of items occurring frequently, called frequent item-
sets, from a given database. Since the first algorithm Apri-

Manuscript received March 27, 2012.
Manuscript revised July 21, 2012.
†The authors are with the Graduate School of Informatics,

Kyoto University, Kyoto-shi, 606–8501 Japan.
††The author is with Max Planck Institute for Developmen-

tal Biology and the Max Planck Institute for Intelligent Systems,
72076 Tübingen, Germany.

a) E-mail: ootaki@iip.ist.i.kyoto-u.ac.jp
DOI: 10.1587/transinf.E95.D.3017

ori was proposed by Agrawal et al. [1], many algorithms
have already been proposed like FP-growth by Pei et al. [2]
and LCM by Uno et al. [3]. When the database is divided
into several parts and each part is stored in a distributed
site, the task is called distributed itemset mining. Most al-
gorithms for the original itemset mining can be extended
for the distributed cases like FDM proposed by Cheung et
al. [4], which is a natural extension of the Apriori.

In distributed itemset mining, we have to take into ac-
count two additional issues: communication cost and pri-
vacy of data, which do not appear in the original item-
set mining. To date, various distributed itemset mining al-
gorithms have been proposed for avoiding the two issues.
Lucchese et al. [5] proposed to use closed itemsets for de-
creasing communication cost between sites, where the con-
cepts of closed itemsets was introduced by Pasquier et al. [6]
as a lossless compression of frequent itemsets. On the
other hand, for preserving privacy of data, Kantarcioglu et
al. [7] proposed an extension of the FDM algorithm based
on Secure Multiparty Computation (SMC), for the disjoint
union of horizontally partitioned databases called the en-
tire database. Recently, Kuno et al. [8] integrated the above
methods and adopted encryption during communications of
closed itemsets between sites for preserving privacy.

However, the previous works do not provide pre-
cise implementations of operations for itemset mining al-
though they are important for estimating information leak-
ages based on actual operations. In this paper, we divide
the process of itemset mining into two set operations, the
set union and the set intersection, and use closed itemsets
in the same way as the previous work [5] for decreasing
communication cost. Moreover, they do not give repre-
sentation of itemsets, which is also important for practical
evaluaitons of information leakages. Here we adopt Zero-
suppressed BDDs (ZDDs), which are BDD-based directed
acyclic graphs. Sets of itemsets can be represented com-
pactly by ZDDs [9], [10] and, therefore, we can reduce the
encryption cost using ZDDs, which becomes high for mas-
sive databases and is known as one of important problems
in privacy preserving [7]. The key strategy of privacy pre-
serving is to insert dummy data into the original data to con-
ceal them. Since ZDDs give compact representation of such
mixed data including original and dummy, we can effec-
tively and efficiently deal with preserving privacy for ZDDs.
As far as we know, this is the first technique which gives a
concrete data structure for preserving privacy.

As our criterion of privacy preserving, we define undis-

Copyright c© 2012 The Institute of Electronics, Information and Communication Engineers

3018
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.12 DECEMBER 2012

tinguishability for privacy of data in distributed itemset min-
ing. We guarantee to obtain inability to identify whether
data treated in the mining actually come from the original
data by dummy data.

This paper is constructed as follows: We prepare
concepts and definitions of distributed itemset mining and
closed itemsets in Sect. 2. In Sect. 3, we explain the method
of inserting dummy data and why privacy of data is pre-
served with such dummy data. We also show how to ex-
tract expected results after set operations with dummy data
and theoretically prove the correctness of our method for the
set union and the set intersection. In Sect. 4, we explain an
implementation of our method using ZDDs and introduce
a criterion of privacy preserving called undistinguishability.
We experimentally show that the method preserves privacy
in the sense of undistinguishability in Sect. 5. After showing
the comparison between our method and SMC in Sect. 6, we
give our conclusion in Sect. 7.

2. Distributed Itemset Mining Using Closed Itemsets

Here we give concepts and notations in distributed itemset
mining and discuss the relationship between set operations
and itemset mining. We explain how to divide the process
into set operations by closed itemsets and the operation ⊗
with defining them. We also confirm the method to obtain
the globally frequent itemsets.

2.1 Overview of Distributed Itemset Mining

Let I = {i1, i2, . . . , iN} be a finite set of items and an itemset
X be a subset of I. A transaction t = (id, X) is a pair of an
identifier id and an itemset X. A transaction database DB is
a finite set of transactions and the number of transactions is
denoted by |DB|, that is, DB = {t1, t2, . . . , t|DB|}. We omit id
when we treat set operations for transactions. For example,
we write X ∈ DB if t ∈ DB for some transaction t = (id, X).

