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SUMMARY Soft error has become an increasingly significant concern
in modern micro-processor design, it is reported that the instruction-level
temporal redundancy in out-of-order cores suffers an performance degra-
dation up to 45%. In this work, we propose a fault tolerant architecture
with fast error correcting codes (such as the two-dimensional code) based
on double execution. Experimental results show that our scheme can gain
back IPC loss between 9.1% and 10.2%, with an average around 9.2% com-
pared with the conventional double execution architecture.
key words: soft errors, fault tolerance, double execution, instruction reuse
buffer, fast error correcting code

1. Introduction

Soft error (also called transient fault) is a kind of temporary
faults occurred in digital circuits. It is caused by internal
noise such as power transients, or external source such as
cosmic particle hits. The processor scaling characteristics,
such as higher transistor integration densities, increasing
clock frequencies, lower operating voltages and the shrink-
ing of the feature size, make soft error tolerance an increas-
ingly significant issue for future microprocessor design [1].
According to the reports from Intel Corporation, the mech-
anisms to enable fault tolerance will take up to 5%-10% of
the total transistors over the next several years [2].

Most fault tolerant techniques are based two major
types of redundancy: temporal redundancy (TR) and spa-
tial redundancy (SR). TR means to execute each operation
multiple times separately on the same hardware, performing
the same calculation more than once to validate the results.
It suffers the performance penalty imposed by the redun-
dant workloads. SR means to use the replicated hardware
to perform the same workload, but the additional hardware
overhead is required.

In the out-of-order processors, the reliability is pro-
tected with the instruction-level TR. The most representa-
tive implementation of TR is Double Instruction Execution
(DIE) [3], which entails to execute each instruction twice on
the same hardware and the comparison among the results of
the dual execution is taken before the instruction commit.
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The strategy can cover most soft errors. However, the per-
formance penalty that imposed by the redundant workload
is significant. It is reported that the performance penalty is
up to 45% compared with the single instruction execution
(SIE), the execution without redundancy [3].

Therefore, it needs additional mechanisms to improve
the performance of DIE in order to satisfy the requirement
of modern microprocessors, such as the instruction reuse [4]
and the instruction pre-computation [5]. In [4], each exe-
cuted instruction stores its input operands and the results
into an instruction memorization table, which is called In-
struction Reuse Buffer (IRB). Once the execution with the
same input operands comes again, it can bypass the execute
phase by reusing the results from IRB. In [5], prior to exe-
cution, the profiling data that includes op-codes with input
operands and results as well as the application binary code,
is loaded into the pre-computation table for reuse.

According to the statistic from the reports, DIE-IRB
architecture has an improved performance compared with
DIE. It can gain back nearly 50% of the IPC loss that oc-
curred due to ALU bandwidth limitations for instruction-
level temporal redundancy and 23% of the overall IPC
loss [4]. However, there is a problem in the DIE-IRB ar-
chitecture. According to [6], the soft errors caused by par-
ticle strikes will become increasingly serious for micropro-
cessor design in future. The raw error rate per device in a
bulk CMOS process is projected to remain roughly constant
or decrease slightly for the next several technology genera-
tions [7]. Thus,unless we add more extensive error protec-
tion mechanisms, a processors error rate will grow in direct
proportion to the number of devices we add to a processor
in each succeeding generation. Since the soft error rate goes
up, the error recovery will have significant impact on the
performance of the fault tolerant system because the recov-
ery process is taken more frequently. Thus, besides the DIE,
the performance of error recovery also need to be enhanced.

The DIE-IRB architecture has an error coverage pro-
cess with significant performance degradation. Once the
soft error is detected, the coverage process is stimulated to
correct the error. It firstly clears the error affected instruc-
tion and all its subsequences from ROB and evacuates the
Instruction Fetch Queue, where instructions are waiting for
decoding. The pipeline has to reload the instructions from
the Instruction Cache and re-execute them. Such a process
can greatly prevent the instruction pipeline.

Error Correcting Code (ECC) is a possible solution,
which has been widely used to protect memory. It is a sys-
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tem of adding redundant data, or parity data to the mes-
sage. Furthermore, it can recover the protected data from
a number of errors [8]. There are some typical ECC, such as
hamming code [9] applied in DRAM controllers, SEC-DED
code used in memory systems, the parity check code [10]
used in storage systems. The advantage of ECC is that it can
correct the faults within its capacity instead of re-executing
the fault instructions. Thus, we introduce the ECC into
instruction pipeline to reduce the performance degradation
imposed by the error recovery process.

In [11], it proposed that the calculation of in-pipeline
ECC, such as SEC-DED, requires resources in the timing
critical paths. Thus, conventional ECC are not suitable for
fault tolerant pipeline. However, there are some special
ECC, such as the multi-dimensional code introduced in [12],
which have stronger correcting capacity and lower VLSI
overhead. In [13], the two-dimensional (2D) error coding
techniques that enables fast common-case error-free oper-
ation with the combination of light-weight horizontal per-
word error coding is introduced.

