
324
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.2 FEBRUARY 2012

PAPER Special Section on Reconfigurable Systems

A Physical Design Method for a New Memory-Based
Reconfigurable Architecture without Switch Blocks

Masatoshi NAKAMURA†a), Nonmember, Masato INAGI†b), Kazuya TANIGAWA†, Tetsuo HIRONAKA†,
Masayuki SATO††, Members, and Takashi ISHIGURO††, Nonmember

SUMMARY In this paper, we propose a placement and routing method
for a new memory-based programmable logic device (MPLD) and con-
firm its capability by placing and routing benchmark circuits. An MPLD
consists of multiple-output look-up tables (MLUTs) that can be used as
logic and/or routing elements, whereas field programmable gate arrays
(FPGAs) consist of LUTs (logic elements) and switch blocks (routing ele-
ments). MPLDs contain logic circuits more efficiently than FPGAs because
of their flexibility and area efficiency. However, directly applying the exist-
ing placement and routing algorithms of FPGAs to MPLDs overcrowds the
placed logic cells and causes a shortage of routing domains between logic
cells. Our simulated annealing-based method considers the detailed wire
congestion and nearness between logic cells based on the cost function and
reserves the area for routing. In the experiments, our method reduced wire
congestion and successfully placed and routed 27 out of 31 circuits, 13 of
which could not be placed or routed using the versatile place and route tool
(VPR), a well-known method for FPGAs.
key words: reconfigurable device, physical design, placement, routing,
MPLD, FPGA, EDA

1. Introduction

In recent years, programmable logic devices (PLDs), such as
field programmable gate arrays (FPGAs) [1], have been used
in various fields, such as prototyping, networking, and high-
performance computing. An FPGA consists of look-up ta-
bles (LUTs) as logic elements, and switch blocks (SBs) (in-
cluding connection blocks) as routing elements (Fig. 1 (a)).
LUTs and SBs are connected with wires. To realize a circuit
on an FPGA, a LUT functions as a logic cell (e.g., NOT,
AND, OR, and more complex logic functions) and a SB de-
termines the connections among LUTs (logic cells). To our
knowledge, however, the area required for routing can reach
about 90% of the total area required for FPGAs (e.g., [2]),
and this degrades the area efficiency. In other words, in FP-
GAs, the number of logic elements per area is small. Thus,
we have proposed a new reconfigurable device [3] composed
of multiple-output look-up tables (MLUTs) that can be used
as either logic or routing elements. Hereafter, we refer to
this device as a memory-based programmable logic device

Manuscript received May 2, 2011.
Manuscript revised September 5, 2011.
†The authors are with the Graduate School of Information Sci-

ences, Hiroshima City University, Hiroshima-shi, 731–3194 Japan.
††The authors are with Taiyo Yuden Co., Ltd, Tokyo, 110–0005

Japan.
a) E-mail: nakamura@ca.info.hiroshima-cu.ac.jp
b) E-mail: inagi@hiroshima-cu.ac.jp

DOI: 10.1587/transinf.E95.D.324

(MPLD∗). Figure 1 (b) illustrates the basic structure of an
MPLD. By this structure, an MPLD can flexibly control
the ratio of logic and routing elements (i.e., MLUTs func-
tion as both logic and routing elements), both globally and
locally. We can therefore realize a circuit more efficiently
on an MPLD than on standard FPGAs. In particular, regu-
larly structured circuits (e.g., adders, multipliers, multiplex-
ers etc.) can efficiently be mapped to MPLDs as IP modules
adjusted to MPLDs, thereby increasing the ratio of logic el-
ements. Figure 2 illustrates an example of a 4-bit multiplier
on an MPLD. Moreover, it has been estimated that multipli-
ers are more efficiently mapped on MPLDs than on standard
FPGAs [4].

To map a circuit that involves typical random logic
components on an MPLD, it is necessary to use the the same
procedure used for FPGAs. In other words, it is neces-
sary to first determine the logic design of the desired cir-
cuit in HDL, synthesize a netlist of the circuit (logic de-
sign and synthesis), and then perform placement and rout-
ing (physical design) in order to generate configuration data
for MLUTs. During this process, placement and routing
strongly depend on the desired device. In addition, because
IP modules mapped on an MPLD are efficient as shown in
Fig. 2, the placement and routing of random logic circuits is
essential to efficiently map an entire circuit on an MPLD. In
this paper, we therefore focus on the placement and routing
of random logic circuits, and confirm an MPLD’s ability to
realize random logic circuits.

Placement and routing techniques of FPGAs have been
studied for more than two decades. The versatile place and

Fig. 1 (a) FPGA’s fabric and (b) MPLD’s fabric.

∗MPLD is a trademark of Taiyo Yuden Co., Ltd.

Copyright c© 2012 The Institute of Electronics, Information and Communication Engineers

NAKAMURA et al.: A PHYSICAL DESIGN METHOD FOR A NEW MEMORY-BASED RECONFIGURABLE ARCHITECTURE
325

Fig. 2 Example of efficiently mapped IP module (4-bit multiplier).

route tool (VPR) [5], [6] is a well-known implementation of
the placement and routing techniques of FPGAs. In place-
ment and routing techniques, logic cells must be connected
by wires. However, in an FPGA, the number of routing el-
ements and the connections between them are fixed. There-
fore, in an FPGA, the degree of routing freedom is ensured
by preparing many routing lines in the device. On the other
hand, in an MPLD, this degree can be ensured by choos-
ing not to differentiate between logic and routing elements.
Hence, the degree is determined by the dispersion of placed
logic cells as obstacles. Thus, directly applying the exist-
ing placement and routing algorithms of FPGAs to MPLDs
may possibly lead to the overcrowding of the placed logic
cells and cause shortage in the number of routing elements
between logic cells. As a result, the target circuit may fail to
be mapped into the MPLD.