A transaction database DB is said to be horizontally
partitioned into m sites S 1, S 2, . . . , and S m if DB is par-
titioned into disjoint subsets DB1,DB2, . . . , and DBm and
DB = DB1 ∪DB2 ∪ · · · ∪DBm, where each DBk is stored in
the site S k. Each database DBk is called a partial database,
and DB is called the entire database. Figure 1 illustrates an
example of a horizontally partitioned transaction database
DB = DB1 ∪ DB2 on I = {a, b, c, d} and its binary table
representation. In this paper, we often regard a transaction
database DB on the left-hand side in the figure as a rela-

Fig. 1 An example of a horizontally partitioned database DB = DB1 ∪
DB2 on I = {a, b, c, d} (left), and its binary table representation (right).

tional table of binary data on the right-hand side. The left
most column shows the ID of every transaction. Each of the
other columns corresponds to an item i ∈ I, and each row
corresponds to a transaction t = (id, X). We put 1 on (id, i)
in the table if for the transaction t = (id, X), the itemset X
includes the item i. In other cases, we put 0 on the cell. We
say that an itemset X occurs in a transaction t = (id,Y) if
X ⊆ Y , and t is an occurrence of X.

The number of occurrences of the itemset X in the
database DBk is called the support of X in DBk and it is de-
noted by X.supk. The support of X in the entire database DB
is defined as X.sup =

∑
k X.supk and if X.sup ≥ σ∑k |DBk |,

the itemset X is said to be globally frequent with respect to
σ. The parameter σ (0 ≤ σ ≤ 1) is a real number, called
minimum support, and it is given in an actual scenario of
itemset mining. The goal of distributed itemset mining is to
find all globally frequent itemsets from the entire database
DB with a given minimum support σ.

For simplicity, we assume that an item is a natural num-
ber. We call a set {m,m + 1, . . . , n} an interval and write it
as [m, n] where m < n. We say that DB is on [m, n] if for
all X ∈ DB, X ⊆ [m, n]. In the following, we fix an in-
terval I = [1,R] and assume that an entire database DB is
horizontally partitioned into two databases DB1 and DB2 on
I, so that DB = DB1 ∪ DB2. Each partial database DB1,
DB2 is stored in each site S 1, S 2, respectively. Note that our
method can be easily extended to the cases in which there
are more than three sites in the task. For example, we can
use tournaments to treat many sites with binary operations.

2.2 Closed Itemsets with Set Operations

Let T be a non-empty subset of a transaction database DB
and X be a non-empty itemset. Closed itemsets are defined
using two subsidiary functions, Com and Occ, as follows:

Com(T) = {i ∈ I | i ∈ t for all t ∈ T },
Occ(X) = {t ∈ DB | i ∈ t for all i ∈ X}.

In addition, the Galois operator c is defined as c = Com ◦
Occ. We say that the itemset X is closed if c(X) = X. For
k ∈ {1, 2}, we denote the set of closed itemsets on DBk by
Ck, and the set of frequent closed itemsets in Ck by FCk.
Moreover, we denote the set of closed itemsets on DB by
C12, and the set of frequent closed itemsets on C12 by FC12.

It is well-known that the frequent closed itemsets
FC12 is a lossless compression of the frequent itemsets in
the sense that we can generate all frequent itemsets from
FC12 [6]. Thus, in distributed itemset mining, it is enough
to find FC12 instead of all frequent itemsets. For example,
if DB = DB1 ∪ DB2 is the database illustrated in Fig. 1, we
have the followings:

C1 = {ac, abc, acd, abcd}, C2 = {bc, bcd},
C12 = {b, c, d, ac, bc, bd, bcd, abc, acd, abcd}.
Lucchese et al. [5] showed that the set C12 is equivalent

to C1⊗C2, which is defined as C1⊗C2 = C1∪C2∪(C1
C2),

OTAKI et al.: PRIVACY PRESERVING USING DUMMY DATA FOR SET OPERATIONS IN ITEMSET MINING IMPLEMENTED WITH ZDDS
3019

where C1
 C2 = {X1 ∩ X2 | X1 ∈ C1, X2 ∈ C2}. We assume
that the site S 1 has C1 and the site S 2 has C2. Because the
operator ⊗ consists of two set operations, the set union∪ and
the set intersection ∩, all that we have to do is to preserve
privacy of these two set operations with dummy data.

2.3 How to Find Frequent Itemsets

Globally frequent itemsets can be obtained from the set of
closed itemsets C12 in the following manner. As we men-
tioned earlier, an itemset X is globally frequent if X.sup ≥
σ
∑

k |DBk |. This inequality can be written as
∑

k vk ≥ 0,
where vk = X.supk − σ|DBk |. Thus we can judge whether
or not the itemset X is globally frequent by taking summa-
tion of vk in all sites. We can easily preserve privacy of this
summation using the method secure sum [11].

3. Set Operations with Dummy Data

We propose to insert dummy data into original data for pri-
vacy preserving in set operations for distributed itemset min-
ing. For the insertion, we prepare three functions, shift func-
tions, mixing functions, and screening functions. We intro-
duce two parameters γ ≥ 1 and M ≥ R + γ + 1 and expand
the original interval I = [1,R] to Ĩ = [1,M], which we
call the expanded interval. A dummy database is a database
on the interval [m, n] with m < γ and R + γ < n, where
every itemset is generated randomly. Every transaction in
dummy databases is called dummy data and every transac-
tion in original databases is called original data.

We use a shift function to make the expanded inter-
val Ĩ. The shift function for an item i ∈ I is defined as
shiftγ(i) = i + γ. The function is extended for an itemset X
as shiftγ(X) = {shiftγ(i) | i ∈ X}, and for a database DB as
shiftγ(DB) = {shiftγ(X) | X ∈ DB}.

