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Classification of Prostate Histopathology Images Based on
Multifractal Analysis
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SUMMARY Histopathology is a microscopic anatomical study of body
tissues and widely used as a cancer diagnosing method. Generally, pathol-
ogists examine the structural deviation of cellular and sub-cellular compo-
nents to diagnose the malignancy of body tissues. These judgments may
often subjective to pathologists’ skills and personal experiences. How-
ever, computational diagnosis tools may circumvent these limitations and
improve the reliability of the diagnosis decisions. This paper proposes a
prostate image classification method by extracting textural behavior using
multifractal analysis. Fractal geometry is used to describe the complexity
of self-similar structures as a non-integer exponent called fractal dimen-
sion. Natural complex structures (or images) are not self-similar, thus a
single exponent (the fractal dimension) may not be adequate to describe
the complexity of such structures. Multifractal analysis technique has been
introduced to describe the complexity as a spectrum of fractal dimensions.
Based on multifractal computation of digital imaging, we obtain two tex-
tural feature descriptors; i) local irregularity: α and ii) global regularity:
f (α). We exploit these multifractal feature descriptors with a texton dic-
tionary based classification model to discriminate cancer/non-cancer tis-
sues of histopathology images of H&E stained prostate biopsy specimens.
Moreover, we examine other three feature descriptors; Gabor filter bank,
LM filter bank and Haralick features to benchmark the performance of the
proposed method. Experiment results indicated that the performance of
the proposed multifractal feature descriptor outperforms the other feature
descriptors by achieving over 94% of correct classification accuracy.
key words: histopathology, prostate cancer, fractal geomatry, multifractal,
feature descriptors, classification

1. Introduction

As reportaed by Globocan 2008 [1], prostate cancer is the
second most frequently diagnosed cancer of men and fifth
most common cancer in overall. Histopathological exam-
ination is one of the most reliable methods used for diag-
nosing prostate cancers. In a histopathological examination,
pathologists determine the malignancy of body tissues by
identifying the structural deviation of cells or sub-cellular
components with respect to their healthy stage. However,
these judgments may subjective to the pathologists’ skills
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and experiences, because of the complexity and diversity of
histopathology image texture. Figure 1 shows two prostate
histopathology images of cancer and non-cancer regions. In
the last two decades, medical diagnosis routines have been
partially replaced by Computer Aided Diagnosis (CAD)
systems [2]. Particularly, the image analysis based CAD
systems observe the structural behavior of the texture or
cellular/sub-cellular components using mathematical fea-
ture descriptors and discriminate the images according to
a quantitative scale.

Various texture feature description methods have been
proposed to interpret the texture of medical images, e.g.,
grey-level co-occurrence matrices [3], wavelet transforma-
tions [4], filter banks [5]. Adopting fractal and multifractal
analysis to describe the texture is a different approach which
is recently being used in the medical imagery research [6].
Fractal and multifractal features describe the behavior of
texture from self-similarity viewpoint. This approach has
been found to be very effective for describing the tumor ar-
chitecture in histology images [7], [8].

Histopathology texture often exhibits chaotic and ir-
regular patterns and can be categorized statically into broad
class of irregular shaped objects. As a consequence, fractal
geometry may appropriately describe the irregular texture
patterns of histopathology images. The use of fractal geom-
etry for histopathology images can be found in [9]–[11].

This paper proposes a novel textural feature descrip-
tor based on the fractal geometry. Fractal dimension (FD)
of an object is a non-integer exponent, which can be used
to describe the complexity of self-similar structure. Multi-
fractal analysis is a generalization of fractal analysis, which
aims to describe natural structures (or images) as a spec-

(a) Cancer (b) Non-cancer

Fig. 1 H&E stained prostate histopathology images of cancer and
non-cancer.
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trum of fractal dimensions. Based on the multifractal com-
putation of digital images, one may extract two types of tex-
tural features, i.e., i) local irregularity: α describes the lo-
cal behavior of the pixels associated with its neighbors, and
ii) global regularity: f (α) describes the distribution of differ-
ent scales of local irregularities over the entire image. Ad-
ditionally, multifractal computation is subject to a function
called multifractal measure, which defines a scheme to ob-
serve the dissimilarity of the pixels in a given region. In
this study, we utilize five multifractal measures to derive
five-dimensional feature spaces for each α and f (α). The
multifractal feature space may extract important textural in-
formation, which may not be observable in gray-scale pixel
domain. Furthermore, we exploit the proposed feature de-
scriptor with texton dictionary based classification model to
classify prostate histopathology images into cancer and non-
cancer classes.