In this paper, we propose and implement a placement
method for MPLDs on the basis of simulated annealing
(SA) [7], which is also used in some methods for FPGAs.
To prevent logic cells from overcrowding and to preserve
MLUTs for routing, our proposed method uses the cost
function that considers the detailed congestion of nets and
also the nearness between cells. We also implement a rout-
ing method that has been modified for MPLDs. To eval-
uate the effectiveness of our physical design method, and
to demonstrate the MPLD’s ability, we performed several
experiments, which showed that MPLDs realize sequential
circuits from ISCAS’89 benchmark suite [8]. In addition, 13
circuits that could not be mapped onto an MPLD using VPR
were successfully mapped by our method.

The rest of this paper is organized as follows. Sec-
tion 2 introduces the basic structure of an MPLD. Section 3
introduces the entire process of our EDA tool for MPLDs.
In Sects. 4 and 5, our placement and routing methods are
presented. Section 6 presents the experimental results, and
Sect. 7 summarizes this paper.

Fig. 3 Basic structure of an MPLD.

Fig. 4 Structure of an MLUT (N = 7).

2. Structure of MPLDs

One of the characteristics of MPLDs is that there is no differ-
ence between logic and routing elements. Standard FPGAs
have switch blocks, connection blocks, and so on, which
route the connecting wires between logic cells. In contrast,
an MPLD consists of diagonally connected MLUTs (Fig. 3),
each of which can be used as either a logic element or a
routing element. An MLUT has multiple input and output
terminals so that some logic cells or segments of wires can
be realized in the MLUT.

An MLUT is realized by a memory module as shown
in Fig. 4. An address/data (AD) pair (AD[i], 0 ≤ i ≤ N − 1)
refers to a pair of bits of its address line (addr[N − 1, 0]) and
its data line (data[N − 1, 0]). An MLUT with N AD pairs is
realized using a 2N × N bit memory module.

As shown in Fig. 5, there are two types of interconnec-
tions between AD pairs. One is for the diagonal connection
of adjacent MLUTs (adjacent line), and the other is for the
connection of distant MLUTs (distant line).

In our current implementation, each MLUT has four
AD pairs (AD[0]-AD[3]) for adjacent lines and three AD
pairs (AD[4]-AD[6]) for distant lines (Figs. 4 and 5). Two
of the three distant lines (from AD[4] and AD[5]) are con-
nected to the horizontally adjacent MLUTs, and one line
(from AD[6]) is connected in several ways. One third of the
AD[6]s of MLUTs connect to flip-flops, and the remaining

326
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.2 FEBRUARY 2012

two thirds connect to distant MLUTs by skipping five ad-
jacent lines (including horizontal distant lines that connect
horizontally adjacent MLUTs), both diagonally and hori-
zontally. (Since we are still in the process of determining
the best architecture for distant lines, in this paper, we con-
sidered only adjacent lines in our placement algorithm. In
additional experiments, we also ensured that the absence of
a full understanding of distant lines used in the placement in
the current implementation did not degrade routing results
presented here.)

A target circuit is synthesized as memory data and is
configured to the MPLD.

In FPGAs, logic cells and nets are realized by different
resources (i.e., LUTs and SBs), and the location and ratio
of LUTs and SBs are fixed. In contrast, in MPLDs, both
logic cells and nets are realized using identical resources
(i.e., MLUTs), and the location and ratio of MLUTs work-
ing as logic and routing elements can be configured depend-
ing on the situation.

Note that an MLUT can function as both logic and rout-
ing elements simultaneously. Figure 6 illustrates an exam-
ple of one such MLUT with four AD pairs. The MLUT in

Fig. 5 Adjacent lines and distant lines.

Fig. 6 Example of logic and wire mapped to an MLUT.

Fig. 6 (a) functions as a wire segment between addr[3] and
data[2], and a 3-input AND gate whose inputs are addr[0],
addr[1], and addr[2], and output is data[3]. The wire seg-
ment and 3-input AND gate are represented by the truth
tables shown in Fig. 6 (b). The configuration data for the
MLUT (Fig. 6 (c)) is generated by integrating those tables,
and the wire segment and 3-input AND gate are realized.

This structure potentially results in lower manufactur-
ing cost. Unlike FPGAs, the number of wiring layers re-
quired to constitute an MPLD is the same as that of an
SRAM module, and MPLDs can be manufactured employ-
ing the regular CMOS ASIC manufacturing process, be-
cause MPLDs contain no SBs, which require additional
metal wiring layers to efficiently route nets. Thus, MPLDs
are expected to have lower costs than FPGAs, and to be eas-
ily integrated in SoCs.

As mentioned above, in an MPLD, there is no differ-
ence between logic and routing elements. If this characteris-
tic is not considered in its placement and routing processes,
the area efficiency may degrade and the processes may also
fail. In other words, the efficiency of MPLDs depends on
the placement and routing method.

3. Flow of Our EDA Tool for MPLDs

In this paper, we propose a placement and routing method
for MPLDs. This method is implemented as a part of our
EDA tool for MPLDs. The flow of the EDA tool is shown
in Fig. 7.

First, in logic synthesis, an architecture-independent
gate-level netlist (Fig. 8 (b)) is synthesized from the RTL de-

Fig. 7 Entire flow of our EDA tool.

Fig. 8 Data conversion.

