
314
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.2 FEBRUARY 2012

PAPER Special Section on Reconfigurable Systems

Region-Oriented Placement Algorithm for Coarse-Grained
Power-Gating FPGA Architecture

Ce LI†a), Student Member, Yiping DONG†, and Takahiro WATANABE†, Members

SUMMARY An FPGA plays an essential role in industrial products
due to its fast, stable and flexible features. But the power consumption of
FPGAs used in portable devices is one of critical issues. Top-down hierar-
chical design method is commonly used in both ASIC and FPGA design.
But, in the case where plural modules are integrated in an FPGA and some
of them might be in sleep-mode, current FPGA architecture cannot be fully
effective. In this paper, coarse-grained power gating FPGA architecture is
proposed where a whole area of an FPGA is partitioned into several re-
gions and power supply is controlled for each region, so that modules in
sleep mode can be effectively power-off. We also propose a region oriented
FPGA placement algorithm fitted to this user’s hierarchical design based
on VPR [1]. Simulation results show that this proposed method could re-
duce power consumption of FPGA by 38% on average by setting unused
modules or regions in sleep mode.
key words: FPGA, low power, region, hierarchical design, power con-
sumption

1. Introduction

Field-Programmable Gate Array (FPGA) has many advan-
tages such as short development time and flexibility for
commercial design. But the disadvantage is power con-
sumption that limits its applications in mobile devices.
Many commercial FPGA companies pay more attention to
minimize process scaling to get a lower supply power [2],
[3].

Also, many ASIC companies use FPGA to emulate
their designs to check the design quality and debugs be-
fore tape-out. It can reduce the non-recurring engineer-
ing (NRE) [1]. Nevertheless, more and more chips in the
portable devices or notebook computers, such as ARM, x86
CPU and CHIPSET are designed by using hieratical design
method. Power consumption can be saved by dynamically
power off some modules which are in sleep mode. In the
ASIC floorplan, some Sleep Regions (SRs) are used for
sleep modules. For FPGA, fine-grained power gating has
been discussed [4]–[6]. It provides flexibility for power gat-
ing and is almost independent of placement. But, the draw-
back is area increasing, because each Clustered Logic Block
(CLB) needs one related sleep transistor and related control
logic in the FPGA chip. Therefore, most of current com-
mercial FPGA chip design does not adopt power gating.

This paper presents a coarse-grained power gating

Manuscript received April 22, 2011.
Manuscript revised July 29, 2011.
†The authors are with the Graduate School of Information,

Production and Systems, Waseda University, Kitakyushu-shi, 808–
0135 Japan.

a) E-mail: rice@fuji.waseda.jp
DOI: 10.1587/transinf.E95.D.314

FPGA architecture instead of traditional fine-grained, which
supports hieratical design with sleep modules. It is used not
only to fill the SR with CLBs that come from the same mod-
ule but also to power off unused SR. In this architecture,
CLB of the sleep modules cannot be placed with the one
which is in always power-on module in the same region.
Besides, the fewer the used SR is, the less power consump-
tion is. So, placement algorithm plays an essential role on
coarse-grained power gating FPGA architecture. From this
consideration, we focus our effort on module placement al-
gorithm.

The remainder of this paper is organized as follows. In
the next section, related work is described. Section 3 intro-
duces low power design background and SR based FPGA
architecture. Placement algorithm based on SR is discussed
in Sect. 4. The CAD framework which supports this new
FPGA architecture and region oriented placement algorithm
is shown in Sect. 5. Finally, experimental results and the
conclusion are presented in Sects. 6 and 7,respectively.

2. Related Work

Former researches [4], [7], [8] focused on power reduc-
tion methods such as power-gating, clock gating, dual-
VTH/VDD, micro-VDD-hopping and so on. Paper [5] in-
troduced a field programmability of dual supply voltages for
FPGA power reduction. High VDD was applied for critical
path logic, and low VDD for non-critical path to save power
consumption. This is a good way for low power consump-
tion, but it does not take user’s top-down design method into
consideration. Usually, logic in the same modules has the
same power voltage and state in ASIC design. So, our paper
pays more attention on region placement of module level by
using single supply voltage. What’s more, dual-VDD can be
added for different regions based on our FPGA architecture
if needed.

An asynchronous FPGA architecture based on au-
tonomous fine grain power gating was proposed in [6]. It is
more efficient in power than synchronous FPGA at less than
30% utilization. However, most current FPGA architectures
are synchronous, so, an asynchronous approach cannot be
adopted.

In ref. [9], power gating of logic fabrics was investi-
gated and region-constrained placement was applied to re-
duce leakage power of unused logic blocks on Xilinx FPGA.
Their placement algorithm placed a designed circuit into
contiguous regions by utilizing two different styles: hori-

Copyright c© 2012 The Institute of Electronics, Information and Communication Engineers

LI et al.: REGION-ORIENTED PLACEMENT ALGORITHM FOR COARSE-GRAINED POWER-GATING FPGA ARCHITECTURE
315

zontal and vertical placement. One limitation of this idea is
that the parietal row can be used only when the lower rows
are fully filled in horizontal placement. So, circuit for Input
Output (IO) PAD on FPGA top edge may be placed in bot-
tom row when FPGA size is large. It may increase the wire
length and decrease FPGA performance.

In [10], we proposed a circuit named a ‘power con-
trol hard macro’ (PCHM) at the cost of increasing area, by
which synchronous FPGA logic blocks are autonomously
powered-off by the IO PAD or internal logic signal. We did
fine-grained power gating by using a sleep enable (SLPEN)
signal, but power efficiency is decreased for small CLB.