We use a mixing function μ to mix a dummy database
into the original database. The mixing function μ gets an
original database DB and a dummy database D and returns a
new database, denoted by μ(DB,D), which consists of only
original data and dummy data. Since both databases have
identifiers for every transaction, we assign new identifiers
for every transaction from both databases DB and D ran-
domly, and it forms μ(DB,D) so that every transaction in it
has a new and unique identifier. By omitting the identifiers
for operations, we regard the mixing step as a set operation.
In the case that we use the set union ∪ as the mixing func-
tion, we denote the mixing step by μ(DB,D) = DB ∪ D.

We use a screening function e to remove the dummy
data from the result of set operations. If the target set op-
eration is the set intersection ∩, the screening function e is
id, which is an identity function. Otherwise if the target set
operation is the set union ∪, the screening function e is a
choice function, which gets a set of itemsets on [1,M] and
remove the items on [1, γ] and [R + γ + 1,M] from each
itemset. We will show the correctness of the functions in
Proposition 1 and Corollary 1 based on some restrictions.

We show the outline of our method to achieve the set

Fig. 2 The outline of inserting dummy data and extraction.

operations with dummy data in Fig. 2. We denote the inputs
as DB1 and DB2, and the method calculates DB1 op DB2.
By this method, we calculate C12 from two sets C1 and C2

of closed itemsets of two sites S 1 and S 2.

Note. By repeating the following phases, we calculate C12

after each site S 1, S 2 prepares C1, C2, respectively.
Phase 0. (Preparing) The sites S 1 and S 2 prepare dummy

databases D1 and D2, respectively and independently.
They share the parameters γ and M.

Phase 1. (Pre-processing 1) Each site S k (k ∈ {1, 2}) ob-
tains DB′k = shiftγ(DBk) by applying the shift function
shiftγ. Note that no original item remains in the inter-
vals [1, γ] and [R + γ + 1,M].

Phase 2. (Pre-processing 2) Each site S k (k ∈ {1, 2})
merges a dummy database Dk with DBk using a mixing
function μ and get a new database EDBk = μ(DB′k,Dk).

Phase 3. (Set operation) Both sites S 1 and S 2 execute a set
operation op ∈ {∪,∩} between EDB1 and EDB2. The
output EDB = EDB1 op EDB2 includes both original
data and dummy data.

Phase 4. (Post-processing) Each site applies a screening
function e to the result EDB. To get the answer on the
original interval [1,R], it uses the shift function shift(−γ)
to e(EDB). The result shift(−γ)(e(EDB)) becomes the
answer on the original interval [1,R].

We show the correctness of our method by proving that
we can get DB1 ∪ DB2 or DB1 ∩ DB2 by our method. Re-
member that they prepare C1 and C2 as their inputs. For
simplicity, we divide the expanded interval Ĩ into three in-
tervals L = [1, γ], N = [1+γ,R+γ], and H = [R+γ+1,M],
that is, Ĩ = L ∪ N ∪ H. For the site S k, dummy databases
Dk |L, Dk |N , and Dk |H on the intervals L,N, and H are pre-
pared so that they satisfy the following conditions.

Dk |L ⊆ {t | t = (id, X) for some id and X ⊆ L},
Dk |N ⊆ {t | t = (id, X) for some id and X ⊆ N},
Dk |H ⊆ {t | t = (id, X) for some id and X ⊆ H}.
We let Dk = Dk |L ∪ Dk |H for k ∈ {1, 2} and we also let

Dk |N = ∅ in this paper. In addition, we assume that D1|L ∩
D2|L = ∅ and D1|H ∩ D2|H = ∅ by setting two parameters γ
and M for enlarging two intervals L and H enough. Under
those assumptions, the pair of a mixing function μ = ∪ and

3020
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.12 DECEMBER 2012

a screening function e = id works correctly if we choose
dummy databases carefully.

Proposition 1 We adopt μ = ∪ and e = id. For k ∈ {1, 2},
let DB′k = shiftγ(DBk) and EDBk = DB′k ∪ (Dk |L ∪ Dk |H).
For the operation op = ∩, it holds that id{EDB1 ∩ EDB2} =
shiftγ(DB1 ∩ DB2).

Proof Proposition 1 is proved as follows:

id{(DB′1 ∪ D1|L ∪ D1|H) ∩ (DB′2 ∪ D2|L ∪ D2|H)}
= (DB′1 ∪ D1|L ∪ D1|H) ∩ (DB′2 ∪ D2|L ∪ D2|H)

= (DB′1 ∩ DB′2)

∪ {DB′1 ∩ (D2|L ∪ D2|H)} ∪ {DB′2 ∩ (D1|L ∪ D1|H)}
∪ {(D1|L ∪ D1|H) ∩ (D2|L ∪ D2|H)}
= DB′1 ∩ DB′2 = shiftγ(DB1 ∩ DB2)

�
We can easily see that we obtain DB1 ∩ DB2 from
shiftγ(DB1 ∩ DB2) in Phase 4 with the function shift(−γ).