NAKAMURA et al.: A PHYSICAL DESIGN METHOD FOR A NEW MEMORY-BASED RECONFIGURABLE ARCHITECTURE
327

sign of the target circuit written in HDL (Fig. 8 (a)). This is
done using a logic synthesizer such as Design Compiler [9].
Next, in technology mapping, the gate-level netlist is con-
verted to a cell-level netlist (Fig. 8 (c)), making cells by clus-
tering gates. Each cell is represented by a LUT, and must
be smaller than an MLUT in terms of the number of inputs
and outputs. In the current version of our EDA tool, this
is done using an open source technology mapping tool [10].
After technology mapping, the cells in the cell-level netlist
are placed in the target MPLD (Fig. 8 (d)). In other words,
each cell is assigned to an MLUT, which can be shared by
cells as long as the total size of the cells is less than that of
the MLUT. After the placement of the cells, the route of
each net, which electrically connects cells, is decided in the
routing process. Finally, the bit-stream data for MLUTs is
generated as the configuration data of the target MPLD.

Because the placement and routing processes depend
on the target device, it is difficult to directly apply FPGAs’
placement and routing techniques to MPLDs. Unlike FP-
GAs, MPLDs have no specific resources for routing, and use
MLUTs as both logic and routing elements. Therefore, if
these features are not considered in the placement and rout-
ing processes, MPLDs cannot function efficiently and effec-
tively. Therefore, in this paper, we propose a placement and
routing method for MPLDs and demonstrate the ability of
the MPLD architecture.

4. Placement Algorithm

Placement for MPLDs is a process that involves the alloca-
tion of cells to MLUTs. Our proposed placement algorithm
is based on a meta-heuristic algorithm called SA, which is
often used for circuit placement. SA is also used by VPR,
which is a well-known placement tool for FPGAs [5], [6].
In this section, we explain how to fit SA to the placement
process for MPLDs.

4.1 SA

SA [7] is a combinatorial optimization technique. The flow
of SA is shown in Fig. 9. SA generates a neighbor solution
from the current solution and compares them using a cost
function before deciding whether to move it to the neighbor
solution. SA searches for an optimal solution by repeating
this process. A feature of this method is the use of the tem-
perature parameter T . When deciding whether to move a so-
lution, if the cost of the neighbor solution is higher than that
of the current solution, the move is accepted by the proba-
bility of e−

Δcost
T . The higher the value of T is, the higher will

be the acceptance ratio. As shown in Fig. 9, T decreases due
to the cooling process after sufficient generation of neighbor
solutions in the temperature. At the beginning of SA, the
solution space is widely searched. As the temperature T de-
creases, the searched area in the solution space is converged.
Then, at the end of SA, the area near the optimal solution is
extensively searched. This method reduces the possibility of
being caught near a local optimum by stochastically accept-

Fig. 9 Pseudo code of SA.

ing worse solutions. SA is terminated when T attains the
termination temperature Tend where (in VPR and our place-
ment method) Tend = ε

cost
Nnet

, Nnet is the number of the nets of
the target circuit, and ε is a user-defined constant and is set
to 0.005.

The number of loops M refers to the number of times
the neighbor solution is generated at the same temperature.
In our implementation, by binary search, the initial temper-
ature T0 is set to the temperature at which the acceptance
ratio is about 90%. In our proposed placement method,
the number of loops at the initial temperature is defined as
M0 = 10 × Nnet

1.33, as defined in VPR. After a neighbor
solution is generated M times, T cools down.

In cooling, T and M are updated as follows: Tk+1 =

α × Tk, and Mk+1 = β × Mk. In our method, α and β are set
to 0.9 and 1, respectively.

4.2 Neighbor Function

When using SA, we need to define a way to generate neigh-
bor solutions from the current solution and compare them.
Our placement method adopts two ways to generate a neigh-
bor solution. One is the migration of a logic cell and the
other is the exchange of logic cells.

In the migration of a logic cell, a logic cell and an
MLUT are selected at random, and the cell is replaced to
the MLUT. With this move, the maximum range of moves
needed to limit the migration distance is given. The migra-
tion distance of a cell is defined by the length of the short-
est path without considering distant lines from the source
to the destination MLUTs of the cell. The length of a path
indicates the number of MLUTs on the path. The maxi-
mum range of moves m is initially defined by the length of
the longer (horizontal or vertical) edge of the target MPLD.
Then, it is gradually decreased by the function mk+1 =

328
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.2 FEBRUARY 2012

max(4, 0.9mk) as T cools down. By considering this range,
a wider area of the solution space is searched at the begin-
ning of SA, and an intensive search is conducted at the end
for optimization. In the exchange of cells, two cells are se-
lected at random, and their positions (i.e., MLUTs to which
they belong) are exchanged.

Note that the total number of input (output) signals of
the cells in an MLUT must be less than the number of input
(output) terminals of the MLUT. Infeasible neighbor solu-
tions are canceled, and other solutions are generated until a
feasible one is found.

4.3 Cost Function

One of the most important factors of SA is its cost function.
Because SA is an algorithm that searches for the optimal so-
lution by comparing the costs of solutions evaluated by its
cost function, a function that adequately evaluates a desir-
able solution at a low (i.e., good) value is necessary. In our
cost function, in addition to the estimated total wire length,
which is also used in VPR, estimated wire congestion and
cell nearness penalty that reserves a routing area are consid-
ered. When calculating these factors, the routing directions
of signals are considered.

The first factor of our cost function is the estimated
total wire length, and is defined as the summation of the
shortest path lengths of all nets. The longer the total wiring
length, the higher the cost, and it has the effect of shortening
the total wiring length. It suppresses the amount of used
routing resources, shortens the signal delays, and causes
cells with strong connections (connected with many nets)
to become mutually close.

The second factor is the wire congestion that judges
the degree of the concentration of the routes of the nets. In
other words, placements with congested areas are evaluated
at high value by this factor. As a result, the interference
between the routes of nets is suppressed.

The third factor is the cell nearness penalty. This
checks the length between cells and works as a repulsive
force to prevent the cells from being too close to each other.
This factor reserves MLUTs for routing around cells.