This paper proposes coarse-grained power gating in-
stead of fine-grained in [10]. Only one PCHM is used for
each SR which is composed of several CLBs. PCHM con-
trols the power of the related SR. We could get both high
efficiency of power and area by reducing PCHM count. For-
mer study [1] paid more attention on the critical path af-
fected by the placement. The placement will affect routing
resource and power consumption. But this kind of place-
ment could not support the low power FPGA design with
sleep module. Based on the FPGA architecture with SR,
placement algorithm for user design with sleep module is
also explored.

3. Background

3.1 Sleep Module

ASIC chips are composed of several modules, each of which
uses its own supply, because different modules have differ-
ent performance objective and constraints. An example of
mobile SoC (System on Chip) is shown in Fig. 1. Processor
module and memory module use un-gated power. USB and
WIFI module use gated power. A Power Management Unit
(PMU) is used to control power supplies for USB and WIFI
modules by the command of the processor. The power can
be saved by shutting down the modules in sleep or idle state.

Current commercial FPGA architecture has the limita-
tion in supporting above design with sleep modules. Former
researches also pay less attention on design hierarchy. The

Fig. 1 Example of SoC power gating.

basic units in a conventional FPGA [2] are CLB, IO PAD,
Connection Box (CB), Wire Channel (WC) and SB. FPGA
implements user design by dividing it into small pieces
which can be achieved by CLBs. CB, WC and SB are used
as wires to connect the input and output among the CLBs.
Many multiplexers (MUX), buffers and transmission gates
are used in FPGA basic unit to achieve flexibility and re-
program ability of FPGA. FPGA users generally pay more
attention on optimizing their circuits, but can do little im-
provement based on the fixed FPGA architecture to reduce
power. So, power gating methods of sleep module based on
their circuit could not be implemented on FPGA chip.

3.2 Proposed FPGA Architecture and Sleep Region

We focus on island-style FPGA architectures in this paper,
shown in Fig. 2. In our proposed architecture, a power con-
trol hard macro (PCHM) is used as a low power controller
as the PMU in Fig. 1. The PCHM could power off the 2
(column)*2 (row) CLBs, totally called an SR. The power
of each SR can be gated by a sleep transistor which is con-
trolled via the corresponding PCHM. A MUX is used for
PCHM to select the SLPEN signal from internal connec-
tion. A MUX is used for PCHM to select the SLPEN signal
from internal connection. In another word, we could as-
sume that PCHM gets the SLPEN signal from one edge of
the SB which is on the top-left of the SR. The MUX count
equals the SR count on FPGA chip. To avoid leakage, iso-
late cells (ISOC) are added to CLB outputs which are not
shown in this figure. Because when the circuit grows even
larger, the size of SB, CB and WC are bigger, adding ISOC
at the output of CLB need less area than at the CB or SB
output. In Fig. 2, when CLBs in SR (1,2) and SR (2,2) are
used for same module or have same power behavior, these
two PCHMs have the same power state. SR (1,1) can be

Fig. 2 A new FPGA architecture based on SR.

316
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.2 FEBRUARY 2012

Fig. 3 PCHM block diagram.

used for logic in another module. If no logic is mapped into
SR (2,1), it could be powered off.

3.3 Power Control Hard Macro

It controls the power down and power up sequencing [10].
It also gates the clock of SR. Figure 3 shows the PCHM
block diagram. A power-off register in top-left of this fig-
ure is a key register to gate power of connected SR in the
highest priority. SLPEN comes from FPGA IO PAD or an-
other CLB output after routing. It controls the power state
of SR dynamically when the value of power-off register is
“0”. Delay counter is used to meet signal phase delay by
a group of D flip-flops (DFF). The count of DFF can be
changed basing on power sequence. To reduce power con-
sumption, we use a heartbeat clock (32 KHz) for the de-
lay counter. SLP0, SLP1, SLP2 and SLP3 are outputs of
the delay counter. They are used by combinational logic
to generate the SR control signals such as ISOL, CLBRST,
VDD SW, and GCLK. ISOL is used by ISOC to isolate the
power off domains and power on domain. The VDD SW
and GCLK are power gating control signal and gated clock
sent to the SR, respectively. CLBRST is CLB reset signal
based on the global clear signal (CLR) and power on/off se-
quence.

4. Placement Algorithm

FPGA placement algorithm determines CLB location of
user circuit on chip. The goals are to minimize total area,
wire connections, delay of critical path and so on. We focus
our effort on finding a fast method which can separate the
CLB of different modules into different SRs.

4.1 Linger Congestion Cost and Timing Driven Cost

Based on the adaptive annealing schedule, an FPGA CAD
tool called Versatile Place and Route (VPR [1]) could get a

(a)

(b)

(c)

Fig. 4 CLB swapping results.

better placement result within a short time by using Sim-
ulated Annealing (SA) method. By using the linear con-
gestion (LC) cost function below, VPR can model the diffi-
culty of routing connections in areas with different channel
widths.

CostLC =

Nnet∑
i=1

q(i)

(
bbx(i)

Cav,x(i)β
+

bby(i)

Cav,y(i)β

)
(1)

The summation [1] is over the Nnet in the circuit. For
each net i, bbx(i) and bby(i) denote x (horizontal) and y (ver-
tical) spans of its bounding box respectively. The factor q(i)
compensates for the fact that the bounding box wire length
model underestimates wiring necessary to connect net with
more than three terminals [11]. Its value depends on the
number of terminals of net i. Cav,x(i) and Cav,y(i) are the av-
erage channel capacities (in tracks) in x and y directions re-
spectively, over the bounding box of net i [1].The exponent,
β, allows relative cost of using narrow and wide channels to
be adjusted.