In this study, the proposed method was experimentally
evaluated as a classification problem. We classified a set
of prostate histopathology images into two classes; cancer
and non-cancer by using three non-parametric classifiers;
Support Vector Machine (SVM), Random Forest and Ada
boost. The performance of each classifier was estimated us-
ing different metrics; classification accuracy, sensitivity and
specificity. Furthermore, we investigated classification per-
formances of other feature extraction methods; Gabor filter
bank, LM filters (Leung and Malik) [12] and Haralick fea-
tures for the same dataset.

The paper is organized as follows; Sect. 2 reviews dif-
ferent feature extraction methods proposed for medical im-
age classification, Sect. 3 describes the theory behinds the
fractal and multifractal computations, Sect. 4 illustrates the
proposed feature descriptor and the classification model,
Sect. 5 gives implementation details of the experiments and
analysis of results, and finally Sect. 6 concludes the entire
work.

2. Related Work

Based on the feature extraction techniques, histopathology
image classification systems can be categorized into three
classes; i) Class I extracts the morphological features of cel-
lular or sub-cellular components such as nuclei, lumen and
cytoplasm. ii) Class II extracts the textural features by using
a feature descriptor such as filter banks, Haralick operator,
fractal computation and so on. iii) Class III extracts both
morphological and textural features. Each method has dif-
ferent advantages and disadvantages. For an example, per-
formance of class I methods is based on the segmentation
accuracy of desired cellular or sub-cellular components. To
the contrary, class II methods may overcome that limitation
by observing the characteristics of the entire texture. How-
ever, they may extract some undesired texture regions such
as muscles. This section illustrates different feature extrac-
tion methods proposed for medical image classification.

Class III feature extraction algorithm has been pro-
posed for automatic grading of histopathology prostate im-

ages in [13]. They segmented the glandular regions by
clustering the feature space derived by wavelet transforma-
tion. Both morphological and textural features of glandu-
lar regions have used to classify prostate histopathology im-
ages into five cancer grades. A tree-structured classifica-
tion model has used for the classification. For two prostate
datasets, the method achieved about 95% and 85% of correct
classification rates, respectively.

To identify the malignant tissues of prostate images,
a class III feature extraction method has proposed in [14].
This method divided a given region of interest (ROI) of
whole slide image (WSI) into 100×100 pixels of sub-regions
and each sub-region is classified into three classes; normal,
stroma and prostatic carcinoma. They have used Haralick
operator [15] to extract textural features and segmentation
results of glands to extract morphological features. They
evaluated the performance of the system by comparing au-
tomated segmented results with conventional pathologist’s
annotations. As experimental results shown, 79.3% of sub
regions of 8 WSIs has been successfully identified.

In [16], a different class III feature extraction method
has been proposed to discriminate histopathology prostate
images. This method used three textural features; color his-
togram (16-bins histogram for each color channel of RGB
color space), fractal dimension [17] and fractal code [18].
Morphological features of sub-cellular components such as
nuclei, cytoplasm, luman were extracted by using a sys-
tem called MAGIC [19]. They have used Gaussian, k-
nearest neighbor and SVM classifiers with sequential for-
ward feature selection algorithm for classifying prostate im-
age dataset. As indicated by the experimental results, this
method has classified cancer/non-cancer images with 96.7%
of accuracy and high/low grades of cancer images with
81.0% of accuracy.

Fractal geometric computation based class II feature
extraction method was proposed in [11] for grading of
prostate carcinoma. They used differential box counting
(DBC) method [20] and entropy-based fractal dimension
computation method to extract the textural features. Both
methods involve partitioning the intensity surface into dif-
ferent sizes of grids. They have used four set of different
grid sizes with each computation method and obtained eight
dimensional feature space. The proposed feature extrac-
tion method was evaluated by classifying a set of prostate
histopathology images. This method has obtained around
94% of correct classification rate for multi-class classifica-
tion of four cancer grades.