On the basis of these three factors, our proposed cost
function for MPLDs is defined as Expression (1):

Cost = p × length + q × congestion + r × nearness. (1)

In this cost function, the above mentioned three factors are
represented as length, congestion, and nearness with coef-
ficients p, q, and r, respectively, which are user defined co-
efficients to control the balance of the factors. To ease the
calculation, distant lines are not considered in the cost func-
tion.

4.3.1 Length

Length in Expression (1) represents the estimated total wire
length and its role is to reduce the wire length. It is formu-
lated as shown in Expression (2):

Fig. 10 Bounding box and wire length.

length =
∑
n∈Ec

q(n){bbx(n) + bby(n)}, (2)

where Ec is the set of all nets of the target cell-level netlist,
q(n) is the weight for the net n and depends on the num-
ber of cells to which the net connects, and bbx(n) + bby(n)
is the half perimeter of the bounding box of all cells
(MLUTs) to which the net connects. According to the best
value of q(n) discussed in [11], we approximate q(n) by
0.615 min{s(n)0.381, 50}, where s(n) is the number of cells
to which the net n connects. The bounding box of cells
(MLUTs) refers to the minimum rectangle covering all the
cells (MLUTs). The bounding box of cells to which a net
n connects is called the bounding box of the net n. bbx(n)
(bby(n)) is the length of the bounding box along the x-axis
(y-axis). Note that because our target MPLD can be con-
sidered as a diagonal grid of MLUTs, we define bounding
boxes and x- and y-axes, diagonally, as shown in Fig. 10.
MLUT(k, l) refers to the MLUT at point (k, l) in the diago-
nal Cartesian coordinate system.

4.3.2 Congestion

Congestion in Expression (1) represents the estimated con-
gestion of the routes of the nets. When the estimated routes
of the nets are congested in a specific area, the factor be-
comes high. It reduces the overcrowding of cells, which
interferes with routing. In the definition of (wire) conges-
tion, the bounding box used in the definition of length is also
used. In the estimation, we assume that each net is routed
in the area of its bounding box without any detour, thereby
allowing overlapping of routes. The bounding boxes of the
nets can overlap with each other, which means that there is
a possibility of the interference of nets, and if many of the
nets’ bounding boxes overlap in a specific area, this possi-
bility increases. Therefore, the area on which nets concen-
trate is roughly estimated from the number of overlapping
bounding boxes of nets.

In addition, we consider the direction of the routes, be-
cause only the nets whose routes have the same direction can
interfere with each other in the MPLD architecture. Thus,
for each wire of an AD pair, its congestion level is sepa-
rately calculated, as shown in Fig. 11. The congestion of a
placement solution is defined as Expression (3):

NAKAMURA et al.: A PHYSICAL DESIGN METHOD FOR A NEW MEMORY-BASED RECONFIGURABLE ARCHITECTURE
329

Fig. 11 Example of calculation of congestion.

congestion =
∑

MLUT(k,l)∈V

{
gx(k, l)2 + g−x(k, l)2

+ gy(k, l)
2 + g−y(k, l)2

}
, (3)

where V is the set of all MLUTs in the target MPLD
and gx(k, l) is the congestion level of the wire from the
MLUT(k, l) in the x direction (i.e., the wire from MLUT(k, l)
to MLUT(k+ 1, l)). Similarly, g−x(k, l), gy(k, l), and g−y(k, l)
are the congestion levels of the wires from the MLUT(k, l)
in the −x, y, and −y directions, respectively. The congestion
level of a wire of an AD pair is the summation of all the
congestion levels given by the bounding boxes covering that
wire. A congestion level given by a bounding box has its
direction. Suppose MLUT(u, v) is the signal source of a net
n. The congestion level for a wire from the MLUT(k, l) in
the x direction (−x direction) is added the congestion level
of the bounding box if k ≥ u (k ≤ u). The congestion levels
in the y and −y directions are added in the same way. cx(n)
and cy(n), which are the congestion levels in the ±x and ±y
directions of the bounding box, respectively, are calculated
as follows:

cx(n) =
1

bby(n) + 1
, cy(n) =

1
bbx(n) + 1

.

The congestion levels of the congested areas are emphasized
by the squared parameters gx, g−x, gy, and g−y in Expression
(3).

For example, in the case where the two bounding boxes
of nets i and j overlap with each other as shown in Fig. 11,
the congestion levels added by the bounding boxes of nets i
and j are as follows:

cx(i) = 0.25, cy(i) = 0.17, cx(j) = 0.17, cy(j) = 0.33.

Now, we focus on the congestion levels for wires of AD
pairs around the MLUT (k, l) in Fig. 11. For example, both
the bounding boxes of nets i and j have congestion levels in
the x direction (i.e., cx(i) = 0.25 and cx(j) = 0.17). Thus,
gx(k, l) = 0.42 (= 0.25 + 0.17) is provided as the congestion
level of the wire in the x direction. In another example, the
bounding box of net i has a congestion level in the y direc-
tion (i.e., cy(i) = 0.17), and the bounding box of net j has a

Fig. 12 Effect of nearness.

congestion level in the −y direction (i.e., cy(j) = 0.33). In
this case, the congestion levels in the y and −y directions are
respectively provided as gy(k, l) = 0.17 and g−y(k, l) = 0.33,
without any interference. Congestion of a placement solu-
tion can be estimated in this way.

4.3.3 Nearness

Unlike FPGAs, an MPLD uses the MLUTs as both logic and
routing elements. Thus, MLUTs used as routing elements
are necessary between MLUTs that contain logic cells. If
logic cells are overcrowded in a specific area, it becomes im-
possible to ensure that there are sufficient routing elements
for connections. To resolve this problem, our cost function
incorporates the nearness between logic cells as part of the
cost.

