IEICE TRANS. INE. & SYST., VOL.E95-D, NO.12 DECEMBER 2012

3109

[LETTER

Approximate Nearest Neighbor Based Feature Quantization

Algorithm for Robust Hashing

SUMMARY In this letter, the problem of feature quantization in robust
hashing is studied from the perspective of approximate nearest neighbor
(ANN). We model the features of perceptually identical media as ANNs in
the feature set and show that ANN indexing can well meet the robustness
and discrimination requirements of feature quantization. A feature quan-
tization algorithm is then developed by exploiting the random-projection
based ANN indexing. For performance study, the distortion tolerance and
randomness of the quantizer are analytically derived. Experimental results
demonstrate that the proposed work is superior to state-of-the-art quantiz-
ers, and its random nature can provide robust hashing with security against
hash forgery.

key words: robust hash function, feature quantization, approximate nearest
neighbor, performance analysis

1. Introduction

Robust hash function is a mapping from the perceptual con-
tent of media data to a short digest, and it was initially
proposed to overcome the limitation of cryptographic hash
functions in media authentication. Cryptographic hash func-
tions such as SHA-1 are designed to be highly sensitive to
the digital representation of the message. However, me-
dia authentication aims at verifying the authenticity of the
perceptual content, instead of the digital representation, of
media data. Accordingly, media authentication cannot be
achieved by verifying the media data in a bit-by-bit manner.
As a consequence, robust hashing was proposed to enable
media authentication. Robust hashing is developed by cap-
turing the perceptual essence of the media data, and the hash
value can tolerate content-preserving manipulations. Mean-
while, robust hashing should possess adequate sensitivity to
malicious tampering and perceptually distinct media data,
which is referred to as the discrimination requirement.
Feature extraction and quantization are two primary
concerns in developing robust-hashing algorithms. Com-
pact features are extracted as the descriptor of perceptual
content and then quantized to produce fix-length hash. In
this letter, we address the feature quantization stage of ro-
bust hashing. Little research has been conducted on this
topic. The hash values in a vast majority of robust-hashing
algorithms are generated by quantizing features using scalar
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quantizers (SQ). A key-dependent quantization algorithm
was proposed in [1], where each feature is randomly mapped
to one of its neighboring indexes according to the secret
key. In [2], random hash values are generated by dither-
ing features and then quantizing the dithered features via
distributed coding. Similarly, Tagliasacchi er al. opted for
the Wyner-Ziv codec in their hashing system [3]. To meet
the security requirement of content authentication and make
a good balance between robustness and discrimination, the
feature vectors in [4] are quantized by dithered lattice vec-
tor quantizer (DLVQ) that is a kind of random quantizer in
multidimensional space.

By analyzing the problem of feature quantization, we
find that the features of perceptually identical media data
can be modeled as approximate nearest neighbors (ANN)
in the feature set and the robustness and discrimination re-
quirements are in good agreement with those of ANN index-
ing. Consequently, we propose to quantize feature vectors
by means of ANN indexing. It has been observed that the
ANN based quantizer can exhibit superior performance than
both SQ and DLVQ. Moreover, its random nature can bene-
fit the security of robust hashing.

The rest of this letter is organized as follows. Section 2
describes the formulation of feature quantization and then
introduces the ANN based quantizer. Analytical and exper-
imental results are provided in Sect.3 and Sect. 4, respec-
tively. Finally, conclusions are drawn in Sect. 5.

2. ANN Based Feature Quantization Algorithm
2.1 Problem Statement and Formulation

Given the media data M and its feature f, let us denote the
feature extracted from the perceptually identical counterpart
of M as figen, denote the one extracted from the media that
is perceptually distinct from M as fgs. Consequently, the
robustness and discrimination requirements of the quantizer
Q(-) can be expressed as:

e Robustness: Pr(Q(f) = O(figen)) = 1 — €1
e Discrimination: Pr(Q(f) = O(faist) < &

where Pr(-) denotes the probability of an event, 0 < &1, &, <
1. It has been observed that f and fj;s are usually far apart
from each other, while most of the distorted features lie near
to f. However, it should be noted that although fige, and
f may be quite similar, fige, is not necessarily the nearest
neighbor of f, but actually one of its approximate nearest
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neighbors. According to [5], given a point g and the point
set P, p € P is an e-approximate nearest neighbor (ANN)
of g if for all p’ € P, d(p,q) < (1 + €)d(p’, q). Apparently,
ANN relaxes the concept of nearest neighbor by defining a
neighborhood around q. Likewise, in the context of robust
hashing, most of the distorted features concentrate in the
neighborhood of f. In this regard, ANN can well model the
relationships between the features of perceptually identical
media data. From this point of view, the object of feature
quantization is consistent with that of ANN indexing.