For the case op = ∪, we need another screening func-
tion, called choice. It chooses items from the shifted interval
[1 + γ,R + γ] as follows:

choice(DB) = {t | t ∈ DB and i ∈ shiftγ(I) for all i ∈ t}.
We can obtain the following corollary.

Corollary 1 For the set operation ∪ and the screening
function choice, we can calculate the set intersection with
dummy data as follows:

choice{(DB′1∪(D1|L∪D1|H))∪(DB′2∪(D2|L∪D2|H))}
= DB′1 ∪ DB′2 = shiftγ(DB1 ∪ DB2).

Note that we can insert dummy data into the interval
[1 + γ,R + γ]. This is why we store sets of itemsets as
ZDDs (we give explanation about them in the next section),
where itemsets are stored in the form of graphs and trans-
ferred to the other site as a list of nodes, where some nodes
are merged. We cannot know such merging occurs in mix-
ing databases. Thus when we insert dummy transactions on
[m, n] with m < γ and R+γ < n, we cannot find original data
from [m, n] as items during set operations. Moreover, such
dummy data do not affect the original data because ZDDs
do not represent items, but sets of itemsets.

4. Implementation and Privacy Criterion with ZDDs

In this section, we present an implementation of our method
using ZDDs, invented by Minato [9], and give a privacy cri-
terion, called undistinguishability.

4.1 Representation of Databases Using ZDDs

First, we briefly introduce ZDDs using Fig. 3. In Fig. 3, we

Fig. 3 The database DB2 = {bcd, bd} in Fig. 1 represented by a ZDD.

illustrate a ZDD representing DB2 in Fig. 1. The ZDD has
one source node labeled with b and two sink nodes repre-
sented by square nodes labeled with 0 and 1. Each circle
node represents an item and all items are ordered in each
path from the source to the sinks. For example, we have the
order b < c < d. Each node has two edges. An edge denoted
by a dotted line is a 0-edge and an edge denoted by a solid
line is a 1-edge. Each 1-edge corresponds to a possession of
the item assigned to the node. In ZDDs, each path from the
source node to the sink node labeled with 1 corresponds to
an itemset. Nodes on ZDDs are merged by the rules:

• If the 1-edge is directly connected to the constant 0, we
remove the node, and
• if a tuple (v, p0, p1) is isomorphic to an another tuple

(v′, p′0, p
′
1), then we merge them into one,

where two nodes are isomorphic if they have the same item
v and connects to the same nodes both on the 0-edges and on
the 1-edges. The first rule is the difference between ZDDs
and BDDs. By applying it to directed graphs which rep-
resent sets of itemsets, we can remove a lot of nodes be-
cause usually each transaction consists of a small number
of items. In addition, the second rule is also the difference
between ZDDs and related structures like FP-trees and pre-
fix trees, that is, the isomorphic nodes are merged on ZDDs.
We can remove redundant nodes in the graphs. These are
why we can represent sets of itemsets compactly. Refer the
literature [9], [10], [12], more precisely. As seen such pre-
vious works, ZDDs are widely adopted for itemset mining
and related tasks, but there exists no methods for preserving
privacy with ZDDs. Because ZDDs could represent a large
database, we adopt dummy based methods.

We can also represent a ZDD by a list of tuples
(v, p0, p1), where v is an item, p0 is the 0-edge, and p1 is
the 1-edge. The sink nodes labeled with 0 and 1 are rep-
resented with (−1, 0, 0) and (−1, 1, 1), respectively. Well-
known generic ZDD interpreters have a node table [9] to
manage the list of tuples representing ZDDs. We show
an example of the node table in Fig. 4. Nodes on ZDDs
are stored in each row in the node table. Operations of a
ZDD are executed by using the list of tuples corresponding
to each node of a ZDD [10]. As an example of an algo-
rithm, the set union of two sets represented by two ZDDs
A = (A.top, A0, A1) and B = (B.top, B0, B1) is shown in
Fig. 5, where GetNode is a function to make a new node.
Two tuples A and B show the root nodes of the node tables,
and the pointers show the sub-graphs of each node. For ex-

OTAKI et al.: PRIVACY PRESERVING USING DUMMY DATA FOR SET OPERATIONS IN ITEMSET MINING IMPLEMENTED WITH ZDDS
3021

Fig. 4 Example of a node table which represents a ZDD in Fig. 3.

Fig. 5 The algorithm ZDD-UNION(A, B) which performs the set union
where the items are represented by natural numbers.

Fig. 6 Three Types of Nodes on ZDDs. The item v is assigned to the root
node of those nodes, and the triangles indicate other ZDDs.

ample, A.top is the item of a ZDD in the root node and A0

and A1 show sub-graphs.
A node of a ZDD held in one site would be transmitted

to the other site, which means that the other site can use
the transmitted information for judging whether or not the
transmitted node is in the original data or in the dummy data.
To analyze privacy preserving in the process precisely, we
classify each node into three types as follows:

1. Single: Nodes both edges of which are connected to the
constant nodes labeled with 0 or 1.

2. Semi-single: Nodes either of edges of which is con-
nected to the constant node.

3. Complex: Nodes which are neither single nor semi-
single.

These types of nodes are illustrated in Fig. 6, and they are
used to define a privacy criterion.