Another fractal geometric based class II feature ex-
traction method has been proposed to classify digital mam-
mograms [21]. In their method, a given reference image
is individually processed by using five image processing
operators; smoothing operator toward horizontal and ver-
tical directions, threshold operator for high and low in-
tensities and smoothing operator by averaging four neigh-
boring pixels, respectively and obtained six-images includ-
ing non-processed one. They compute FD for each image
by using differential box counting method and obtained 6-
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dimensional feature vector to characterize a given reference
image. Authors have obtained area under Receiver Operat-
ing Characteristics (ROC) curve as 0.923 for two class clas-
sification for online mammogram database from Mammo-
graphic Image Analysis Society (MIAS).

This paper propose a class II feature extraction method
to classify prostate images into cancer and non-cancer
classes. Textural features are extracted using multifractal
computation with five multifractal measures. As a conse-
quence, five dimensional feature space is obtained to de-
scribe the texture. This multifractal feature descriptor is em-
ployed into texton based classification model to distinguish
cancer and non-cancer tissues of prostate histopathology im-
ages of H&E stained biopsy specimens. As far as we know,
there have not been proposed any textural feature descrip-
tors that are coherent to our method.

3. Fractal Fundamentals

Mandelbrot proposed a new geometrical model to describe
irregular shape objects, later known to be “fractal geome-
try” [22]. Fractal geometry is based on the idea of self-
similar forms. To be self-similar, a shape must be able
to be divided into parts, which are more or less similar
to the whole. Self-similarity occurs over an infinite range
of scales for pure mathematical structures such as Koch’s
curve, Cantor set and Sierpinski triangle. However, self-
similarity of natural structures is bounded in finite range of
scales [23].

In 1984, Pentland showed that intensity surfaces of nat-
ural images are partially isotropic fractals. This idea was
evolved to describe the roughness of the intensity surfaces
of digital images and successfully applied in many digital
image processing and medical imaging applications [7], [8],
[11], [21], [24]–[26].

3.1 Fractal and Multifractal

Fractal dimension (FD) of an object is a non-integer ex-
ponent, which strictly exceed the topological dimension
and computed by using the Hausdorff-Besicovitch defini-
tion [23].

Let Θ be a bounded subset of Rn and Nε(Θ) be the min-
imum number of balls of radius ε required to coverΘ. When
ε tends to 0+, the limiting values of Nε(Θ) follows the power
low Nε(Θ) ∼ ε−dH , where dH is a constant, i.e., the FD of Θ.

dH(Θ) = − lim
ε→0+

log(Nε(Θ))
log(ε)

(1)

Deterministic structures (mathematically generated by
applying the same rule recursively) can be characterized by
the same fractal dimension in all scales. In contrast, natu-
ral structures are non-deterministic, thus, a single FD may
not be adequate to characterize such structures. Multifractal
analysis is a generalization of fractal geometrical analysis,
which characterizes irregular natural structures as a spec-
trum of FDs, i.e., multifractal spectrum. Multifractal com-

putation is carried out in two consecutive steps.
At the first step, one may find the local irregularity of

a function μ called “multifractal measure” at a point x of
set S , as a non-integer exponent, which is described by an
Hölder Exponent hμ(x),

hμ(x) = lim
r→0+

log(μ(B(x, ε)))
log(ε)

, (2)

where B(x, ε) stands for the closed ball of radius r centered
at x.

Multifractal analysis of set S consists of computing FD
of different size of level sets of hμ,

Eμh = {x|hμ(x) = h}. (3)

where, Eμh is a set of points, whose exponents are equal to h.
At the second step, one may estimate FD of Eμh for dif-

ferent h of hμ and form a spectrum dμ, i.e., multifractal spec-
trum of S [27],

h �→ dμ(h) = dim(Eμh), (4)

where, dim(Eμh) stands for the FD of the set Eμh .

3.2 Multifractal Analysis on Digital Image

A digital gray scale image can be described by two-
dimensional real and non-negative function of gray g(x, y),
where x and y are discrete spatial coordinates of the image.
Therefore, it is necessary to modify the definitions given in
Sect. 3.1 to be appropriate for digital images. It turns out
that the limiting value of ε becomes 1+ and B becomes a
square of side length ε in Eq. (2).

hμ(x, y) = lim
ε→1+

log(μ(Wε(x, y)))
log(ε)

, (5)

where Wε(x, y) stands for the window of side length ε cen-
tered at (x, y).