To get higher FPGA performance, path timing driven
cost, CostT , is used in [1]. With CostT , CLBs connected by
the critical path can be placed closely to reduce path delay
of whole FPGA chip. So, critical path delay is smaller.

4.2 Sleep Region Cost

None of the above cost function can support the SR place-
ment. A new cost, CostS R, is introduced to indicate the
sleep region cost. To make this idea clearly, CLB placement
cases which could occur after initial placement or during
CLBs swapping are shown in Fig. 4 [12]. Each SR shown
on the left side has CLBs in two modules (M1 and M2) col-
ored by red and blue. M0 means the current CLB slot is
EMPTY. Two SRs are enough for the two modules place-
ment in Fig. 4 (a) and (b). The desired placement is shown
on the right side. CLBs in different modules are separated

LI et al.: REGION-ORIENTED PLACEMENT ALGORITHM FOR COARSE-GRAINED POWER-GATING FPGA ARCHITECTURE
317

Table 1 SR parameter value.

Before Swap After Swap
SR (1,1) SR (2,1) SR (1,1) SR (2,1)

Case (a) NCLB(m, n, 0) 1 0 0 1
NCLB(m, n, 1) 2 2 4 0
NCLB(m, n, 2) 1 2 0 3
Nmc(m, n) 2 2 1 1

Case (b) NCLB(m, n, 0) 2 4 3 3
NCLB(m, n, 1) 1 0 1 0
NCLB(m, n, 2) 1 0 0 1
Nmc(m, n) 2 0 1 1

Case (c) NCLB(m, n, 0) 1 1 0 2
NCLB(m, n, 1) 3 2 4 1
NCLB(m, n, 2) 0 1 0 1
Nmc(m, n) 1 2 1 2

and placed in two SRs.
Two parameters are used for module information for

each SR. One is module count in each SR, called Nmc(m, n);
the other is CLB count, NCLB(m, n, p), in each module (from
0 to p) in SR. m and n are SR coordinates on FPGA chip.
p is the index in total module numbers (Nmc) of FPGA. No
logic is assigned to CLB slot when p is zero. The values
of Nmc(m, n) and NCLB(m, n, p) are shown in Table 1. The
placement goal for the SR architecture FPGA is to make
sure each Nmc(m, n) is less than 2, and make NCLB(m, n, p)
as big as possible for each SR.

A cost function, CostS R(m, n, p), is introduced to indi-
cate a module cost of SR located in physical coordinate (m,
n) of FPGA as shown in Eq. (2). It is award swapping for SR
density increasing. NS R−size means the maxim CLB count in
one SR. If SR size is 2*2, NS R−size is 4. CostS R(m, n, p)
turns to zero when SR is fully filled with CLBs in the same
module or without any CLBs. The cost function is shown as
follow,

CostS R(m, n, p) =

{
1 − (NCLB(m,n,p)

NS R−size
)2 NCLB(m, n, p) � 0

0 NCLB(m, n, p) = 0

(2)

The CostS R(m, n) of one SR is cost summation of each
power domain shown in Eq. (3). Module index 0 is used for
“EMPTY” slots. Their cost does not need to be added into
CostS R. But if we only do the addition of CostS R(m, n, p)
in each power domain, we cannot handle the case shown in
Fig. 4 (b). Total cost of these two SRs will not be changed
after swapping. So, we use Nmc(m, n) to penalize the case
that one SR has CLBs that come from different modules.
Total SR cost is shown in Eq. (3). After swapping, Nmc(1, 1)
and Nmc(2, 1) is 1 in Fig. 4 (b). CostS R for the two SRs is
reduced. Total SR cost is the summation of all CostS R on
the FPGA shown in Eq. (4). So in Fig. 4 (a), CostS R before
swapping is 7.375, and it is 1.4375 after swapping.

CostS R(m, n) = Nmc(m, n) ∗
Nmc∑
p=1

CostS R(m, n, p) (3)

CostS R = 1 +
Width∑
m=1

Length∑
n=1

CostS R(m, n) (4)

Algorithm 1 Pseudo code of trying swap.
grid f rom = start coordinate in CLB grid
grid to = destination coordinate in CLB grid
grid f orm.p = current module index of start position
grid to.p = current module index of destination
sr f rom = start coordinate in SR grid
sr to = destination coordinate in SR grid

swap2clb{
random pick one CLB(grid from);
random pick destination(grid to, Rlimit);
if grid f orm.p � grid to.p and sr f rom � sr to then
ΔCostS R ← calculate S R cost change(grid f rom, grid to);

else
ΔCostS R ← 0;

end if
ΔCostLCTS R ← calculate cost change(ΔCostLC ,ΔCostT ,ΔCostS R);
if swap accept(ΔCostLCTS R,T) then

CostLCTS R newT ← CostLCTS R oldT + Δ CostLCTS R;
if grid f orm.p � grid to.p and sr f rom � sr to then

NCLB(grid f rom, grid f rom.p) − 1;
NCLB(grid to, grid f rom.p) + 1;
NCLB(grid to, grid to.p) − 1;
NCLB(grid f rom, grid to.p) + 1;
swap(grid from, grid to);

end if
end if
}

Figure 4 (c) shows an unwilling case. In this case, af-
ter swapping, SR (1,1) is fully filled with CLBs in M1.
Nmc(2, 1) is 2 after swapping. But we could not allow SR
(2,1) has the CLBs which come from different modules
when these two modules do not have same power state. If
there are more SRs in FPGA chip, swapping will be contin-
ued. So, we must calculated the minimal SR count for all
modules, and then, use an FPGA with enough space to do
placement. More conditions are described in Sect. 5.