4.2 Privacy Criterion

Vaidya et al. [13] proposed that we should address the fol-
lowing two requirements in privacy preserving.

1. We cannot identify an individual from revealed infor-
mation during operations.

2. We cannot construct any attacks to the individual.

For the second requirement, we assume semi-honest behav-
ior for the participants [14]. In the semi-honest model, the

participants obey the given procedures, and our method of
inserting dummy data meets the first requirement. In this
study, we only consider the case in which there exists only
two users for computing closed itemsets. The adversary of
a site is the other site. We preserve privacy in the sense of
not revealing the structure of ZDDs measured by the number
of three types of nodes to the adversary based on undistin-
guishability. We also assume that we do not want to reveal
the ratio of three types of nodes.

For evaluation, we introduce a privacy criterion undis-
tinguishability by referring to p-indistinguishability intro-
duced by Clifton et al. [15] in the contexts of databases
and queries to them. p-indistinguishability is defined using
statistical queries and probabilities based on computational
indistinguishability. Intuitively, p-distinguishability means
the property that we cannot identify the individuals from the
results of the queries. Based on this criterion, we use iden-
tifiability of data used in set operations between sites.

The main idea of the criterion is that if there are suffi-
cient dummy data for concealing the original data, we can-
not identify original data. In our settings, this means that
if we get information during the set operations, we cannot
identify whether or not the information is about the original
data. More precisely, if we cannot judge it with the probabil-
ity more than or equal to a half, we regard them as the state
of being not identifiable. We formalize this idea as undis-
tinguishability using well-mixedness of a pair of databases,
which are managed by two sites. In addition, we would like
to reduce the size of dummy databases in order to decrease
communication costs. For this affair, we basically rely on
compact representations of ZDDs.

The number of single nodes (labeled with s), semi-
single nodes (labeled with ss), and complex nodes (labeled
with c) on a ZDD Z are denoted by N(s,Z), N(ss,Z), and
N(c,Z), respectively. For instance, for a ZDD Z repre-
sented in the table in Fig. 4, N(s,Z) = 1, N(ss,Z) = 1, and
N(c,Z) = 1. Next, we define the well-mixedness and the
undistinguishability as follows:

Definition 1 (Well-mixedness from ZDDs) Let D be a
dummy database and DB be an original database, and
ZD (resp. ZDB) be a ZDD that represents the database
D (resp. DB). The mixed database μ(D,DB) with a mixing
function μ calculated from D and DB is well-mixed if

N(t,ZD) ≥ N(t,ZDB) for all node types t ∈ {s, ss, c}.
We evaluate the mixed database on the viewpoint of repre-
sentations of its elements.

Definition 2 (Undistinguishability of ZDDs) Let μ, D,
and DB be a mixing function, a dummy database, and an
original database, respectively. We say that a ZDD Z has
undistinguishability if Z represents a well-mixed database
μ(D,DB).
This means that a undistinguishable ZDD has enough nodes
from both a original database and a dummy database when
the site sends nodes to the other site.

3022
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.12 DECEMBER 2012

5. Evaluation

We evaluate our method using synthetic and real databases.
Before evaluating undistinguishability of ZDDs, we check
the properties of databases in preliminary experiments to
generate the synthetic databases for main experiments. In
the main experiments, we used the synthetic databases and
the mushroom databases to observe the undistinguishability
during the set operations. We performed our experiments
using JDD†as the ZDD interpreter implemented in Java. All
programs are written in Java 6 and executed on Mac OS X
10.6 with Intel Core i5 2.8 GHz and 12 GB memory.

5.1 Preliminary Experiments

We examined the properties and the ratio of three types of
nodes of ZDDs by making random databases. Each database
consists of 100 itemsets from the interval [1, 100]. We gen-
erated ZDDs from them, and counted up the number of three
types of nodes to examine the ratio among the three types.
For generating synthetic databases, we used a parameter α
that indicates the average size of itemsets in each transaction
because it is a basic future of the databases. For example,
if α = 0.1 and I = [1, 100], the mean of the size of item-
sets is equal to 100 × 0.1 = 10. To make the average size
of the synthetic databases similar to that of the mushroom
databases, we adjust the parameter α. We let α = 0.05, 0.1,
and 0.2 to observe changes of the ratio of the three types in
a node table representing a ZDD. We measured the ratio of
the three node types in the databases and show the results
in Fig. 7. The results indicate that the number of complex
nodes becomes smaller as α becomes larger. Since the av-
erage size of itemsets in mushroom databases is around 20,
we prepare the synthetic databases whose average size of
itemsets is around 20 by α = 0.2. As seen in Fig. 7, the ra-
tio among three types in mushroom databases and dummy
databases with letting α = 0.2 become similar. Note that
the items of them are more randomly located in the interval
by randomly generating of databases. Because the types of
nodes indicate inner structures of ZDDs, we only consider
the ratio among the three types without focusing on inner
structures or distributions on ZDDs precisely.

Fig. 7 The ratio of three types of nodes of the mushroom database and
the randomly generated databases with α = 0.05, 0.1, and 0.2.