In the computation, one may plot log(μ(Wε(x, y)))
against to log(ε) for ε = 2i + 1, i = 1, 2, . . . and estimate
the gradient of linear regression line as the local irregular-
ity at point (x, y). Similarly, by computing hμ(x, y) for every
pixel of the reference image, we can derive a matrix of same
dimension, which is α feature matrix (or α image).

Subsequently, we quantize the entire range of α (from
minimum to maximum) into R discrete sub-ranges. Let αr

be all α values qunatized into rth sub-range. αr may be
formed a binary value matrix Iαr , which has the same di-
mension of α matrix.

Iαr (x, y) =

{
1, αrMin ≤ α(x, y) < αrMax

0, otherwise
(6)

where, αrMin and αrMax stand for lower and upper limit of
rth sub-range, α(x, y) be the value at point (x, y) in α matrix.

Subsequently, it is required to compute FD of each
Iαr , according to Hausdorff-Besicovitch definition. There
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are numerous Hausdorff-Besicovitch dimension computa-
tion algorithms and each method has its own theoretic ba-
sis to estimate the parameter N in Eq. (1) [6]. Among them,
box-counting algorithm is one of the popular FD estimation
methods, because of its efficiency, accuracy and easy imple-
mentation [28].

To estimate the FD of a binary image I, one may cover
the entire image using a grid of side length ε′ and count the
number of non-empty boxes Nε′ (I). For digital imaging, ε′
tends to 1+. The FD of I is the box-counting dimension dB.

dB(I) = lim
ε′→1+

log(Nε′(I))

log(ε′−1)
(7)

Accordingly, one may plot log(Nε′(I)) against log(ε′−1)
for ε′ = 1, 2, . . . , and estimate the gradient of linear regres-
sion line as the FD of I. In this manner, we obtain FD for
each Iαr and form a multifractal spectrum, which is referred
as f (α). Additionally, for each element in the α matrix, we
can find a corresponding f (α) values, which leads to a ma-
trix called f (α) (or f (α) image) of the same dimension to
the α matrix.

As a consequence, multifractal computation can be uti-
lized to obtain two kinds of textural features; local irregular-
ity: α and global regularity: f (α), respectively.

4. Methodology

The proposed method utilizes the multifractal analysis to de-
scribe the texture of histopathology images in a high dimen-
sional feature space. This section illustrates the proposed
feature extraction method and its utilization for a texture
classification problem.

4.1 Multifractal Feature Descriptor

The textural features presented in α and f (α) are subjec-
tive to some multifractal measure μ (refer Eq. (5)). It turns
out that different types of multifractal features can be ob-
tained by appropriately choosing different multifractal mea-
sures. In our investigation, we empirically selected five mul-
tifractal measures to describe the texture. As a consequence,
we obtained five dimensional feature spaces for each α and
f (α).

Three multifractal measures; Maximum: μMax, Mini-
mum: μMin and Summation: μS um, were selected from [29]
and definitions are provided in Eqs. (8a), (8b) and (8c), re-
spectively. We obtain normalized difference in between
maximum and minimum intensities of a particular win-
dow as a multifractal measure; Ndiff: μNdi f f as shown in
Eq. (8d) [30]. These four measures observe the disparity of
the gray intensities from four different viewpoints. In addi-
tion, gradient operator is widely used to extract the edge in-
formation of complex texture. Therefore, we select another
measure; Gradient: μGrad proposed in [24] and its definition
is given in Eq. (8e), which allow us to analyze the texture
through its gradient behavior.

μMax(m, n) = max
(k,l)∈Ω

g(k, l) (8a)

μMin(m, n) = min
(k,l)∈Ω∗

g(k, l) (8b)

μS um(m, n) =
∑

(k,l)∈Ω
g(k, l) (8c)

μNdi f f (m, n) =

(
max
(k,l)∈Ω

g(k, l) − min
(k,l)∈Ω∗

g(k, l)

)
/ε (8d)

μGrad(m, n) =
(
‖Gm‖2 + ‖Gn‖2

)1/2
(8e)

where, μ(.)(m, n) stands for the amount of measure at point
(m, n). Ω is the window of side length ε centered at point
(m, n). Ω∗ represents the non-zero pixels of the Ω. g(k, l) is
the gray intensity at point (k, l). Gm and Gn stand for gra-
dient vectors at point (m, n) towards horizontal and vertical
directions, respectively.