4.3 FPGA Total Cost

We update FPGA full chip cost function, CostLCTS R, based
on the cost of CostLC , CostT and CostS R. To do the tradeoff
between each cost, factors γ and τ are introduced shown in
Eq. (5). Each old temperature (oldT) cost is added to bal-
ance different cost. It makes the tradeoff factor more accu-
rate.

CostLCTS R = (1 − γ)((1 − τ) CostLC

CostLC oldT

+ τ
CostT

CostT oldT
) + γ

CostS R

CostS R oldT
(5)

In original VPR environment, τ is set to 0.5 to bal-
ance CostLC and CostT [13]. After we enhanced VPR, the
minimal γ could be auto determined by user’s design. It
can make sure the circuit has a better performance based
on CostT and CostLC when supporting SR placement. Of
course, it supports fixed γ provided by user. More informa-
tion is given in Sect. 5 about CAD flow.

Millions of potential block swaps will be evaluated in
a typical placement even with a good annealing schedule.

318
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.2 FEBRUARY 2012

(a) Initial placement (b) Placement without CostS R

(c) Placement with CostS R (NS R−size = 4*4) (d) Placement with CostS R (NS R−size = 3*3)

Fig. 5 Placement result by different cost.

Making computation as fast as possible is crucial. To re-
duce CPU time during placement, we do not re-compute
CostLCTS R during each swap. The swapped CLBs come
from either the same or different modules, or even swap to a
empty slot. We just calculate cost change based on affected
nets and SRs.

The change of CostLC and CostT due to affected nets
by two swapped CLBs (or by moving a CLB to an empty
slot) is calculated. CostS R change is affected by SRs whose
NCLB(m, n, p) are changed. Based on Eq. (2) and Eq. (3),
only swapping two CLBs in different modules between dif-
ferent SRs can affect the cost. No consideration should be
taken when the swapping happens inside the same SR. Algo-
rithm 1 shows the pseudo code when swapping two CLBs.

During each swap, we pick one block of user’s design
randomly and get its CLB information, such as coordinate in
grid scale and module index. Then, we choose destination
within the Rlimit (the swapping range of two CLBs). The
CostS R is calculated when the start point and the destination
point are not in the same module and SR.

If the swap is accepted after assessing based on

ΔCostLCTS R (total cost change) and new temperature
(newT), module information of the affected SRs and grids
are preprocessed. The cost in newT is changed by adding
cost change as follow,

CostLCTS R newT = CostLCTS R oldT + ΔCostLCTS R (6)

Similar to the former work in [1], conditions to exit SA
and to decrease T are not changed. When swapping range is
small in low temperature, CostS R is hardly changed. Only
CostLC and CostT optimize local placement to reduce wire
cost.

4.4 Cost Function Comparison

Different cost functions are compared based on the same
FPGA architecture in Fig. 5. It shows placement results by
VPR using different cost function. Since there is no bench-
mark to evaluate sleep module feature on FPGA, we use
two MCNC [14] benchmarks instead and assume they are in
different power states. The difference between two bench-
marks and user’s designt which has sleep module in it is that

LI et al.: REGION-ORIENTED PLACEMENT ALGORITHM FOR COARSE-GRAINED POWER-GATING FPGA ARCHITECTURE
319

the interconnection between different modules. But it is im-
partial for different placers based on two benchmarks.

Figure 5 (a) shows initial placement after VPR is en-
hanced to get two circuits. CLBs in different color come
from different modules. After initial placement, CLBs are
placed randomly in FPGA. Placement result with SR cost is
shown in Fig. 5 (b). Blank grids located between two mod-
ules are disordered. Although blank space is big enough for
a 4*4 sleep region, but it is impossible to use power gating
for unfix position. More efforts should be taken if we want
to use some low power design methods. But, in Fig. 5 (c),
based on SR cost, CLBs are placed into the minimum count
of 4*4 size SRs. One region should be powered off in this
case. If we change NS R−size to 3*3, we could power off three
SRs shown in Fig. 5 (d).

5. CAD Framework

There are lots of commercial FPGA design tools. But, most
of them could only support the FPGAs by the same provider,
especially for the placement and routing tools which could
not support other architecture. So, a CAD framework should
be explored to support and evaluate our proposed architec-
ture, that is, special placement for SR based architecture.

We use two benchmarks as two modules in user’s hi-
erarchical design. Fig. 6 illustrates CAD software flow that
supports two modules. This flow composes a CAD frame-
work that can be used for packing, placement, routing, and
power simulation for non-commercial FPGA.

The Berkeley Logic Interchange Format (.blif) [15]
files are used to describe MCNC benchmark circuits. We
could get the .blif file from verilog RTL file by ODIN II [16]
and ABC [17]. The T-VPACK [13] program packs LUTs
and flip-flops into CLB which contains one or more Logic
Elements (LEs) in .net format for each module.

Fig. 6 Software flow for the SR based FPGA.

VPR supports kinds of FPGA architecture with differ-
ent LE count, CLB count or channel width. It can place
the design with SA algorithm [1] and route it for the normal
FPGA architecture.

A power model is mentioned in [18] in terms of dy-
namic power, short-circuit power and leakage power. The
activity estimator determines the switching activities inside
the design. The transition density model of probabilis-
tic techniques is used in the activity generation step. [19]
merges power model and the latest version VPR. We de-
velop enhancement of this CAD software, named Sleep Re-
gion VPR (SR-VPR), to support FPGA design with sleep
modules.

5.1 SR-VPR

SR-VPR can treat multiple circuits as different modules. We
also modify VPR basing on our SR place algorithm. It can
get SR setting parameters, such as NS R−size. After place-
ment, SR-VPR routes internal connection. The output of
SR-VPR describes area, critical path delay, circuit place-
ment, routing information and power consumption. Power-
off register setting in each SR can also be generated in the
output file.