The nearness in Expression (1) represents the closeness
of logic cells to each other. The cost of the nearness of a pair
of logic cells a and b is defined as

p nearness(a, b) =

{
σ − d(a, b) (0 < d(a, b) ≤ σ)
0 (otherwise) ,

where d(a, b) is the distance (i.e., the shortest path length in
the MPLD) between logic cells a and b and σ is a user de-
fined constant that is empirically set to 4 in our experiments.
The nearness of the placement solution is defined as

nearness =
∑

a,b∈Vc

p nearness(a, b),

where Vc is a set of the logic cells of the cell-level netlist,
and works as a repulsive force between cells to ensure
MLUTs for routing (Fig. 12). Thus, σ can be considered
to correspond to the number of tracks (between adjacent
LUTs) in FPGAs. Note that p nearness(a, b) = 0 if the dis-
tance between cells a and b is 0 (i.e., a and b are packed in
the same MLUT). This ensures the efficiency of the place-
ment.

5. Routing Algorithm

The routing process decides the paths of the nets between
placed logic cells. Our routing algorithm is based on Di-
jkstra’s shortest path algorithm. For rip-up and re-routing,

330
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.2 FEBRUARY 2012

we adopt a subset of Shirota’s algorithm [12]. In the routing
process, we use both adjacent and distant lines. We consider
wire congestion through the routing process. The details are
described as follows.

5.1 Flow of Routing Process

Our routing method consists of three steps: pre-routing, ac-
tual routing, and rip-up and re-routing. In pre-routing, each
net is routed ignoring the previously routed nets. It is used
to estimate wire congestion, and the estimated congestion
is used in actual routing. The nets that are routed by pre-
routing are removed before actual routing. In actual routing,
each net is routed considering the estimated congestion and
the previously routed nets. If it fails to route all the nets,
rip-up and re-routing is conducted. In this step, nets passing
through a congested area are removed and re-routed.

5.2 Pre-Routing

In pre-routing, nets are routed one at a time, ignoring the
previously routed nets. That is, nets can overlap with each
other. A multi-terminal net is decomposed into two-terminal
nets when the net is routed. This is done by using the maze
routing algorithm [13]. Note that an MPLD has distant lines
that connect distant MLUTs. They are considered in maze
routing.

5.3 Actual Routing

An MPLD is modeled as a directed graph G = (V, E), where
V is a set of the vertices corresponding to MLUTs and E is
a set of the edges corresponding to wires of AD pairs. On
the basis of the result of pre-routing, the estimated conges-
tion for each edge is defined by the number of nets passing
through the edge in pre-routing. The initial length of each
edge is defined by the estimated congestion of the edge. In
actual routing, nets are routed one at a time. Thus, the length
is updated to infinity when the edge is used. For each net,
the shortest path is found as its route using Dijkstra’s short-
est path algorithm. For a multi-terminal net, a Steiner tree
is found by adding a terminal to the previously found partial
Steiner tree one at a time in decreasing order of the distance
from the source terminal. During actual routing, the esti-
mated congestion of each edge is updated once for every
5% of routing that is completed in terms of the number of
routed nets, and is reflected by the length of the edge.

5.4 Rip-Up and Re-Routing

If all the nets cannot be routed in actual routing, rip-up and
re-routing is conducted using a subset of the algorithm pro-
posed in [12]. It consists of three phases: (a) routing with
violations, (b) local rip-up and re-routing, and (c) global
rip-up and re-routing.

(a) Routing with violations is almost the same as actual
routing. However, when the edge is used, the length of each

Fig. 13 Subregion and local window.

edge is not updated to infinity but to a large value.
(b) In local rip-up and re-routing, the routing area is

divided into subregions (rectangular tiles), and up to 50 sub-
regions are processed in decreasing order of the number
of violations present. (Let Nnet(w) be the number of nets
passing through the wire w. The number of violations on
an AD pair wire w is denoted by v(w), and is defined as
v(w) = max{Nnet(w) − 1, 0}. The number of violations in
a subregion t is defined as

∑
wire w in t v(w).) A subregion and

its eight neighbor subregions form a local window (Fig. 13).
For each subregion, the highest-cost net passing through the
subregion is selected, and the segment of the net in the lo-
cal window is removed and re-routed. The cost of a net is
defined by the sum of the number of violations on the AD
pair wires (in the subregion) through which the net passes.
For each subregion t, rip-up and re-routing of a net is per-
formed up to Nnet(t) times, where Nnet(t) is the number of
nets (partially or entirely) included in the subregion.

(c) In global rip-up and re-routing, a net passing
through the congested region is selected, and re-routing is
performed by Dijkstra’s shortest path algorithm, as in the
case of actual routing. Global rip-up and re-routing is per-
formed up to 50 times.

In our routing algorithm, we omit local rip-up and re-
routing after global rip-up and re-routing in [12]. In addi-
tion, Dijkstra’s shortest path algorithm is used instead of the
fast coarse maze routing algorithm used in [12], for simplic-
ity.

6. Experiments

We conducted experiments to evaluate our proposed method
and the capability of MPLDs. In the experiments, circuits
from ISCAS’85 and ISCAS’89 benchmark suites [8], [14],
[15] were placed and routed on MPLDs with 15×30, 33×36,
63 × 60 and 93 × 90 MLUTs.† Each of the coefficients p, q,
and r of the cost function of placement was set to 0, 1, 5, 10,

†An H × W MPLD is decomposed into W columns each of
which has H MLUTs.

