
3088
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.12 DECEMBER 2012

LETTER

Keys Distributing Optimization of CP-ABE Based Access Control
in Cryptographic Cloud Storage∗

Yong CHENG†a), Student Member, Jiangchun REN†, Zhiying WANG†, Songzhu MEI†,
and Jie ZHOU†, Nonmembers

SUMMARY In this letter, we introduce a novel keys distribution opti-
mization scheme for CP-ABE based access control. This scheme integrates
roles, role hierarchies and objects grouping to accelerate keys distribution,
meanwhile the CP-ABE encrypting overhead is reduced by adopting de-
terministic cryptographic function. Experiments show that our scheme ob-
tains noticeable improvement over the original one, especially when the
number of objects is much greater than that of users.
key words: keys distribution, access control, cryptographic cloud storage

1. Introduction

Nowadays, public cloud storage is rapidly developing as an
emerging storage outsourcing paradigm. More and more
customers begin to adopt the cloud storage for online data
storing and sharing. However, the Cloud Storage service
Provider (CSP) is “untrusted” and may leak users’ data. So
users have to build an additional access control system to
enforce authorizations and protect their sensitive data.

S. Kamara and K. Lauter [1] introduced cryptographic
cloud storage as a solution for both access control enforce-
ment and data confidentiality protection. The cryptographic
cloud storage is built on a public cloud infrastructure and
its access control is achieved as follows. 1) the Data Owner
(DO), encrypts file F with randomly chosen symmetric key
k, and then sends the ciphertext Ek(F) to remote servers;
2) when a Data User (DU) wants to access F, he/she will
first send a request to DO, then DO will reply the k and ac-
cess credential via a secure channel; 3) DU retrieves Ek(F)
by the credential and decrypts it using k. This method can
achieve strong access control but it does not specify the
method of distributing symmetric keys.

The Ciphertext-Policy Attribute Based Encryption
(CP-ABE) [2] is a new promising encryption algorithm for
keys delivering in cryptographic cloud storage. Based on
CP-ABE, many fine-grained access control models have
been proposed by researchers for online data sharing, such
as HABE [3]. The core of these models is encrypting the
symmetric keys with a certain access tree, and then publish-
ing it with the ciphertext. A DU can obtain the symmetric

Manuscript received April 5, 2012.
Manuscript revised July 29, 2012.
†The authors are with the School of Computer Science and

Technology, National University of Defense Technology, Chang-
sha 410073, China.

∗This work was supported in part by the National Natural Sci-
ence Foundation of China under grant No. 60903204.

a) E-mail: ycheng@nudt.edu.cn
DOI: 10.1587/transinf.E95.D.3088

key if and only if its attributes set satisfies the access tree.
The details of CP-ABE based access control in crypto-

graphic cloud storage is illustrated in Fig. 1: 1) The system
starts up via running the Setup algorithm and generating the
public parameters PK and a master key MK; 2) A keys gen-
erator runs KeyGen for generating each DU’s private key
S K, and then sending S K to DU via a secure channel; 3) DO
encrypts a message M with the access tree T . The ciphertext
CT is published to cloud storage; 4) A DU can decrypt CT
if and only if its attributes set Au satisfies T . In this model,
the keys generator is an independent third party. The details
of CP-ABE algorithm can be find in [2].

However, the key distribution of the CP-ABE based
scheme is not efficient enough. First, as a type of asymmet-
ric cryptographic algorithms, CP-ABE consumes a lot of re-
sources which thin DO cannot afford. DO needs to generate
a unique symmetric key and encrypt it for each file. Thus
DO may become the bottleneck when a huge-scale of files
need to be shared online. Second, the time consumption of a
single CP-ABE encrypting operation may be too large. The
runtime needed by the CP-ABE encrypting is precisely lin-
ear with the number of leaf nodes in the access tree, and
the size of the access tree may grow enormously when a lot
of DUs are authorized. What’s more, the symmetric key is
updated periodically in some enterprise applications, so the
key distribution overhead may consume too much time.