2.2 Feature Quantization via ANN Indexing

The random-projection based locality-sensitive hashing?
(LSH) [6], which is an effective solution for ANN index-
ing, is exploited in this work to devise the quantizer for
robust hashing. The random-projection based LSH Q(-)
is (r1, r2, p1, p2)-sensitive as shown below (r; < r, p; >
P2) [6], which agrees with the robustness and discrimination
requirements of feature quantization.

e if d(p,q) < r, Pr(Q(p) = 0(q)) = p:
o if d(p,q) = ry, Pr(Q(p) = O(q@)) < ps.

In addition, the random nature of the LSH can benefit the
security of robust hashing by endowing the quantizer with
the property of key-dependent. Based on these facts, a fea-
ture vector f can be quantized to hash value via the mapping
defined by the random-projection based LSH as

Qﬁ=F%¥q, M
where a - f is the dot product, a is a vector whose ele-
ments are independently drawn from normal distribution,
b is a random variable following the uniform distribution
U(0,r), and |-| denotes the rounding operation. In robust
hashing, the parameters a and b are randomly generated
under secret key. As shown in Fig. 1, the mapping can be
decomposed into the following stages: the feature vector
is first projected onto a random line with direction a, the
projection is then shifted with a random amount b, and the
line is finally chopped into segments of size r. In this man-
ner, neighboring vectors can fall into the same segment (i.e.,
mapped to identical hash) with high probability. To ensure
features can be quantized to fix-length hash, they are first
normalized into [-16, 16) and then grouped into 4-D vec-
tors. Four hash values are computed for each vector under
distinct @ and b. The final hash string is obtained by con-
catenating the hash values of each feature vector, and we
use the normalized Hamming distance (NHD) to measure
the distance between two hash strings.

3. Performance Analysis of the ANN Based Feature
Quantization Algorithm

3.1 Analysis on Distortion Tolerance

The ANN based quantizer can map the features of perceptu-
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Fig.1  Graphic illustration of the mapping in (1).

ally identical media data to the same hash with high proba-
bility. Therefore, it can tolerate a certain amount of content-
preserving distortion. In what follows, the robustness of the
ANN based quantizer will be quantified by estimating the
average distortion it can tolerate. Given the original feature
vector f and the distorted one f,, the distortion on feature
vector can be expressed as d = f; — f. Denote by I and I,
the hash values of the original and distorted features, and de-
note by D(I;, I') the NHD between I; and I. Let A = ||d||»,
then the average distortion that the quantizer can tolerate is

Aany = f " A-Pr(D(, I) = 0/A)dA. )
0

Since the four hash values of each feature vector are inde-
pendently generated via the mapping Q(-), we have

Pr(D(I,, ) = 01A) = Pr(Q(f) = Q(H)IA)". 3)

As can be seen from Fig. 1, the probability of Q(f;) = O(f)
depends on the distance between the projections of the two
vectors, namely, |a « f; — a - f| = |a - d|. We focus on
the case where the elements of a are drawn from the normal
distribution N(0, 1). It is easy to verify that (a-d) ~ N(O, A?)
and the probability density function (pdf) of = |a - d] is

2

e, (1> 0). @)

2
plA) =
AVN2rx
As can be inferred from Fig. 1 that when ¢ € [0, r], O(f,) =
QO(f) holds with probability (1 — ¢/r), since the shift b can
vary from O to r [6]. Hence, we have

Mmm=mm&=ﬁmmmf9m )