NAKAMURA et al.: A PHYSICAL DESIGN METHOD FOR A NEW MEMORY-BASED RECONFIGURABLE ARCHITECTURE
331

Table 1 Placement and routing result of ISCAS’89.

our method VPR
circuit gates MLUTs p q r Rtg R. MLUT U. Rtg R. MLUT U.

s27 10 15*30 1 5 0 100.0% 1.06% 100.0% 1.07%
s208 96 15*30 5 1 0 100.0% 4.14% 100.0% 1.06%
s298 119 15*30 5 5 0 100.0% 8.43% 100.0% 8.93%
s344 160 15*30 5 5 0 100.0% 11.40% 100.0% 11.55%
s349 161 15*30 1 5 0 100.0% 11.47% 100.0% 11.73%
s382 158 15*30 10 15 0 100.0% 11.80% 100.0% 11.95%
s386 159 15*30 5 1 1 100.0% 17.16% 100.0% 17.38%
s400 162 15*30 15 0 1 100.0% 11.77% 100.0% 12.13%
s420 196 15*30 1 1 5 100.0% 13.65% 100.0% 14.02%
s444 181 15*30 5 1 0 100.0% 11.25% 100.0% 12.87%
s510 211 15*30 10 10 20 100.0% 41.89% 93.2% N/A
s526 193 15*30 1 5 10 100.0% 13.20% 100.0% 14.19%
s526n 194 15*30 1 1 10 100.0% 13.80% 100.0% 14.48%
s641 379 33*36 5 5 1 100.0% 12.84% 98.3% N/A
s731 393 15*30 5 5 15 100.0% 31.71% 98.3% N/A
s820 289 33*36 15 10 15 100.0% 20.14% 94.2% N/A
s832 287 33*36 10 5 10 100.0% 21.48% 92.3% N/A
s838 390 33*36 1 1 0 100.0% 10.66% 100.0% 11.11%
s953 395 63*60 20 1 15 100.0% 12.05% 95.6% N/A
s1196 529 63*60 1 5 5 100.0% 20.51% 91.3% N/A
s1238 508 63*60 15 5 15 100.0% 14.62% 92.9% N/A
s1423 657 63*60 5 0 0 100.0% 8.16% 100.0% 8.16%
s1488 653 63*60 1 5 1 100.0% 17.19% 92.2% N/A
s1494 647 63*60 15 10 10 100.0% 16.33% 87.4% N/A
s5378 2779 93*90 1 1 1 100.0% 17.97% 81.9% N/A
s9234 5597 93*90 1 1 1 100.0% 11.86% 91.3% N/A

s13207 7951 93*90 1 15 10 100.0% 27.48% 99.8% N/A
s15850 9772 93*90 1 1 5 98.4% N/A 77.0% N/A
s35932 16095 93*90 1 10 5 96.2% N/A 92.5% N/A
s38417 22179 93*90 1 5 5 97.2% N/A 88.3% N/A
s38584 19253 93*90 1 5 10 96.4% N/A 86.3% N/A

P&R success R. 87.1% 45.2%

15, and 20. Note that our cost function when q = 0 and r = 0
is equivalent to that of VPR [5]. For each combination of the
coefficient values, placement and routing were performed
10 times, and the best solution was chosen. The size of a
subregion in the routing process was set to 3× 3 MLUTs. σ
in p nearness was set to 4.

Table 1 shows the experimental results of ISCAS’89
benchmark circuits using both our method and VPR (emu-
lated by our method when q = 0 and r = 0). In the table, Rtg
R. represents the ratio (expressed as percentage) of the num-
ber of nets that were successfully routed to the total number
of nets. MLUT U. (usage) represents the ratio of the num-
ber of used MLUTs. Note that MLUTs are also used as
routing elements. In addition, p, q, and r are the coefficients
of the cost function when the best result (with the highest
Rtg R., and then the lowest MLUT usage) is achieved. P&R
success R. (ratio) represents the ratio of the number of cir-
cuits successfully routed to the total number of circuits. Ac-
cording to Table 1, when a circuit is small compared to the
target MPLD, the best p tends to be large when compared
to the corresponding q and r, and vice versa. This is be-
cause there is sufficient room for routing when the circuit
is small, but there is not enough room when the circuit is
large. This implies that congestion and nearness work well
to improve the placement when there are only a small num-

ber of MLUTs that can be used for routing. Moreover, in
the experiment, only 14 circuits out of the 31 circuits were
successfully routed on MPLDs using VPR, while 27 circuits
were successfully routed using our method when the coeffi-
cients fit the circuits and MPLDs. This shows the effective-
ness of the congestion and nearness factors in placement for
MPLDs.

Next, to compare MPLDs with FPGAs, we made
MPLDs imitate FPGAs by fixing logic and routing elements
in three patterns, FPGA patterns 1, 2 and 3 (Fig. 14), and
mapped the benchmark circuits using VPR. Note that the
FPGA pattern 1 contains more logic elements than the pat-
tern 3, and the pattern 3 contains more routing elements than
the pattern 1. The FPGA pattern 2 is an intermediate pattern
between the FPGA patterns 1 and 3.

Table 2 shows the experimental results for the FPGA
patterns 1, 2 and 3 obtained using VPR. By comparing Ta-
bles 1 and 2, we observed that with our method, MPLDs
were the best in terms of both Rtg R. and MLUT U., and thus
P&R success R. This shows the effectiveness of MPLDs that
results from the MLUT’s flexibility and our method. In ad-
dition, we found that the pattern 2 was much better than the
pattern 1 in terms of Rtg R. This confirms the importance of
the amount of routing resources in Rtg R. On the other hand,
the pattern 2 resulted in the worse MLUT U. This is because

332
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.2 FEBRUARY 2012

Fig. 14 MLUT patterns to imitate FPGAs.