VPR can auto-size the FPGA basing on benchmark cir-
cuits. But to support the SR based FPGA architecture, we
enhance this feature to set FPGA size as the minimal times
of the SR size. In SR-VPR, for example, if one benchmark
contains 7 CLBs, when NS R−size is 3*3, the FPGA will be
sized to 3*3 for this benchmark. But if NS R−size is 2*2, the
size of the FPGA should be 4*4. It contains 4 SRs.

VPR can also find a better solution to place and route
user’s design based on different architecture. But to import
SR, a new challenge is needed for placement. Not only the
net delay, but also the module information should be con-
sidered. If an user does not care the parameters of CostS R,

Fig. 7 SR-VPR placement flow.

320
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.2 FEBRUARY 2012

SR-VPR can find suitable γ to get minimum factor based
on the SR. Figure 7 shows the placement flow with the pa-
rameter selecting in SR-VPR. After reading the netlist, it
checks the Nmc and NCLB[1..p]. When minimum SR count
for the circuit has been calculated, required FPGA size is
fixed. Then, SR-VPR checks whether γ is fixed. If so, it
does the placement and gives out the result. If user does not
give the desired value, a placement by only using SR cost is
processed to check whether current setting could support SR
placement successfully. After that, a loop is used for γ in-
creasing from a very small initial value. We set initial value
of γ to 0.05 based on former experiment. When γ grows
bigger enough to place successfully, SR-VPR starts routing.

6. Experimental Results

6.1 Conditions for Experiments

To compare the performance between different cost func-
tions, 15 MCNC benchmarks are placed and globally
routed. In .blif netlist, CLB consists of 10 LEs, and each
LE has one 4-LUT and one flip-flop. The intelligent FPGA
Architecture Repository (iFAR) [20] contains accurate area
and timing estimates architecture file for the logic and rout-
ing of varied island-style FPGA architectures. We use 45 nm
technology file in our experiment. The routing parameters
are set as Fcin=0.25, Fcout=0.1, Fs=3, and segments of
length L=4 in this file. Based on our experiments, best result
can be get when NS R−size is 4*4 for less area and higher per-
formance. So, following results of coarse-grained are based
on this NS R−size. The same as VPR, minimal transistor count
is used for area comparison. The routing channel width is set
to 1.2 times of the minimum channel width required to route
each of the benchmark circuits. IO PAD capacity is 2. To get
accurate result of power consumption, we use HSPICE to
generate power parameters in FPGA architecture file. Com-
patible with the current popular process technology, 45 nm
Predictive Technology Model (PTM) [21] is used. We set
VDD to 1.0 V.

To check the performance of our coarse-grained archi-
tecture and placement algorithm, we compare the results
both on single module and double modules in this section
by using 15 MCNC benchmarks. By comparing the results
of using different FPGA architectures, Sect. 6.2 analyzes the
advantages of coarse-grained power gating. Based on this
architecture, VPR and SR-VPR are compared to find the im-
pact of the new placement algorithm in Sect. 6.3.

6.2 Architecture Comparison

All FPGA architectures discussed here are based on island
style [1]. The normal FPGA architecture which is used in
original VPR environment does not have sleep transistors
and PCHMs. Fine-grained and coarse-grained power gat-
ing architectures are based on the normal FPGA architec-
ture with sleep transistors and PCHMs. Each CLB has a P-
MOS sleep transistor and a PCHM in fine-grained architec-

Table 2 The comparison between different FPGA architectures.

FPGA architecture
Normal Fine- Coarse-

grained grained
power on CLB per-
cent

100% 70.6% 73.6%

area of logic 4458829 4501671 4480993
area of sleep transistor - 139552 (3.1%) 53772 (1.2%)
critical path delay (s) 4.7E-7 4.75E-7 4.81E-7
placement time (s) 55.69 55.83 55.86 (196.26)
routing time (s) 688.4 699.5 612.3
power (W) 6.29E-2 5.58E-2 5.62E-2

ture, while all the CLBs in an SR of coarse-grained architec-
ture can share a P-MOS sleep transistor and a PCHM. Be-
fore comparing VPR and SR-VPR in detail, we need to find
whether coarse-grained power gating architecture has ad-
vantages compared with others. A comparison is shown in
Table 2 for different FPGA architectures. We apply the suit-
able placement algorithm for each FPGA architecture. Orig-
inal VPR placement algorithm is used for the normal and
fine-grained FPGA architecture. While, the coarse-grained
power gating architecture needs more support of the place-
ment to put CLBs into minimum count of SRs for reducing
the power consumption maximally. So, we use SR-VPR for
coarse-grained power gating FPGA in this test.

To compare the architectures, we set the CLB count
of normal and fine-grained FPGA architecture the same as
coarse-grained architecture. Table 2 shows average value of
power on CLB percent, CPU time of placement and rout-
ing, chip area, critical path delay and power consumption
by using different FPGA architecture. FPGA in this table
is sized to minimal size of each benchmark automatically.
Usually, the count of CLBs which are used for the bench-
marks does not equal a multiple of NS R−size. When an SR
has both used and unused CLBs, the unused CLBs in this
SR cannot be powered off. In our experiments, 29.4% un-
used CLBs can be powered off by fine-grained power gat-
ing, while in coarse-grained power gating architecture, this
value can reach 26.4%. Therefore, coarse-grained power
gating FPGA architecture has a little larger power consump-
tion (0.71% on average) than fine-grained one.