Our main goal is to speed up the key distributing mech-
anism of CP-ABE based access control. At a high level,
our work is similar to recent papers [4] and [5]. [4] pre-
sented how to optimize role-based access control model by
using role attributes; [5] built an access control model and
made access decisions based on each role’s attributes. In
our scheme, roles are employed to group users and substan-

Fig. 1 The CP-ABE based access control model.

Copyright c© 2012 The Institute of Electronics, Information and Communication Engineers



LETTER
3089

tially new techniques are still needed. Approaches related to
our scheme are [6] and [7]. [6] proposed a large-scale con-
tent delivering system whose performance was improved by
dividing the user population into groups. In [7], selective
encryption was raised for enforcing access control in data
outsourcing scenario. In this scheme, each object (files or
other data) is encrypted with a symmetric key and each au-
thorized user can derive this key via his/her private key and
public tokens.

In this letter, we propose a new approach named
Role Based Keys Distribution (RBKD) which integrates
several optimization techniques. First, RBKD combines
Role Based Access Control [8] and objects grouping. This
method is practical because in an actual system, users are al-
ways described by roles and objects are usually authorized
to roles directly. Second, RBKD accelerates keys distribu-
tion by using deterministic cryptographic function and role
hierarchies. Instead of allocating a random key for each ob-
ject, RBKD only generates a key for each role. The size
of roles is usually less than that of objects, thus using role
hierarchies can minimize the amount of symmetric keys. It
is noteworthy that RBKD only optimizes the existing meth-
ods instead of proposing a new cryptographic system. To
keep the original scheme’s security, we are planning to adopt
grant/revoke procedure for maintaining the correctness of
the role hierarchy.

2. RBKD Scheme

2.1 Basic Concepts and Notation

Given a set U of DUs and a set O of objects, we introduce
the basic definitions as follows.

Definition 1 (authorization policy [7]): An authorization
policy over U and O, denoted by A, is a triple <U,O, P>,
where u ∈ U and o ∈ O, and P is a set of permissions in the
form <u, o>, stating that u can access o.

Definition 2 (authorization policy matrix): An authoriza-
tion policy matrix over A = <U,O, P>, denoted by MA, is a
matrix (ai j)m×n, where m is the size of U and n is the size of
O, ai j = 1 iff <ui, o j> ∈ P, otherwise ai j = 0.

Definition 3 (role): A role over U, denoted by R, is a set
satisfies R ⊆ 2U \ {Ø}. And a role R is granted to access an
object o ∈ O iff for each u ∈ R, <u, o> ∈ P.

Definition 4 (role hierarchy): A role hierarchy over Ri and
Rj, denoted by H, where Ri ∈ Rj.H iff Ri ⊂ Rj.

Let Aall denote the collection of all attributes in the
system. And the user ui’s attributes set is represented as
Aui, Aui ⊆ Aall. We assume each ui has a unique at-
tribute, denoted by userID, then the role R’s attributes set
can be described as R.attrs = {ui.userID | ui ∈ R}. In
the CP-ABE based access control model, all objects will
be encrypted by the symmetric encryption algorithm (e.g.

AES) first, and then the symmetric key is encrypted by CP-
ABE algorithm. Let K denote a set of random symmet-
ric keys and a key ki ∈ K is used to encrypt an object
oi. The CP-ABE encrypting procedure can be expressed
as Encrypt(PK, ki,Ti), where PK is the public parameters
and Ti is the corresponding access tree. Let Ri denote the
role granted to access object oi, the access tree Ti can be
expressed as Ti = [ORuserID | userID ∈ Ri.attrs].

Before presenting the details of the proposed scheme,
we introduce an example to simplify the description. Fig-
ure 2 illustrates the example of an authorization policy ma-
trix with 6 users, 9 objects and 30 permissions.

2.2 The RBKD Scheme

The RBKD scheme is divided into two phases: roles creat-
ing and keys distributing. Considering a DU set U with the
size of m, the amount of all possible roles is 2m − 1. So in
the first phase, we only create the necessary roles and use
role hierarchies to accelerate keys distributing. The details
of roles creating algorithm is given as Algorithm 1.