Furthermore, Fig. 2 shows the appearance of α and
f (α) features obtained for the image in Fig. 1 (a), cor-
responding to each multifractal measure described in
Eqs. (8a)–(8e). For finer visualization, we have normalized
each image into gray-scale [0, 255].

4.2 Classification Model

In this study, we employed the proposed multifractal fea-
ture descriptor with a texton dictionary based classifica-
tion model to distinguish cancer and non-cancer tissues of
prostate histopathology images. Texton dictionary is a col-
lection of distinct texture primitives [31] that can be used to
dictate a given texture [32]. When the texture is described in
high dimensional feature space, the texton becomes a vec-
tor, which has the same dimension to the feature space, the
dictionary is a collection of vectors. In addition, the texton
dictionary should have an adequate number of distinct tex-
tons to describe a given image [12], [33]. More precisely, to
obtain high accuracy in the classifier, the texton dictionary
should have all possible types of distinct textons of the mea-
sured domain†. One may construct the texton dictionary by
clustering the entire feature-pool††, which is derived by us-
ing every possible image in the measured domain, and sub-
sequently, find the centroid of each cluster as the element of
the dictionary.

In texton dictionary based classification model, the dic-
tionary is used to label all the pixels of an image, which is
called texton labeling. One may find the closest texton for
each feature vector of the reference image and label each
pixel by the corresponding texton’s index. The closest tex-
ton is the one, which has minimum Euclidean distance to
the given feature vector. Subsequently, one computes a his-
togram for the labeled image, where each bin represents

†Generally, computing a universal texton dictionary is imprac-
tical. Therefore, one may derive a texton dictionary for a particular
kind of images, i.e., measured domain, e.g., H&E stained prostate
histopathology images captured in 20x magnification.
††Feature pool is a collection of feature vectors obtain from fea-

ture spaces of a set of images.
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Fig. 2 Appearance of different multifractal features of the reference im-
age Fig. 1 (a). Left and right columns present the α and f (α) features re-
spectively. From top to bottom, each row represents multifractal measures;
Maximum, Minimum, Summation, Normalized Difference and Gradient,
respectively. All images have been normalized to grey scale: [0∼255] for
clear visualization.

the texton’s index (label) and its value indicates the num-
ber of occurrences of that label in the entire image. This
histogram may be called texture signature of the reference
image, because it comprises all characteristics of the image
with respect to the utilized feature descriptor.

Subsequently, these texture signatures (feature vectors)
are classified by using an appropriate supervised learning
classifier. There are two types of supervised learning clas-
sifiers; parametric and non-parametric. Parametric classi-
fiers assume that functional forms of the class-conditional
distributions are known and non-parametric classifiers make
minimal assumptions of class-conditional distributions. The
choice of the classifier depends on the sample size and prior
knowledge about the class conditional distributions.

5. Experimental Results and Analysis

We examined the performance of the proposed multi-
fractal feature descriptor together with texton dictionary
based classification model by classifying a set of prostate
histopathology image dataset. This section illustrates; data
acquisition, computational parameters of multifractal and
other comparative feature descriptors, performance evalu-
ation metrics and the results.

5.1 Data Acquisition

We obtained a sample dataset of H&E (hematoxylin and
eosin) stained prostate biopsy specimens of 11 cases. Each
sample specimen is scanned as a Whole Slide Image (WSI)
of 20x magnification using scanner called Nano-Zoomer.
Each WSI can be visualized in eight resolutions such as
1.25x, 2.5x, 5x, 10x, 20x, 40x, 63x, and 100x through a dig-
ital slider called NDPViewer. Both Nano-Zoomer and ND-
PViewer are products of Hamamatsu Photonic K. K.. The
approximate size of the WSI at 20x resolution is 33600 ×
21000 pixels. The cancer regions of each WSI have been
annotated by several experienced pathologists.