Area results of different FPGA architectures are shown
in the count of minimum transistor. Including CLBs,
PCHMs and routing area, the logic area increasing of
coarse-grained FPGA architecture is less than 0.5% com-
pared to the normal architecture. When we merge the sleep
transistors which are used by each CLB in the same SR,
the area of sleep transistors can be reduced [22]. This is
one of advantages in coarse-grained power gating architec-
ture. Since there is no sleep transistor in a normal FPGA,
we skip the area for it. 3.1% area is overhead by using
sleep transistors in fine-grained architecture. But in coarse-
grained architecture, this area overhead can be reduced to
1.2%. In other words, the area of sleep transistors can be
reduced 61.3% by using coarse-grained power gating archi-
tecture compared to fine-grained one. When considering the
area reduction of less PCHMs, 2.3% FPGA area can be re-

LI et al.: REGION-ORIENTED PLACEMENT ALGORITHM FOR COARSE-GRAINED POWER-GATING FPGA ARCHITECTURE
321

Table 3 The FPGA power consumption result with one module.

IO CLB SR γ Placement time (s) Routing time (s) Area Critical path delay (s) Power (W)
PAD
usage

usage usage VPR SR-VPR VPR SR-VPR VPR SR-VPR VPR SR-VPR VPR SR-VPR

alu4 11% 20% 25% 0.08 23 23 273 308 7.6E+06 7.6E+06 3.7E-09 3.6E-09 0.123 0.091
apex2 21% 24% 31% 0.05 28 30 473 285 8.1E+06 8.2E+06 4.3E-09 4.3E-09 0.116 0.081
apex4 15% 19% 22% 0.11 24 24 335 378 8.0E+06 7.9E+06 4.2E-09 4.2E-09 0.101 0.068
clma 75% 79% 83% 0.08 217 208 1483 1711 9.1E+06 9.3E+06 6.9E-09 6.6E-09 0.102 0.097
diffeq 54% 16% 19% 0.07 24 24 118 117 6.4E+06 6.4E+06 4.3E-09 4.5E-09 0.093 0.058
ex1010 10% 74% 75% 0.07 126 126 5298 3405 1.1E+07 1.1E+07 4.9E-09 5.2E-09 0.111 0.095
ex5p 37% 16% 17% 0.05 22 24 122 126 7.6E+06 7.7E+06 4.2E-09 4.2E-09 0.098 0.061
frisc 71% 42% 44% 0.05 69 73 1098 953 8.3E+06 8.5E+06 8.2E-09 8.5E-09 0.072 0.047
misex3 15% 20% 22% 0.06 23 23 224 269 7.3E+06 7.6E+06 4.1E-09 3.5E-09 0.109 0.086
pdc 29% 59% 61% 0.05 91 91 2429 2034 9.4E+06 9.6E+06 5.5E-09 5.2E-09 0.095 0.081
s298 5% 16% 19% 0.07 19 20 159 205 7.6E+06 7.6E+06 5.2E-09 5.5E-09 0.075 0.039
s38417 70% 60% 64% 0.06 96 97 73 113 6.8E+06 6.7E+06 4.6E-09 4.8E-09 0.099 0.086
seq 40% 24% 25% 0.05 32 32 306 360 8.3E+06 8.1E+06 4.1E-09 3.5E-09 0.117 0.101
spla 32% 46% 47% 0.07 65 66 1122 1025 8.8E+06 8.6E+06 4.6E-09 4.9E-09 0.108 0.079
tseng 91% 14% 14% 0.07 23 22 66 59 6.3E+06 6.3E+06 4.4E-09 4.9E-09 0.095 0.055
average 38% 35% 38% 0.07 58.8 59.0 905 757 8.00E+06 8.05E+06 4.88E-09 4.89E-09 0.101 0.075
percent 100% 100.2% 100% 73.6% 100% 100.6% 100% 100.1% 100% 74.5%

Table 4 The FPGA power consumption result with two modules.

placement time (s) routing time (s) Area Critical path delay (s) Power (W)
M1 M2 VPR SR-VPR VPR SR-VPR VPR SR-VPR VPR SR-VPR VPR SR-VPR M1ON M2ON
alu4 alu4 52 347 376 353 1.05E+07 1.05E+07 3.61E-09 3.94E-09 0.173 0.125 0.099 0.101
apex2 alu4 60 216 444 442 1.11E+07 1.10E+07 4.01E-09 4.35E-09 0.158 0.122 0.098 0.092
apex4 alu4 53 414 543 619 1.07E+07 1.10E+07 4.10E-09 3.92E-09 0.148 0.114 0.087 0.095
clma alu4 278 1161 2009 1855 1.26E+07 1.28E+07 7.15E-09 6.90E-09 0.128 0.115 0.103 0.077
diffeq alu4 64 190 312 186 1.03E+07 1.05E+07 4.26E-09 4.41E-09 0.137 0.093 0.073 0.084
ex1010 alu4 183 894 3759 3400 1.49E+07 1.50E+07 4.91E-09 4.83E-09 0.150 0.134 0.117 0.094
ex5p alu4 53 175 492 479 1.04E+07 1.04E+07 3.92E-09 4.10E-09 0.147 0.102 0.079 0.088
frisc alu4 123 271 1249 1076 1.11E+07 1.12E+07 8.47E-09 8.40E-09 0.096 0.067 0.057 0.053
misex3 alu4 52 180 325 356 1.08E+07 1.03E+07 4.01E-09 3.53E-09 0.154 0.132 0.102 0.110
pdc alu4 146 373 1965 1731 1.30E+07 1.31E+07 5.24E-09 5.16E-09 0.136 0.114 0.097 0.083
s298 alu4 47 311 443 457 1.03E+07 1.05E+07 5.90E-09 6.04E-09 0.105 0.063 0.047 0.060
s38417 alu4 131 748 353 458 1.04E+07 1.04E+07 4.48E-09 4.40E-09 0.145 0.125 0.103 0.107
seq alu4 64 419 494 424 1.11E+07 1.10E+07 3.69E-09 3.61E-09 0.172 0.143 0.118 0.106
spla alu4 112 398 1172 979 1.20E+07 1.16E+07 4.74E-09 4.69E-09 0.141 0.117 0.099 0.087
tseng alu4 63 127 254 248 1.04E+07 1.07E+07 4.38E-09 4.38E-09 0.139 0.097 0.076 0.085
average 99 415 946 871 1.13E+07 1.13E+07 4.86E-09 4.84E-09 0.142 0.111 0.090 0.088
percent 100% 420% 100% 92% 100% 100% 100% 99.7% 100% 78% 64% 62%