Considering the example in Fig. 2, we create 7 roles,

Fig. 2 An example of authorization policy matrix.

Input: authorization policy matrix (ai j)m×n

Output: roles chain ChainR

1 ChainR ← ø;
2 cnt j ← ∑m

i=1 ai j ;
3 sort all o j ∈ O by cnt j in ascending order;
4 for j← 1; j ≤ n; j← j + 1 do
5 Rnew ← create a role corresponding to o j ;
6 if Rnew � ChainR then
7 Rnew.attrs← {ui.userID | ui ∈ Rnew};
8 for each role R∗ ∈ ChainR do
9 if R∗ ⊂ Rnew then

10 delete all u.userID from Rnew.attrs if u ∈ R∗;
11 Rnew.H ← Rnew.H ∪ R∗
12 end
13 if Rnew.attrs = ø then
14 break;
15 end
16 end
17 for every Rp ∈ Rnew.H, if ∃Rq ∈ Rnew.H satisfies

Rp ⊂ Rq, delete Rp from Rnew.H ;
18 PUS H(ChainR,Rnew);
19 end
20 end
21 return ChainR;

Algorithm 1: roles creating.



3090
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.12 DECEMBER 2012

Table 1 Details of roles generated for the example in Fig. 2.

role user object R.attrs R.H

R1 u1 o1,3 u1.userID ø
R2 u1,2,3 o4,7 u2,3.userID R1

R3 u4,5,6 o8 u4,5,6.userID ø
R4 u2,3,5,6 o2 u2,3,5,6.userID ø
R5 u1,2,3,4 o9 u4.userID R2

R6 u1,2,4,5,6 o6 u2.userID R1,3

R7 u1,2,3,4,5,6 o5 ø R2,3

Input: roles chain ChainR

Output: the token table Tabletoken

1 Tabletoken := ø;
2 generate a random key ki for each role Ri;
3 while ChainR � ø do
4 Ri ← POP(ChainR);
5 add a rowi with label Ri in Tabletoken;
6 if Ri.attr � ø then
7 owner ← {u | u.userID ∈ Ri.attr};
8 Ti = [ORuserID | userID ∈ Ri.attrs];
9 cip← Encrypt(PK, ki,Ti);

10 add <owner, cip> to rowi in Tabletoken;
11 end
12 for each role R j ∈ Ri.H do
13 owner ← {R j};
14 cip← h(k j) ⊕ ki;
15 add <owner, cip> to rowi in Tabletoken;
16 end
17 end
18 return Tabletoken;

Algorithm 2: keys distributing.

and each role is granted to access corresponding objects.
The details of roles, including mappings to users and ob-
jects, are shown in Table 1.

In the second phase, a random key is assigned to each
role for encrypting corresponding objects. Take R1 in Ta-
ble 1 as an example, we generate a random symmetric key
k1 for encrypting o1 and o3. Now the question to be asked
is “how to distribute the symmetric key to authorized users
securely and efficiently?”

We build a token table for distributing keys in RBKD
scheme. A token is the ciphertext of the key presented in the
form of <owner, cip>, meaning that the owner (a user or a
role) can decrypt the cip for retrieving the key. Each role’s
symmetric key is encrypted to form some tokens, and tokens
generating procedure is described in Algorithm 2. In this
procedure we adopt a deterministic cryptographic function
(e.g. MD5 and SHA), denoted by h, for keys encrypting.