The appearances of the components of prostate tissues
such as nuclei, cytoplasm, lumen, cell membrane, etc., are
slightly varied with the resolution of the WSI. Therefore,
pathologists use several resolutions in the digital slider for
diagnosing malignant tissues. Moreover, they often use the
original resolution (e.g., 20x) or its closer resolutions in
the digital slider, because more higher or lower resolution
(with respect to the original resolution) images may com-
prise some visual artifacts. In our experiment, we set up 3
categories of image datasets corresponding to 10x, 20x and
40x resolutions. For each category, by using 11 WSIs, we
select 600 sample patches of size 256 × 256 pixels in equal
amounts for each cancer and non-cancer regions.

5.2 Multifractal Features Extraction

In our experiment, we compute the α features according to
the definition given in Eq. (5) by setting ε as 1, 3, 5, 7, 9,
11, 13. Subsequently, to compute f (α) features, we quan-
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tized α range into 70 discrete sub-ranges and estimated the
FD for each sub-range for ε′ = 1, 2, 4, 6, 8, 10, 12, 14, 16 as
defined in Eq. (7). By repeating this procedure for each mul-
tifractal measures described in Eqs. (8a)–(8e), we obtained
5-dimensional α and f (α) feature spaces for each image in
the datasets.

5.3 Feature Descriptors for Comparison

The performance of the proposed multifractal feature de-
scriptor is compared with three other widely used feature
descriptors; Gabor filters [34], LM-filters [12] and Haralick
features [15].

Gabor filter bank method is a promising textural fea-
ture extraction technique among existing multi-channel fil-
tering approaches. Gabor filter is generated by modulating
an oriented sinusoidal plane of particular frequency with a
Gaussian envelope. The design of Gabor filter bank is ar-
bitrary or application oriented. Basically, one may gener-
ate the filter bank by utilizing two parameters; spatial fre-
quency: λ = 0.25 − 2(i−0.5)/N , where N = image width, and
orientation: θ [34]. Our experimental Gabor filter bank was
constructed for i = 1, 2, 3, 4, 5 and θ = 0◦, 45◦, 90◦, 135◦. As
a consequence, we obtained 20-dimensional feature space to
describe the texture.

LM-filter bank has been successfully applied to recog-
nize the texture of materials made up of both reflectance and
surface normal variations. The LM filter bank consists of 48
filters; first and second derivative of Gaussian filters of 6 ori-
entations and 3 scales making total of 36 filters, 8 Laplacian
of Gaussian filters, and 4 Gaussian filters. LM-filter bank
allows us to describe the texture in 48-dimension of feature
space.

On the other hand, Haralick texture features have been
used in many image understanding applications including
medical and geographical imaging. The calculation of
Haralick features are carried out in two consecutive stages;
i) construction of the co-occurrence matrix and, ii) calcula-
tion of 13 texture features based on the co-occurrence ma-
trix. Two parameters were concerned for constructing co-
occurrence matrix such as scalar distance: s and orientation:
θ. In this experiment, we used s = 2 and θ = 0◦, 45◦, 90◦,
135◦ to compute the co-occurrence matrix. We empirically
decided the value for s by obtaining maximum correct clas-
sification rate for 20x resolution image dataset with SVM.
Subsequently, we computed the features; Angular Second
Moment, Contrast, Correlation, Sum of Squares: Variation,
Inverse Difference Moment, Sum Average, Sum Variance,
Sum Entropy, Entropy, Difference Variance, Difference En-
tropy, Information Measure of Correlation 1 and Correlation
2, for each co-occurrence matrix. As a consequence, we ob-
tained 52-dimensional feature space to characterize a given
image.

5.4 Classification

We utilized k-means clustering with k = 300 to construct

texton dictionaries for feature descriptors; α, f (α), Gabor
and LM. We empirically decided that 300 textons are ad-
equate to obtain optimal correct classification rate. As a
consequence, α, f (α), Gabor and LM feature sets use 300
dimension of feature vector (histogram of 300 bins) to char-
acterize the texture of a given image. Haralick feature de-
scriptor uses 52-dimension feature vector. Subsequently, we
utilized these feature vectors with three supervised learning
non-parametric classifiers; SVM [35], Ada Boosting [36]
and Random Forest [37] to perform two-class classification;
cancer and non-cancer. As the implementations of the clas-
sifiers we used MatLab SVM toolbox [38], GML AdaBoost
Matlab Toolbox [39] and Randomforest-Matlab [40].