duced totally. Our SR-based placement algorithm does not
give heavy burden to the CPU during the placement when fix
γ, but when it automatically detects γ, CPU time is almost 4
times of VPR. Chip performance is not affected much when
using SR-VPR as shown in the row of critical path delay.

From these results, we could see that coarse-grained
power gating FPGA architecture has less power consump-
tion than normal architecture. It also has less area (2.3%)
and only 0.71% more power consumption than fine-grained
power gating architecture by using the proposed SR-VPR
which can place the CLB into minimum count SRs. That is
the reason why we pay attention to coarse-grained architec-
ture.

6.3 Placement Algorithm Comparison

For detailed evaluation of our proposed SR-VPR, we exe-
cute placement by VPR and SR-VPR using coarse-grained
power gating FPGA architecture. Table 3 and Table 4 show

the results and comparisons when single module and two
modules are used respectively. In the experiment for Ta-
ble 3, we fix the FPGA size for all 15 benchmark in 24*24
which is minimum FPGA size of ‘tseng’. 36 regions are
used for benchmark placement. We can check the perfor-
mance of SR-VPR compared with VPR when the bench-
mark is treated as one sleep module.

The usage of IOPAD, CLB and SR are list in this ta-
ble. When the usage of CLB is less than the usage of SR,
it means that there are unused CLBs in one SR. Different
circuit has different minimum γ, the range is from 0.05 to
0.11, we could find that γ is 0.07 on average based on the
last average line. The CPU time increment of placement
is 0.2%, but routing time is decreased for 26.4%. With-
out affecting chip area and performance (critical path de-
lay), 25.5% power consumption can be reduced. Note that
the area of sleep transistors is not included in the chip area
when compare these two algorithm by using the same FPGA
architecture. Compared with the result of Table 2 which use

322
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.2 FEBRUARY 2012

minimum FPGA size based on each benchmark, SR-VPR
performs better when FPGA usage is lower.

A most highlight characteristic of SR-VPR is that it can
place CLBs of different modules into different SRs. VPR
can not separate CLBs in different modules into different re-
gions as shown in Fig. 5 (b). We performed two modules
experiments by using fifteen MCNC benchmarks as the first
module (M1) and using alu4 as the second module (M2).
Table 4 shows simulation results based on M1 and M2. CPU
time of placement is 4.2 times of VPR for chose the best γ,
while routing time is 92%. Of course, the placement time
can be reduced when we use a fixed γ. By using coarse-
grained power gating method, area of PCHM is almost ig-
nored when FPGA chip grows larger. The power consump-
tion in different states are also compared. Assuming the
power of normal un-gated FPGA architecture is 100% when
using VPR, by gating the unused SRs, 22% power is reduced
during two modules’ working. Different modules are pow-
ered on during “M1ON” and “M2ON” states. These two
states mean M1 or M2 is power on individually. The power
consumption is reduced about 36% and 38% during these
power states.

Because two placement methods are compared based
on coarse-grained power gating architecture, and the size of
CLB is pre-defined in the architecture file, the area differ-
ence is affected by the channel width and SB size. Only
0.6% area is increased in Table 3 and un-increased in Ta-
ble 4. That means the placement algorithm in VPR will not
increase a huge area of routing resource. The critical path
delay is also shown in Table 3 and Table 4 without obvious
changing.

7. Conclusion

We have proposed a new low power FPGA architecture and
its placement algorithm which is incorporated in top-down
design method with sleep modules. The CLBs for the user
circuit are stuffed in minimal sleep regions. As a result
power consumption is reduced by 22% when circuit is in
working states, and it can be saved by 38% when sleep mod-
ule is in sleep state.

Acknowledgments

This work was partly supported by JSPS KAKENHI
11515400, Program for Fostering Regional Innovation
(Global Type), MEXT and the Core Research for Evolu-
tional Science and Technology of Japan Science and Tech-
nology Agency (JST) in Japan.

References

[1] V. Betz, J. Rose, and A. Marquardt, Architecture and CAD for Deep-
Submicron FPGAs, Kluwer Academic Publishers, Norwell, MA,
USA, 1999.

[2] Altera, Stratix IV Device Handbook. Altera., 2011.
http://www.altera.com/literature/hb/stratix-iv/stratix4 handbook.pdf

[3] Xilinx, Virtex-5 user guid. Xilinx Co., May 2010.
http www.xilinx.com/support/documentation/user guides/
ug190.pdf

[4] A. Gayasen, K. Lee, N. Vijaykrishnan, M. Kandemir, M.J. Irwin,
and T. Tuan, “A dual-vdd low power fpga architecture,” Proc. In-
ternational Conference on Field Programmable Logic and Applica-
tions, pp.145–157, 2004.

[5] F. Li, Y. Lin, and L. He, “Field programmability of supply voltages
for fpga power reduction,” IEEE Trans. Comput.-Aided Des. Integr.
Circuits Syst., vol.26, no.4, pp.752–764, April 2007.