The token table of the example in Fig. 2 is presented
in Table 2. Authorized users can derive the symmetric
key by downloading corresponding tokens from the table.
For instance, if u1 wants to read o6, he/she will first ob-
tain <R1, h(k1) ⊕ k6> since u1 ∈ R1, and then retrieves
<u1, Encrypt(PK, k1, [u1.userID])> recursively, finally k6

can be computed by decrypting the two tokens.
In summary, we accelerate the keys distributing by the

following methods. First, we try to diminish CP-ABE en-

Table 2 The token table corresponding to the example in Fig. 2.

object role token

o1,3 R1 <u1, Encrypt(PK, k1, [u1.userID])>
o4,7 R2 <u2,3, Encrypt(PK, k2, [ORu2,3.userID])>,

<R1, h(k1) ⊕ k2>
o8 R3 <u4,5,6, Encrypt(PK, k3, [ORu4,5,6.userID])>
o2 R4 <u2,3,5,6, Encrypt(PK, k4, [ORu2,3,5,6.userID])>
o9 R5 <u4, Encrypt(PK, k5, [u4.userID])>,

<R2, h(k2) ⊕ k5>
o6 R6 <u2, Encrypt(PK, k6, [u2.userID])>,

<R1, h(k1) ⊕ k6>,
<R2, h(k3) ⊕ k6>

o5 R7 <R2, h(k2) ⊕ k7>,
<R3, h(k3) ⊕ k7>

crypting operations. As shown in Table 2, the amount of
CP-ABE operations is 6, which is less than the original one
(which is 9). Second, we attempt to downsize the access tree
in RBKD scheme. For example, there is only one leaf node
in Encrypt(PK, k6, [u2.userID]), while the original scheme
will use at least 5 leaf nodes for the same purpose. Com-
pared to the primitive one, the RBKD scheme introduces
more deterministic encrypting and bitwise xor operations,
however, it is still of high efficiency because these proce-
dures consume only a little time.

Grant and Revoke In the RBKD scheme, we have
built a role hierarchy according to an authorization policy
matrix. Once the access policy is changed, we need to up-
date the hierarchy via a grant and revoke procedure. Con-
sider a grant/revoke request for a user u on an object o. First
the DO will decrypt and re-encrypt the o with a new key k′,
then the token table will be updated for distributing the k′ to
the new authorized role. Using the grant/revoke procedure,
our scheme can prevent malicious user from decrypting the
unauthorized ciphertext. We will omit the details of grant
and revoke due to space limitations.

3. Experimental Results

To evaluate the effectiveness and scalability of the RBKD
scheme, a significant test extracted from a complex autho-
rization policy of a large system is required. Unfortunately,
there is no such an access control benchmark available to-
day. As a result, simulated scenarios are usually created in
related researches [6], [9] for experiments. In this section,
we also build two simulated scenarios to compare RBKD
scheme with the original one.

The first scenario is based on DBLP [10] bibliography,
a well known bibliographic database which currently lists
more than 1.9 million publications. Each article recorded in
DBLP includes title, authors, publisher and other elements.
We suppose that all articles need to be stored in crypto-
graphic cloud storage, and each article must be accessible
to its all authors. We simplify the scenario by assuming that
a user ui can access an article o j iff ui is one of the authors
of o j.

Our prototype is a C++ program which collects 30000
authors to form a set U, and the corresponding article set



LETTER
3091

Fig. 3 The comparison of the amount of cpabe opts.

Fig. 4 The value of θ corresponding to different m and n.

O’s size is 66854. We build the RBKD scheme over U and
O with the access policy described above, and then com-
pare our scheme with the original one. Because the main
cost of keys distributing is CP-ABE encrypting operations
(we call it cpabe opts), we only consider the amount of
cpabe opts in our comparison. In the original scheme, we
need to encrypt a symmetric key for every object. But the
RBKD scheme only performs cpabe opts for roles to re-
duce the number of operations significantly. Figure 3 shows
the comparison of the amount of cpabe opts between the
RBKD scheme and the original one. The experimental result
shows that the amount of CP-ABE encrypting operations in
the new scheme is about 44.9% of the original one.

In order to evaluate the RBKD scheme’s performance
varying the size of U and O, we design the second simulated
scenario by the following steps: First, we randomly choose
m, n ∈ Z+, where m is the size of U and n is the size of O;
Second, for each element in matrix (ai j)m×n, we set ai j = 1
with a certain probability, denoted as p; Third, we perform
the RBKD scheme over U and O with the authorization pol-
icy matrix (ai j)m×n.