5.5 Performance Estimation

Typical supervised learning based classification systems
have two stages; i) learning: the classifier learns the sys-
tem parameters, ii) testing: the classifier makes prediction
to evaluate the performance of the system. For a small sam-
ple set, k-fold cross validation is one of the popular strat-
egy used to reduce bias of the classifier in machine learning
and testing [41]. In our experiment, 10-fold cross validation
is performed, namely, in every iteration 540 samples were
elected for learning and 60 samples were used for testing.

We used several statistical error estimation metrics to
compare the performance of feature descriptors. The met-
ric of correct classification rate CCR is estimated as CCR =
nc/n, where nc denotes the number of correctly classified
samples and n is the total number of samples used for test-
ing. Additionally, the predictions of a binary class classifi-
cation diagnostic system derives a confusion matrix of four
possible parameters; i) True Positive (TP), ii) True Nega-
tive (TN), iii) False Positive (FP) and iv) False Negative
(FN). We computed two statistical measures; Sensitivity
and Specificity from the confusion matrix as sensitivity =
T P/(T P+FN) and specificity = T N/(FP+T N). More pre-
cisely, sensitivity measures the proportion of correctly iden-
tified actual positives and specificity measures the propor-
tion of correctly identified actual negatives. The diagnostic
systems aim to achieve 100% for both sensitivity and speci-
ficity. The averages of CCR, sensitivity and specificity in
each iteration of the cross-validation were taken to examine
the performance of the classification.

5.6 Results and Discussion

We examined the classification performance through CCR,
sensitivity and specificity as shown in Tables 1 and 2. Ta-
ble 1 has categorized the results as classifier, resolution
(magnification scale) of the dataset and feature descriptor.
Table 2 presents the average performance of each feature de-
scriptor of all three resolutions of image datasets. We have
used the format x ± y to present the CCR, where x and y are
sample mean and standard error for 95% confidence interval
respectively.

It is apparent from Table 1 that for every resolution
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Table 1 Classification results for SVM, RandomForest and
AbaBoosting classifier.

Resolution Feature CCR (%) Sensitivity (%)/
Specificity (%)

SV
M

10x

α 95.80±3.66 91.00 / 90.50
f (α) 95.20±4.29 92.00 / 91.50
Gabor 84.00±4.39 88.67 / 79.33
LM 82.17±3.85 86.67 / 77.67
Haralick 83.00±7.53 88.33 / 77.67

20x

α 94.90±3.69 90.20 / 90.00
f (α) 95.18±4.12 92.50 / 91.00
Gabor 80.00±5.09 79.00 / 76.00
LM 81.50±7.00 86.67 / 86.33
Haralick 84.33±4.86 88.33 / 80.33

40x

α 93.20±4.22 92.50 / 89.50
f (α) 93.40±5.88 91.50 / 90.50
Gabor 81.73±6.11 74.00 / 69.67
LM 81.83±5.90 75.33 / 68.33
Haralick 83.67±4.98 86.67 / 74.67

R
an

do
m

Fo
re

st

10x

α 92.50±5.50 94.00 / 91.00
f (α) 91.25±5.83 90.50 / 89.80
Gabor 83.00±5.82 81.00 / 85.00
LM 82.67±4.79 81.00 / 84.33
Haralick 85.83±3.26 87.00 / 84.67

20x

α 90.80±4.44 91.00 / 81.00
f (α) 91.50±4.97 89.50 / 81.50
Gabor 75.17±3.37 73.67 / 76.67
LM 78.50±4.34 75.33 / 81.67
Haralick 82.67±5.16 85.00 / 80.33

40x

α 92.25±4.63 92.50 / 89.00
f (α) 92.75±7.46 88.00 / 87.50
Gabor 79.67±4.96 74.00 / 85.33
LM 82.17±4.16 77.67 / 86.67
Haralick 84.17±2.97 85.67 / 82.67