[6] S. Ishihara, M. Hariyama, and M. Kameyama, “A low-power fpga
based on autonomous fine-grain power-gating,” Proc. 2009 Asia and
South Pacific Design Automation Conference, ASP-DAC ’09, Pis-
cataway, NJ, USA, pp.119–120, 2009.

[7] C.Q. Tran, H. Kawaguchi, and T. Sakurai, “95% leakage-reduced
fpga using zigzag power-gating, dual-vth/vdd and micro-vdd-
hopping,” Asian Solid-State Circuits Conference, 2005, pp.149–
152, Nov. 2005.

[8] M. Keating, D. Flynn, R. Aitken, A. Gibbons, and K. Shi, Low
Power Methodology Manual: For System-on-Chip Design, Springer
Publishing Company, 2007.

[9] A. Gayasen, Y. Tsai, N. Vijaykrishnan, M. Kandemir, M.J.
Irwin, and T. Tuan, “Reducing leakage energy in fpgas us-
ing region-constrained placement,” Proc. ACM Intl. Symp. Field-
Programmable Gate Arrays, pp.51–58, 2004.

[10] C. Li, Y.P. Dong, and T. Watanabe, “A novel low power fpga archi-
tecture,” FIT2010 of IPSJ, pp.65–68, Sept. 2010.

[11] C.E. Cheng, “RISA: Accurate and efficient placement routabil-
ity modeling,” 1994 IEEE/ACM International Conference on
Computer-Aided Design, pp.690–695, Nov. 1994.

[12] C. Li, Y.P. Dong, and T. Watanabe, “New power-efficient fpga design
combining with region-constrained placement and multiple power
domains,” 9th IEEE International NEWCAS Conference, pp.69–72,
June 2011.

[13] V. Betz, T. Campbell, W. Fang, I. Kuon, J. Luu, A. Marquardt, J.
Rose, and A. Ye, VPR and T-VPACK User’s Manual, July 2009.
http://www.eecg.utoronto.ca/vpr/VPR 5.pdf

[14] S. Yang, “Logic synthesis and optimization benchmarks user guide
version 3.0,” 1991.

[15] U.o.C. Berkeley, Berkeley Logic Interchange Format, Feb. 2005.
http://www.cs.uic.edu/˜jlillis/courses/cs594/spring05/blif.pdf

[16] P. Jamieson and J. Rose, “A verilog rtl synthesis tool for heteroge-
neous fpgas,” Field Programmable Logic and Applications, 2005.
International Conference on, pp.305–310, Aug. 2005.

[17] B.L. Synthesis and V. Group, ABC: A System for Sequential Syn-
thesis and Verification, 2007. http://www.eecs.berkeley.edu/˜alanmi/
abc/abc.htm/

[18] K.K.W. Poon, S.J.E. Wilton, and A. Yan, “A detailed power model
for field-programmable gate arrays,” ACM Trans. Des. Autom. Elec-
tron. Syst., vol.10, pp.279–302, April 2005.

[19] P. Jamieson, W. Luk, S. Wilton, and G. Constantinides, “An en-
ergy and power consumption analysis of fpga routing architec-
tures,” Field-Programmable Technology, 2009. FPT 2009. Interna-
tional Conference on, pp.324–327, Dec. 2009.

[20] intelligent FPGA Architecture Repository.
http://www.eecg.utoronto.ca/vpr/architectures

[21] http://ptm.asu.edu
[22] A. Bsoul and S. Wilton, “An FPGA architecture supporting dynam-

ically controlled power gating,” 2010 International Conference on,
Field-Programmable Technology (FPT), pp.1–8, Dec. 2010.

LI et al.: REGION-ORIENTED PLACEMENT ALGORITHM FOR COARSE-GRAINED POWER-GATING FPGA ARCHITECTURE
323

Ce Li was born in Liaoning, China, in 1982.
He received the B.E. degree in Electrical Engi-
neering from Dalian University of Technology
in 2004. Then, He received the M.E. degree
of System LSI in Waseda University in 2007.
Before he became a doctor in Waseda Univer-
sity in 2009, he joined VIA Corp. Where he
got familiar with X86 computer architecture and
many low power technologies in ASIC design.
His current research interests are Computer and
FPGA Architecture, Computer Added Design

Methodology, Processor Design, and FPGA Application.

Yiping Dong was born in Jiangsu pref.,
China, in 1983. He received the B.E. degree in
electronics and engineering from Southeast Uni-
versity, China in 2006 and M.S. degree in Grad-
uate School of Information, Production and Sys-
tem, Waseda University, Japan. Currently, he
is a Ph.D. candidate in Graduate School of In-
formation, Production and System, Waseda Uni-
versity, Japan. He is a member of RISP of Japan.
His research interesting includes Networks on
Chips, Neural network and low power VLSI ar-

chitecture.

Takahiro Watanabe was born in Ube city,
Yamaguchi Pref., Japan, in 1950. He received
the B.E. and the M.E. degrees in Electrical Engi-
neering from YAMAGUCHI University in 1974
and 1976, respectively, and the Dr. of Eng. from
Tohoku University, in 1982. He joined Research
and Development Center of TOSHIBA Corp. in
1979, where he worked in the field of LSI design
automation as a Senior Research Scientist, and
he was also responsible for the research group
of circuit design technology. In August 1990,

he joined Yamaguchi University as an Associate Professor of the Depr. of
CSSE, and in April 2003 he joined Waseda University as a Professor of
Graduate School of Information, Production and Systems. His current re-
search interests are EDA algorithms, Design Methodology, Processor De-
sign, FPGA Application, MPSoC and NoC Design. He is a member of
IPSJ, JSAI, RISP and IEEE.