Table 2 Placement and routing result of each FPGA pattern.

pattern1 pattern2 pattern3
circuit Rtg R. MLUT U. Rtg R. MLUT U. Rtg R. MLUT U.

s27 100.0% 1.39% 100.0% 1.46% 100.0% 2.23%
s208 100.0% 4.98% 100.0% 6.34% 100.0% 7.62%
s298 100.0% 10.82% 100.0% 11.47% 100.0% 15.40%
s344 100.0% 15.06% 100.0% 14.74% 100.0% 18.00%
s349 100.0% 15.03% 100.0% 15.32% 100.0% 18.44%
s382 100.0% 13.64% 100.0% 15.48% 97.2% N/A
s386 100.0% 20.96% 100.0% 24.78% 100.0% 22.86%
s400 100.0% 13.97% 100.0% 16.20% 95.7% N/A
s420 100.0% 15.51% 100.0% 14.62% 98.7% N/A
s444 100.0% 15.43% 100.0% 15.51% 97.8% N/A
s510 98.4% N/A 93.7% N/A N/A N/A
s526 100.0% 19.36% 100.0% 18.32% N/A N/A
s526n 100.0% 15.76% 100.0% 18.40% N/A N/A
s641 100.0% 13.80% 100.0% 14.47% 100.0% 15.88%
s731 99.6% N/A 100.0% 35.52% N/A N/A
s820 99.8% N/A 100.0% 23.08% 86.6% N/A
s832 99.6% N/A 100.0% 23.79% 89.7% N/A
s838 100.0% 12.77% 100.0% 14.65% 98.2% N/A
s953 96.1% N/A 100.0% 15.61% 100.0% 14.73%
s1196 92.8% N/A 99.9% N/A 100.0% 19.62%
s1238 94.7% N/A 100.0% 16.10% 100.0% 19.14%
s1423 100.0% 9.41% 100.0% 9.11% 100.0% 10.67%
s1488 94.3% N/A 96.4% N/A 99.6% N/A
s1494 95.1% N/A 99.4% N/A 99.8% N/A
s5378 91.5% N/A 100.0% 19.95% 100.0% 20.27%
s9234 96.8% N/A 100.0% 16.13% 100.0% 13.13%

s13207 92.4% N/A 100.0% 32.10% N/A N/A
s15850 94.4% N/A 97.2% N/A N/A N/A
s35932 91.8% N/A 95.4% N/A N/A N/A
s38417 92.1% N/A 96.4% N/A N/A N/A
s38584 92.7% N/A 94.2% N/A N/A N/A

P&R success R. 48.4% 74.2% 41.9%

the total wire length was extended by its sparse logic ele-
ments. MPLDs obtained with our method can shorten the
total wire length by increasing the density of logic elements
and reserving routing elements in the process.

Table 3 shows the placement and routing results for
c1908 from ISCAS’85 benchmark circuits for various pat-
terns of p, q, and r. c1908 was mapped (i.e., placed and
routed) on an MPLD with 33×36 MLUTs. Success R. refers
to the success rate of mapping. Note that mapping was con-
ducted 10 times for each coefficient pattern. With respect

to the weight for wire length, p = 1 was the best. This
is because a large p leads to overcrowding of logic cells,
thereby shortening the total wire length. Next, with respect
to the weight for wire congestion, q = 1 was the best, al-
though there was no sufficient effect, except when q = 0.
With respect to the weight for nearness, a large r drastically
improved the success rate of mapping, although it slightly
worsened the total wire length and subsequently the MLUT
usage. This again shows the high effectiveness of the near-
ness factor in placement for MPLDs.

NAKAMURA et al.: A PHYSICAL DESIGN METHOD FOR A NEW MEMORY-BASED RECONFIGURABLE ARCHITECTURE
333

Fig. 15 Placement and routing result for s510 on a 15 × 30 MPLD.

Table 3 Result for c1908 for each cost.

p q r Rtg R. MLUT U. success R.

1 1 1 100.0% 28.91% 40%
0 1 1 95.0% N/A 0%
5 1 1 100.0% 28.12% 10%

10 1 1 95.0% N/A 0%
15 1 1 92.9% N/A 0%
20 1 1 92.9% N/A 0%
1 0 1 95.3% N/A 0%
1 5 1 100.0% 28.95% 60%
1 10 1 100.0% 30.03% 60%
1 15 1 100.0% 31.90% 70%
1 20 1 100.0% 32.84% 50%
1 1 0 90.3% N/A 00%
1 1 5 100.0% 30.94% 90%
1 1 10 100.0% 30.94% 100%
1 1 15 100.0% 35.89% 100%
1 1 20 100.0% 35.89% 70%

In the experiments, some of the large circuits could
not be mapped to MPLDs. Although the circuits may be
too large for their target MPLDs, we propose two ways to
improve our placement algorithm: (1) feedback of conges-
tion information from the routing process to the placement
process and (2) adaptive setting of parameters in nearness
penalty. (1) The estimation of congestion in the placement
process is based on the manner in which the bounding boxes
of nets overlap with each other. This is a rough estima-
tion and includes many errors. Because detailed conges-
tion data is obtained after the routing process, it is expected
that this problem will be eased by feeding back the detailed
congestion data from the routing process to the placement
process. (2) The nearness coefficient r and the parameter
σ in p nearness are shared by all the pairs of logic cells.
However, the amount of routing resources required around
a logic cell depends on the logic cell and its connections. It
is therefore possible to improve routing results by analyzing

the target netlist and providing different nearness parameters
to pairs of logic cells.

Finally, Fig. 15 depicts a placement and routing result
for s510 obtained from ISCAS89 benchmark circuits by us-
ing our method.

7. Conclusions

In this paper, we proposed a placement and routing method
for a new reconfigurable device (MPLD) considering the
overcrowding of logic cells and the interference of nets, and
we evaluated its effectiveness and the MPLD’s ability to re-
alize a circuit. The experimental results showed that our
proposed method reduces the overcrowding in logic cells
and the subsequent interference of nets. As a result, circuits
were successfully implemented on MPLDs.