Up to now, given the segment size r, the distortion tolerance
of the ANN based quantizer can be obtained by computing
(5), (3) and (2) consecutively. To make the quantizer map
each 4-D feature vector to four 4-bit hash values, we set
r = 4 and numerically computing (2) reveals Agyy = 1.12.
We now consider the case when each dimension of
the 4-D feature vector is independently quantized by a uni-
form SQ and estimate the corresponding distortion toler-
ance. Since A = ||d||,, the average distortion on each di-
mension of the feature vector is approximately A/2. Con-
sider the uniform SQ with step size W, two features with

Tt should be clarified that the term hashing in LSH has a dif-
ferent meaning from the one in robust hashing. In LSH, it refers to
the data structure for ANN indexing. In robust hashing, it stands
for the algorithm that computes the robust signature of media data.




LETTER

distance A/2 € [0, W] can be quantized to the same index
with probability (1 - ﬁ) As before, let us denote the hash
values, which are obtained by concatenating the four quan-
tization indexes produced by the uniform SQ, of the original
and distorted feature vectors as I and I, respectively. Then
the probability of D(I,, I) = 0 is (1 - ﬁv)“. Accordingly,
the average distortion that the uniform SQ can tolerate is

_ 2W A 4
A =f A(l——) dA. (6)
e 2W

Since the features are normalized into [—16, 16), if the uni-
form SQ generates four 4-bit hash values for each feature
vector as the case in the ANN based quantizer, then W = 2
and ZSQ =053 < ZANN. It is evident from the comparison
on distortion tolerance that the ANN based quantizer can
provide a higher degree of robustness against distortions.

3.2 Analysis on Randomness

As stated in [7], the degree of success that an adversary cor-
rectly forge or estimate hash values without knowing the
key for hash computation depends on the randomness of the
output hash. In this section, the security of the proposed
quantizer against hash forgery is investigated by assessing
the randomness of the output hash using the entropy-based
metric proposed in [7]. Given the feature f, we estimate
the entropy of the output hash Q(f) that is computed by
rounding the random variable S = (a - f + b)/r. Accord-
ing to [8], it is straightforward that H(Q(f)) ~ NR(S), where
H(-) and N(-) are the discrete and differential entropies, re-
spectively. Hence, the randomness of the quantizer can be
measured by computing N8(S). However, the pdf of S has
a complicated form, which makes it impossible to derive
the closed-form expression of NX(S). Alternatively, we de-
rive its lower and upper bounds. Let us consider the case
where the elements of a are drawn from N(0, %), we have
(a- £)/r ~ N(0,02IIfI3/r%). Recall that conditioning re-
duces entropy, the lower bound of RX(S) can be expressed
as

211 £112
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We proceed with estimating the upper bound. Among all the
distributions with the same variance, the normal distribution
gives the maximum entropy. Since b/r ~ U(0, 1), we have
Var(S) = o|| fII3/r* + 1/12, and the following upper bound
can be obtained.

2 2
alfll; 1 H ®

1
N(S) < 5 10g2 |:27T€( 2 + ﬁ

Here, we average the lower and upper bounds to estimate
the entropy of the ANN based quantizer.
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4. Experimental Results

We first demonstrate the overall performance of the pro-
posed quantizer and compare it with that of the uniform
SQ and DLVQ [4] using the receiver operating characteris-
tic (ROC) curves obtained from content identification ex-
periments. The testing database contains 2 x 10 images
that are with the size of 512 x 512 and have 256 gray lev-
els. Forty features were computed for each image using the
Radon-transform-based [9] and the random-Gabor-filtering-
based [4] feature extraction schemes. To compute hash val-
ues using the ANN based quantizer, features were first nor-
malized into [-16, 16) and then grouped into 10 4-D vec-
tors. For each vector, 4 hash values were generated and each
has 4 bits, so the number of buckets is 16 and the length of
the final hash is 160 bits. For the ANN based quantizer, the
elements of a were independently drawn from N(0, 1) and
r = 4. The parameter setting of DLVQ is the same as de-
scribed in [4] and the SQ has 16 quantization levels. To
assess the overall performance of the proposed work (i.e.,
its capability in balancing robustness and discrimination),
content identification experiments were carried out and sev-
eral kinds of content-preserving manipulations were imple-
mented to produce distorted images, as listed in Table 1. For
comparison purpose, the ROC curves corresponding to the
ANN based quantizer, uniform SQ, as well as DLVQ are dis-
played in Fig. 2. The ROC curves imply that the ANN based
quantizer outperforms both SQ and DLVQ in terms of over-
all performance, which indicates that it can best strike the
balance between robustness and discrimination.