5.2 Main Experiments and Results

We chose two types of databases including a real database
and a synthetic database for the main experiments, one is
mushroom from FIMI dataset used in the workshops [16]
and [17], and the other is random-u which are randomly
generated with the parameter α = 0.2 in the same manner
in the preliminary experiment. The mushroom database is
available in the UCI repository [18]. We randomly gener-
ated eight databases ms1,ms2, . . . , and ms8 by picking up
100 itemsets for each database from the mushroom database
and databases ru1, ru2, . . . and ru8 from random-u in the
same way. In each msk (k ∈ {1, 2, . . . , 8}), we let L =
[1, 100], N = [101, 220], and H = [221, 350]. Because the
interval of original items in msk is [1, 120], this setting can
be obtained using the shift function with the parameter of
shifting γ = 100. For each ruk (k ∈ {1, 2, . . . , 8}), we let
L = [1, 1000], N = [1001, 3000], and H = [3001, 4000].
In both cases, we prepared two dummy databases for both
sites S 1 and S 2 from two intervals L and H, respectively.
We use the set union ∪ for the mixing function μ. For
dummy databases, we also required that D1|L ∩ D2|L = ∅
and D1|H ∩D2|H = ∅. The size of all dummy databases Dk |L,
Dk |L′, Dk |H , and Dk |H ′ is 100.

We tested the well-mixedness of set operations in
Phase 0, 1, and 2 (see Sect. 3) because set operations are
executed with the sites, the screening phase can be executed
simply as seen in Proposition 1.

The results are shown in Tables 1, 2, and 3, where
the first row shows the number of nodes from the original
database, and the second row shows the number of nodes
from the dummy database, and the third row shows the num-
ber of nodes created during set operations, that is, intermedi-
ate data. For each column, if the value on the second row is
more than or equal to that value on the first row, the inequal-
ity N(t,D) ≥ N(t,DB) holds for all node types t ∈ {s, ss, c}.
We therefore conclude that the database is well-mixed. Note
that, ZDDs used for 2 have more similar items than those
used for 1, that is, items of the random-u database are more
scattered.

We adopted the set union ∪ as a mixing function μ.
We used dummy databases Dk = Dk |L ∪ Dk |H in Table 1.

Table 1 The result for random-u on operation (a) ∪ and (b)
 with
dummy databases Dk = Dk |L ∪ Dk |H .

(a) for the operation ∪
Type single semi-single complex

Original 80 3760 2732
Dummy 173 7916 7504

Intermediate 0 0 362

(b) for the operation

Type single semi-single complex

Original 80 3760 2732
Dummy 173 7916 7504

Intermediate 1380 210661 10944911

†http://javaddlib.sourceforge.net/jdd/

OTAKI et al.: PRIVACY PRESERVING USING DUMMY DATA FOR SET OPERATIONS IN ITEMSET MINING IMPLEMENTED WITH ZDDS
3023

Table 2 The result for mushroom on operation ∪ with dummy databases
(a) Dk = Dk |L ∪ Dk |H and (b) Dk = Dk |L ∪ Dk |L′ ∪ Dk |H ∪ Dk |H ′.

(a) Dk = Dk |L ∪ Dk |H .
Type single semi-single complex

Original 3 4302 1432
Dummy 59 1706 2963

Intermediate 0 323 354

(b) Dk = Dk |L ∪ Dk |L′ ∪ Dk |H ∪ Dk |H ′.
Type single semi-single complex

Original 3 4302 1432
Dummy 71 3436 7034

Intermediate 0 323 562

Table 3 The result for mushroom on operation
 with dummy databases
(a) Dk = Dk |L ∪ Dk |H and (b) Dk = Dk |L ∪ Dk |L′ ∪ Dk |H ∪ Dk |H ′.

(a) Dk = Dk |L ∪ Dk |H .
Type single semi-single complex

Original 3 4302 1432
Dummy 59 1706 2963

Intermediate 193 30282 386765

(b) Dk = Dk |L ∪ Dk |L′ ∪ Dk |H ∪ Dk |H ′.
Type single semi-single complex

Original 3 4302 1432
Dummy 71 3436 7034

Intermediate 251 60208 1307550

In Tables 2 and 3, we used two types of dummy databases
Dk = Dk |L ∪ Dk |H and Dk = Dk |L ∪ Dk |L′ ∪ Dk |H ∪ Dk |H ′
to observe the increase of the size of nodes from dummy
databases in the node table.

Table 1 shows the results for two picked up databases
from ruk with the set operation ∪ and
. The table shows
that two databases are well-mixed.

Tables 2 and 3 show the results for two picked up
databases from msk with the set operation ∪ and
. In
these cases, the undistinguishability is not satisfied since
N(ss,D) ≤ N(ss,DB) holds for the both cases. However,
if we use a dummy database whose size is more than 400 in
the mixing process, the undistinguishability could be satis-
fied as seen in the increment of the number of dummy data
from 1706 to 3436. From the experiments, these numbers
can be regarded to increase in linear.