A
da

B
oo

st

10x

α 91.50±10.01 92.00 / 81.80
f (α) 87.75±5.83 82.00 / 79.50
Gabor 81.50±5.58 83.67 / 79.33
LM 78.33±7.16 77.33 / 89.33
Haralick 83.33±4.37 85.67 / 81.00

20x

α 89.75±6.40 86.00 / 83.50
f (α) 89.75±12.10 72.50 / 71.70
Gabor 48.67±8.53 76.00 / 21.33
LM 67.50±7.42 75.00 / 40.00
Haralick 81.33±6.56 83.67 / 79.00

40x

α 91.75±9.81 76.00 / 77.60
f (α) 91.00±9.22 88.00 / 64.00
Gabor 74.50±7.50 70.00 / 69.00
LM 71.00±9.53 85.00 / 67.00
Haralick 80.17±6.40 82.67 / 77.67

of image dataset, multifractal features have obtained sig-
nificant performance for each quality measure compared to
the other feature descriptors. Table 2 also concludes that
α and f (α) features outperformed other features descrip-
tors irrespective to the magnification of the images. Par-
ticularly, Table 2 showed that α and f (α) features have ob-
tained 94.63% and 94.59% of CCR, 91.23% and 92.00%
of sensitivity, 90.00% and 91.00 of specificity, respectively
with SVM classifier. As a overall summary, both α and f (α)
features have obtained over 94% of CCR and over 90% of
sensitivity and specificity. It turns out that fractal geome-
try appropriately describes the complex texture patterns in

Table 2 Average classification performance of each feature.

Feature Classifier CCR (%) Sensitivity (%)/
Specificity (%)

α
SVM 94.63±3.86 91.23 / 90.00
RandomForest 91.85±4.86 92.50 / 87.00
AdaBoost 91.00±8.74 84.67 / 80.97

f (α)
SVM 94.59±4.76 92.00 / 91.00
RandomForest 91.83±6.09 89.33 / 86.27
AdaBoost 89.50±9.05 80.83 / 71.73

Gabor
SVM 81.91±5.20 80.56 / 75.00
RandomForest 79.28±4.72 76.22 / 82.33
AdaBoost 68.22±7.20 76.56 / 56.55

LM
SVM 81.83±5.58 82.89 / 77.44
RandomForest 81.11±4.43 78.00 / 84.22
AdaBoost 72.28±8.04 79.11 / 65.44

Haralick
SVM 83.67±5.79 87.78 / 77.56
RandomForest 84.22±3.80 85.89 / 82.56
AdaBoost 81.61±5.78 84.00 / 79.22

prostate histopathology images.
We note here that, feature descriptors α, f (α), Gabor

and LM have used 300 dimension of feature vectors; to the
contrary, Haralick features consisted of 52 dimension of fea-
ture vectors. Even though, higher dimension of feature vec-
tors increase the computational cost of the classifier, higher
accuracy is anticipated in medical diagnosis systems.

6. Conclusion

Typical histopathological judgments may be subjective and
often lead to have considerable variation. To circumvent
this issue and improve the reliability of cancer diagnosis,
it is important to develop computational tools for classify-
ing histopathologic images that operate on quantitative mea-
sures. This paper proposed a new feature descriptor to char-
acterize the texture based on fractal geometry. By using five
multifractal measures, we computed two types of multifrac-
tal feature descriptions; α and f (α), which provide local ir-
regularity and global regularity information of the texture,
respectively. We employed the proposed feature extraction
method with texton dictionary based classification model to
discriminate a set of images of H&E stained prostate biopsy
specimens into cancer and non-cancer classes. Three types
of supervised learning classifiers were used, SVM, Random
Forest and Ada boost. The performance of each classifier
was estimated through three statistical measures; correct
classification rate, sensitivity and specificity. Furthermore,
the merit of the proposed method was examined by compar-
ing the performance of the proposed method with three tex-
tural feature descriptors; Gabor, LM and Haralick. Experi-
mental results indicated that the proposed feature descriptor
outperformed the other feature descriptors.

Furthermore, the proposed feature descriptor is inde-
pendent of the computation of morphological characteristics
of tissue level component such as nuclei. Instead, it observes
the entire textural information. Therefore, the proposed fea-
ture descriptor may be useful for discriminating cancerous
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tissues or their grades of other body organs.
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