The second set of experiments were devoted to inves-
tigating the randomness of the ANN based quantizer. We
started by assessing the accuracy of the estimated entropy.
For a given feature vector, 10° hash values were generated
under different keys, and then the entropy of the output hash

Table 1
Manipulations | Range of Strength

Quality factor: from 95 to 5

Width of square window: from 1 to 10
Radius of circular window: from 1 to 40
Variance of noise: from 0.01 to 0.4
Number of gray levels: from 224 to 8

List of content-preserving manipulations.

JPEG compression
Median filtering
Blurring

Gaussian noise addition
Contrast enhancement
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Fig.2 ROC curves of quantizers. (a) Quantizing Radon-transform-based
features; (b) Quantizing random-Gabor-filtering-based features.
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Fig.3  Curves of entropy rates.

was computed. In Fig. 3, we plot the curves of the estimated
and actual values of the entropy versus o. It can be con-
cluded that (9) can make an accurate estimation, since the
two curves almost coincide. For comparison purpose, the
entropy rates of the random SQ and DLVQ were also esti-
mated and plotted in Fig. 3. As derived in [7], the entropy of
the random SQ can be expressed as Hgp = rlog, e, where

r < % Hence, the upper bound of Hgg is 1og22e = 0.72.
In DLVQ, each feature vector is randomly mapped to a
Dy lattice point (i.e., 4-D integer vector with even compo-
nent sum) by dithering and quantization. Since the com-
ponents of D, lattice points are restricted to [0, 8) in [4],
it is easy to verify that there are 8*/2 = 2048 such lattice
points. Each 4-D feature vector can be randomly mapped
to any of them, so the entropy of DLVQ can be computed
as Hpryg = w = 2.75. As shown in Fig. 3, the ANN
based quantizer has the highest entropy among these random
quantizers.

In addition, the sensitivity of output hash to the secret
key for hash computation was also examined. Two hundred
rounds of hash computation were conducted by quantizing
the Radon-transform-based features extracted from a given
testing image under distinct keys. The average distance be-
tween output hash values is 0.47, which indicates that the
hash values produced by the proposed quantizer are quite
sensitive to key variations. The studies in [10] show that
this property can benefit the fragility of hashing algorithm
against malicious tampering when image content is incor-
porated in key generation. For content-dependent key, even
a slight content tampering can result in the change of the
key and consequently lead to drastic change of the output
hash. To verify this fact, tampering detection experiment
was carried out following the key generation scheme pre-
sented in [10]. The Harris corner points, which are very
sensitive to malicious tampering, were exploited to produce
content-dependent key. We first defined 10 lines by linking
the selected pairs of Harris corner points. For each line, a bi-
nary bit was generated according to the relationship between
the numbers of Harris corner points lying on its two sides.
Finally, a 10-bit content-dependent key can be obtained by
concatenating these binary bits. The hash values of the orig-
inal and tampered images shown in Fig. 4 were computed
by quantizing the Radon-transform-based features using the
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Fig.4  Original and tampered images. (b) is the tampered version of (a),
where less than 1% of the pixels in (a) are modified. The sizes of the two
images are 512 x 512.

ANN based quantizer under content-dependent key. The re-
sult of hash comparison shows that the NHD between the
hash values of the original and tampered images is 0.49.
Hence, the tampered image can be judged as inauthentic.

5. Conclusion

In this letter, we show that the features of perceptually iden-
tical media data can be modeled as ANNSs. In light of this,
we propose to quantize feature vectors using the random-
projection based ANN indexing scheme. Analytical and
experimental results reveal that the proposed work is bet-
ter suited for robust hashing than other quantizers due to its
higher tolerance against distortion, superior overall perfor-
mance, and security against hash forgery.
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