5.3 Discussions on Main Experiments

As shown in Table 1, we can satisfy the undistinguishability
using dummy data. This result means that we can satisfy it
if the size of a dummy database is at least more than or equal
to the size of a original database. In contrast, Table 2 shows
that we cannot bound the number of nodes from original
databases by the number of nodes from dummy databases in
terms of semi-single nodes, that is, N(ss,D) ≤ N(ss,DB).
Thus we need more dummy data to bound the number of
semi-single nodes. However, the numbers of single and
complex ones were bounded. We can interpret this as fol-
lows: For satisfying undistinguishability easily, we need to

prepare enough size of dummy data in dummy databases be-
cause the number of node from dummy databases increases
simultaneously, and it is better that the ratio between three
types of dummy data is similar to that of original data.

We conclude that our proposed method can be effec-
tively used for concealing original data to satisfy undistin-
guishability if we prepare sufficient dummy data.

6. Comparison to SMC

We analyze our method with comparing it to SMC.

6.1 SMC on ZDDs

Secure Multiparty Computation (SMC) [14] is one of sub-
fields of cryptography to provide methods for secure com-
putations among many sites, and it is also called Multi-Party
Computation (MPC). In this paper, we only consider the
case that there are two sites, and this case is already inves-
tigated as Two-Party Computation (2PC). In SMC, we can
use Secure Function Evaluation (SFE) as basic tools to con-
struct them, and it gives us fundamental secure operations
like secure sum and secure boolean and/or.

We can use them to calculate set operations, the set
union and the set intersection, because they can be regarded
as boolean operations, the boolean or, denoted by ∨, and the
boolean and, denoted by ∧, on bit sequences, which repre-
sent possessions of items in each bit.

A ZDD Z represents a boolean function fZ(x1, . . . , xm)
in which fZ(x1, . . . , xm) = 1 if its inputs (x1, x2, . . . , xm) is
included in Z as an itemset X, where an item x j belongs
to X if x j = 1. An n-arity boolean function f has a truth
table T f whose length is 2n. We therefore can execute set
operations with bit sequences with the truth table T f and
boolean operations ∨ and ∧.

We give examples of bit sequences representing sets
of itemsets to provide set operations with SFE. Let DB1

and DB2 be databases given in Fig. 1. The databases
DB1 and DB2 can be regarded as a set of sequences
{1111, 1110, 1011} and {0111, 0101}, respectively, as seen
in the binary table of the transaction database DB. Sets
of closed itemsets C1 and C2 can be represented as a set
of binary sequences: C1 = {1010, 1110, 1011, 1111} and
C2 = {0110, 0111}, respectively. Thus a ZDD Z can be re-
garded as a truth table T of the boolean function of Z. For
example, C1 = {1010, 1110, 1011, 1111} shows a boolean
function fC1 (a, b, c, d) = ab̄cd̄ ∨ abcd̄ ∨ ab̄cd ∨ abcd, and
C2 = {0110, 0111} shows the function fC2 (a, b, c, d) =
ābcd̄ ∨ ābcd. Let the truth tables of fC1 and fC2 be T fC1

and
T fC2

, respectively. We can calculate the set union C1∪C2 by
T fC1
∨ T fC2

and the set intersection C1 ∩ C2 by T fC1
∧ T fC2

.
Thus, for set operations with SFE, all we have to do is to
prepare boolean operations ∨ and ∧.

6.2 Comparison

We compare our methods based on dummy data and SFE for

3024
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.12 DECEMBER 2012

set operations. In terms of privacy preserving, both meth-
ods provide similar results. Our method provides undistin-
guishability defined in Sect. 4.2, which is a criterion based
on identifiability of dummy data and original data. In con-
trast, SMC provides the property called indistinguishability
in the area of cryptography.

By comparison with SMC, the advantage of our
method is compact representation of databases, that is, sets
of itemsets using ZDDs. Even though our method inserts
a lot of dummy data to conceal original data to obtain
undistinguishability, it can be treated compactly by adopting
ZDDs for representation of a set of itemsets. In contrast, if
we use a SMC-based method to use bit operations as shown
in the above subsection, vit is difficult to compress itemsets
because SFE provides only simple operations. Trivially, if
we calculate set operations in the form of bit operations, the
resulting bit sequences could become longer exponentially.

7. Conclusion and Future Works

In this paper, we have proposed a new method of inserting
dummy data for privacy preserving of set operations used
in distributed itemset mining. We also have proposed to
use ZDDs for data representation. Our experiments show
that our method could provide undistinguishability of data
in ZDDs for the worst case. Note that we also consider
how to deal with ZDDs in the SMC framework. Introduc-
ing more complex mixing functions and screening functions
to satisfy more difficult criteria is a our future work. In ad-
dition, considering probabilistic properties of dummy data
is an another future work. We will investigate and intro-
duce probability density functions in order to characterize
the dummy data. By introducing them, we could corre-
late our study based on dummy data with recent studies
based on differential privacy [19]. We also consider corre-
spondences between distributions on databases and those on
ZDDs. Dummy data can be used for other tasks in PPDM
for satisfying undistinguishability.

References

[1] R. Agrawal and R. Srikant, “Fast algorithms for mining association
rules in large databases,” Proc. International Conference on Very
Large Data Bases (VLDB’94), pp.487–499, 1994.