Attempts are being made to put the device into com-
mercial use in near future. The prototype MPLD chips have
been fabricated and we have confirmed that our placement
and routing method can drive these chips. Our future work
includes clustering to handle large circuits, and feedback of
routing results for effective placement.

Acknowledgments

We would like to thank Mr. Ken Taomoto and Dr. Hideyuki
Kawabata, Hiroshima City University, for providing the
placement and routing viewer for MPLDs.

References

[1] S. Brown, R. Francis, J. Rose, and Z. Vranesic, Field-Programmable
Gate Arrays, Kluwer Academic Publishers, 1992.

[2] Z. Marrakchi, H. Mrabet, U. Farooq, and H. Mehrez, “FPGA Inter-
connect topologies exploration,” Int. J. Reconfigurable Computing,
vol.2009, pp.1–13, 2009.

[3] N. Hirakawa, M. Yoshihara, K. Tanigawa, T. Hironaka, and M.

334
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.2 FEBRUARY 2012

Sato, “A PLD Architecture for high performance computing,” Proc.
2008 Int. Workshop on Innovative Architecture for Future Genera-
tion High-Performance Processors and Systems, pp.35–42, 2008.

[4] K. Tanigawa, M. Asaeda, A. Yamada, M. Sato, and T. Ishiguro,
“Memory array based PLD architecture for high-density logic map-
ping – Implementation of first demo chip,” Proc. COOL chips XIV,
poster 1, 2011.

[5] V. Bets and J. Rose, “VPR: A new packing, placement and routing
tool for FPGA research,” Proc. IEEE FPL 1997, pp.213–222, 1997.

[6] V. Bets, J. Rose, and A. Marquardt, Architecture and CAD dor Deep-
submicron FPGAs, Kluwer Academic Publishers, 1999.

[7] P.J.M. van Laarhoven and E.H.L. Aarts, Simulated Annealing: The-
ory and Applications, Springer, 1987.

[8] F. Brglez, D. Bryan, and K. Kozminski, “Combinational profiles of
sequential benchmark circuits,” Proc. 1989 Int. Symposium on Cir-
cuit and Systems, pp.1929–1934, May 1989.

[9] Synopsys, Inc., “Synopsys,” http://www.synopsys.com/
[10] Berkeley Logic Synthesis and Verification Group, “ABC: A system

for sequential synthesis and verification,”
http://www.eecs.berkeley.edu/˜alanmi/abc, Release 70930.

[11] C.E. Cheng, “Accurate and efficient placement routability model-
ing,” Proc. IEEE/ACM ICCAD, pp.690–695, Nov. 1994.

[12] H. Shirota, S. Shibatani, and M. Terai, “A new rip-up and reroute
algorithm for very large scale gate arrays,” IEICE Trans. Fundamen-
tals, vol.E80-A, no.3, pp.506–513, March 1997.

[13] S.M. Sait and H. Youssef, VLSI physical design automation: Theory
and practice, pp.239–241, World Scientific Pub, 1999.

[14] F. Brglez and H. Fujiwara, “A neutral netlist of 10 combinational
benchmark circuits,” Proc. IEEE Int. Symposium on Circuit and
Systems, pp.695–698, 1985.

[15] M. Hansen, H. Yalcin, and J. Hayes, “Unveiling the ISCAS-85
benchmarks: A case study in reverse engineering,” Proc. IEEE De-
sign and Test of Computers, pp.72–80, 1999.

Masatoshi Nakamura received his B.S. de-
gree in Computer Engineering from Hiroshima
City University. He is currently a student at the
Graduate School of Information Sciences, Hiro-
shima City University.

Masato Inagi received his B.E. and M.E. de-
grees in Computer Science and his Ph.D. degree
in Engineering from Tokyo Institute of Tech-
nology in 2000, 2002, and 2008, respectively.
He was a researcher at The University of Kita-
kyushu from 2005 to 2008. He has been a Re-
search Associate at the Logic Circuit System
lab., Hiroshima City University, since 2008. His
research interest includes combinatorial algo-
rithms for VLSI design automation.

Kazuya Tanigawa received his B.S., M.S.,
and Ph.D. degrees in Computer Engineering
from Hiroshima City University in 1999, 2001,
and 2004, respectively. He has been a Re-
search Associate at the Computer Architecture
lab., Hiroshima City University, since 2004. His
research interests are in the areas of reconfig-
urable architecture and parallel algorithms.

Tetsuo Hironaka received his B.E. de-
gree from Yamaguchi University in 1988 and re-
ceived his M.S. and Ph.D. degrees in Engineer-
ing from Kyushu University in 1990 and 1993,
respectively. From 1993 to 1994, he served as a
Research Associate in Kyushu University. From
1994 to 2006, he was an Associate Professor at
Hiroshima City University. Since 2006, He has
been a Professor at the Computer Architecture
lab., Hiroshima City University. His research
interests are in the areas of reconfigurable archi-

tecture, system software, and on-chip multiprocessing.

Masayuki Sato received his associate de-
gree in Engineering from Ibaraki National Col-
lege of Technology in 1971, and his Ph.D. de-
gree from Tokyo Metropolitan University in
2009. He is currently with Taiyo Yuden Co.,
Ltd.

Takashi Ishiguro received his B.E. and
M.E. degrees in Materials Engineering and his
Ph.D. degree in Engineering from Tokyo Insti-
tute of Technology in 1977, 1979, and 1982, re-
spectively. Since 1982, he has been with Taiyo
Yuden Co., Ltd. In 2000, he received National
Invention Award from Japan Science and Tech-
nology Agency for the invention of CD-R.