Let rbkd cnt represent the amount of cpabe opts in our
scheme, we compute the ratio θ = rbkd cnt

n for evaluating
the optimization rate of the RBKD scheme over the original
one. Let m, n ∈ [1, 10000] and p = 0.05, for each (m, n) pair
we repeat the simulation 10 times and compute the average
θ. Figure 4 illustrates how the value of θ changes with dif-
ferent m and n and Table 3 lists out partly numerical results.
The experimental result shows that the optimization rate θ
can be reduced by increasing the ratio n/m.

Discussion Generally speaking, the RBKD scheme
achieves better performance when n is greater than m. This

Table 3 Partly numerical results in the second simulated scenario.

m 8797 231 128 242 184 59 5
n 6482 4240 3065 8786 6902 3002 8842

n/m 0.737 18.35 23.95 36.31 37.51 50.88 1768.4
θ 1.000 0.999 0.995 0.634 0.303 0.079 0.0005

is because that under this condition, the amount of role hi-
erarchies included in keys distributing will increase, and the
probability of different objects authorized to the same role
will be larger. Actually, the kind of situation where n 
 m is
very common in enterprise applications and the data users is
usually organized in hierarchies, implying that our scheme
is well suitable for data sharing in enterprise.

4. Conclusions

There is an emerging trend that more and more customers
are using public cloud storage for online data storing and
sharing. In order to prevent data leakage when the CSP is
not trusted, adopting CP-ABE based access control is taken
as a common solution. Unfortunately, key distribution of the
original scheme is inefficient; our scheme optimizes it by
taking advantage of role hierarchies and deterministic cryp-
tographic function. Experiments showed that the RBKD
scheme can achieve noticeable speedup over the original one
especially in enterprise applications.

References

[1] S. Kamara and K. Lauter, “Cryptographic cloud storage,” Proc. 14th
International Conference on Financial Cryptograpy and Data Secu-
rity, pp.136–149, Tenerife, Canary Islands, Spain, 2010.

[2] J. Bethencourt, A. Sahai, and B. Waters, “Ciphertext-policy
attribute-based encryption,” 2007 IEEE Symposium on Security and
Privacy, pp.321–334, Oakland, USA, 2007.

[3] G. Wang, Q. Liu, and J. Wu, “Hierarchical attribute-based encryp-
tion for fine-grained access control in cloud storage services,” Proc.
17th ACM Conference on Computer and Communications Security,
pp.735–737, Chicago, USA, 2010.

[4] J. Huang, D. Nicol, R. Bobba, and J. Huh, “A framework integrat-
ing attribute-based policies into role-based access control,” Proc.
17th ACM Symposium on Access Control Models and Technolo-
gies, pp.187–196, 2012.

[5] B. Cha, J. Seo, and J. Kim, “Design of attribute-based access control
in cloud computing environment,” Proc. International Conference on
IT Convergence and Security 2011, pp.41–50, 2012.

[6] P. Traynor, K. Butler, W. Enck, and P. Mcdaniel, “Realizing massive-
scale conditional access systems through attribute-based cryptosys-
tems,” Proc. 16th Annual Network and Distributed System Security
Symposium, 2008.

[7] S. Vimercati, S. Foresti, S. Jajodia, S. Paraboschi, and P. Samarati,
“Encryption policies for regulating access to outsourced data,” ACM
Trans. Database Systems, vol.35, no.2, pp.1–45, 2010.

[8] D. Ferraiolo, J. Cugini, and R. Kuhn, “Role-based access control
(RBAC): Features and motivations,” Proc. 11th Annual Computer
Security Application Conference, pp.241–248, 1995.

[9] W. Wang, Z. Li, R. Owens, and B. Bhargava, “Secure and efficient
access to outsourced data,” Proc. 2009 ACM Workshop on Cloud
Computing Security, pp.55–66, 2009.

[10] D. Team, “The DBLP computer science bibliography,”
http://dblp.uni-trier.de/db/index.html, 2012.