[2] J. Han, J. Pei, and Y. Yin, “Mining frequent patterns without candi-
date generation,” SIGMOD Record, vol.29, pp.1–12, 2000.

[3] T. Uno, T. Asai, Y. Uchida, and H. Arimura, “LCM: An efficient al-
gorithm for enumerating frequent closed item sets,” Proc. Workshop
on Frequent Itemset Mining Implementations (FIMI ’03), 2003.

[4] D. Cheung, J. Han, V. Ng, A. Fu, and Y. Fu, “A fast distributed al-
gorithm for mining association rules,” Proc. 4th International Con-
ference on Parallel and Distributed Information Systems (PDIS’96),
pp.31–42, 1996.

[5] C. Lucchese, S. Orlando, and R. Perego, “Distributed mining of
frequent closed itemsets: Some preliminary results,” Proc. 8th In-
ternational Workshop on High Performance and Distributed Mining
(HPDM’05), 2005.

[6] R.T.N. Pasquier, Y. Bastide, and L. Lakhal, “Discovering frequent
closed itemsets for association rules,” Proc. 7th International Con-
ference on Database Theory (ICDT’99), pp.398–416, 1999.

[7] M. Kantarcioglu and C. Clifton, “Privacy-preserving distributed
mining of association rules on horizontally partitioned data,” IEEE
Trans. Knowl. Data Eng., vol.16, no.9, pp.1026–1037, 2004.

[8] S. Kuno, K. Doi, and A. Yamamoto, “Frequent closed itemset
mining with privacy preserving for distributed databases,” Proc.
ICDM Workshops on Privacy Aspects of Data Mining (PADM’10),
pp.483–490, 2010.

[9] S. Minato, Binary Decision Diagrams and Applications for VLSI
CAD, Springer, 1996.

[10] S. Minato, “Zero-suppressed BDDs and their applications,” STTT,
vol.3, no.2, pp.156–170, 2001.

[11] C. Clifton, M. Kantarcioglu, J. Vaidya, X. Lin, and M.Y. Zhu, “Tools
for privacy preserving data mining,” SIGKDD Explorations, vol.4,
no.2, pp.28–34, 2002.

[12] S. Minato and H. Arimura, “Frequent closed item set mining based
on zero-suppressed BDDs,” Information and Media Technologies,
vol.2, no.1, pp.309–316, 2007.

[13] J. Vaidya, C.W. Clifton, and M.Y. Zhu, Privacy Preserving Data
Mining (Advances in Information Security), Springer-Verlag, 2005.

[14] O. Goldreich, Foundations of Cryptography - Volume 2, Cambridge
University Press, 2004.

[15] C. Clifton, M. Kantarcioglu, and J. Vaidya, “Defining privacy for
data mining,” Proc. National Science Foundation Workshop on Next
Generation Data Mining (NGDM ’02), pp.126–133, 2002.

[16] B. Goethals and M.J. Zaki, eds., FIMI ’03, Frequent Itemset Mining
Implementations, Proc. ICDM 2003 Workshop on Frequent Item-
set Mining Implementations, CEUR Workshop Proceedings, vol.90,
CEUR-WS.org, 2003.

[17] R. Bayardo, B. Goethals, and M.J. Zaki, eds., FIMI ’04, Proc.
IEEE ICDM Workshop on Frequent Itemset Mining Implementa-
tions, CEUR Workshop Proc., vol.126, CEUR-WS.org, 2004.

[18] A. Frank and A. Asuncion, “UCI machine learning repository,”
2010.

[19] C. Dwork, “Differential privacy,” ICALP, vol.2, pp.1–12, 2006.

Keisuke Otaki received the B.E. degree
in Engineering from Kyoto University in 2011.
He is now a master course student at Graduate
School of Informatics, Kyoto University. His
research interests are Knowledge Discovery, in
particular, Privacy-Preserving Data Mining, and
analyzing generative models of data. He is a stu-
dent member of IPSJ and JSAI.

Mahito Sugiyama received his B.E., M.E.,
and Ph.D. degrees from Kyoto University in
2006, 2008, and 2012, respectively. He is cur-
rently a researcher at the Max Planck Institute
for Developmental Biology and the Max Planck
Institute for Intelligent Systems. Since 2010
until 2012 he has been a research fellow of
the Japan Society for the Promotion of Science.
His research interest is discretization in machine
learning and data analysis. He is a member of
JSAI.

OTAKI et al.: PRIVACY PRESERVING USING DUMMY DATA FOR SET OPERATIONS IN ITEMSET MINING IMPLEMENTED WITH ZDDS
3025

Akihiro Yamamoto received the B.S. de-
gree from Kyoto University in 1985, and Dr.Sci.
degree from Kyushu University in 1990. Cur-
rently, he is a Professor of the Department of
Intelligence Science and Technology, Graduate
School of Informatics at Kyoto University. He
has made research contributions to foundations
of intelligence science, with a particular focus
on application of mathematical logic to machine
learning. His recent research interest includes
developing machine learning theory with dis-

crete mathematics, computational algebra, and computational calculus. He
is a member of JSAI, IPSJ, and JSSST.