In this paper, we introduce a kind of efficient ECC,
which is called fast ECC (FECC) into instruction pipelines.
The in-pipeline storage capacity of IRB is adopted as the
foundation of our scheme. we proposed to store the FECC
into IRB to correct the soft errors (FECC-IRB). This ap-
proach is implemented by the following steps:

First, FECC is calculated by the FECC calculation
units (FCU) before the instructions are committed. It is
stored into IRB for possible reuses. Second, when instruc-
tions come into the pipeline, they perform a reuse test to find
the entry in the IRB. Third, before the instruction commit,
there is a comparison of the FECC for soft error detection.
If any fault happens, FECC can correct the error, rather than
re-executing each instruction from the error point.

We conducted the experiments based on an improved
sim-outorder simulator from SimpleScalar 3.0 [14] and used
programs from Mibench suite [15] for simulation. The re-
sults show that the ideal FECC-IRB approach can reduce the
IPC loss from 9.1% to 10.2%, with an average about 9.2%
compared with SIE. In addition, in programs with high pro-
portion of ALU instructions, FECC-IRB has a 8% IPC im-
provement, which is close to the ideal FECC-IRB (100%
IRB hit). This means that the FECC-IRB performs more ex-
cellent when it has serious ALU contention. On the other
hand, the IPC loss caused by FECC calculation is controlled
within 1.5% compared with the conventional IRB. Thus, the
FECC-IRB approach is valuable to enhance the performance
of the high reliability computing system.

2. Related Works

This paper introduces the architecture to enhance the perfor-
mance of the DIE architecture by storing FECC into IRB.
There were related works about DIE, IRB and ECC.

In [3], it introduces the time redundant technique,
which suggests executing each instruction twice with multi-
ple, pipelined functional units to detect unexpected soft er-

rors in superscalar microprocessors. In [16], it also inves-
tigates a duplication-based fault tolerant technique: error-
detection is achieved by verifying the redundant results
of dynamically replicated threads of executions. These
schemes can cover most soft errors in functional units. How-
ever, They suffer from a significant performance penalty im-
posed by the redundant workloads. This means that the aux-
iliary mechanism is needed to improve its performance.

In [4], it introduces the Instruction Reuse, which uses
the instruction memorization technique to avoid the redun-
dant computations of the conventional DIE system through
reusing the results of the previously executed instructions.
Work [5] combines instruction pre-computation with IRB to
enhance the performance of the DIE system, which reduces
the performance penalty of work [4] in a further step with
more hardware supports. Since the IRB can store informa-
tion for the executed instruction, there is still much potential
in IRB that worth to have a further exploration.

ECC has been widely used on memory protection. In
[9], it proposed a concatenated Reed-Solomon code com-
bined with hamming code for dynamic random access mem-
ory controller. In [17], it used the BCH based DEC-TED
code to protect L2-chache from soft errors. In [10], a high
performance 2D ECC encoding technique with low VLSI
overhead and strong correcting capability is introduced to
protect the memory system from soft errors, it investigates
the design of the high performance multidimensional ECC
for dynamic memory systems. In general, ECC is effective
to correct undesired soft errors, while few works introduce
it into the out-of-order pipeline.

Above all, DIE is the basic method used as a guarantee
of the instructions reliability. IRB strategy is the key point
to improve the system performance of the conventional DIE
system. It needs a new way to enhance the system perfor-
mance of the traditional DIE system and exploit the poten-
tial capability of IRB. Different from the traditional ECC,
FECC, such as Two-dimensional (2D) is a novel solution
for the performance problem of the DIE system.

3. FECC-IRB Architecture

3.1 System Architecture

FECC-IRB architecture with IRB and the specialized FCU
is shown in Fig. 1. IRB is used to store the previous executed
instructions for reuse, which can enhance the performance
of DIE. FCU is used to calculate the FECC for the instruc-
tion. Reorder Buffer (ROB) is used to store the results of the
instruction pairs to enforce the in-order commit. Dispatch is
to decode and allocate ROB unit for the instruction. Issue
window and FU are used to execute instructions stored in
ROB. Check& Retire is to compare the result of the instruc-
tion pair to ensure the reliability and commit the reliable
instruction.

DIE is implemented by duplicating each instruction at
the decode/dispatch stage. Thus, each instruction has two
copies: the first copy is corresponding to the original in-
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Fig. 1 The fault-tolerant architecture with FECC-IRB. FCU is used to
assist the Check/Retire in order to ensure the instruction reliability.

Fig. 2 The content of the IRB item, including op-code, PC, two operands
and FECC.

struction (O-Ins), while the second copy is corresponding to
the duplicated instruction (D-Ins). Both O-Ins and D-Ins are
allocated items in ROB.

IRB is a small hardware table storing the previous ex-
ecuted instructions. After the same instruction comes again
with the same input operands, it can directly skip the FU by
reusing the FECC stored in IRB. The instruction that with-
out a reuse item is executed in FUs.

When the instruction PC is sent to the instruction
cache, another copy is sent to IRB to perform a lookup. If
there is a PC hit, further reuse test is motivated before the
issue window. If there is no hits, the IRB can not produce
any change to the DIE pipeline. Otherwise, the D-Ins can
bypass the execution and reach the Check& Retire stage.

3.2 FECC-IRB Details

The committed instructions update IRB with its op code,
PC, input operands and the FECC code. The item of IRB is
shown in Fig. 2. The op code and the operands are used to
perform the reuse test. PC is used to perform the IRB lookup
concurrently with the instruction fetch. FECC is used to
check and ensure the instruction reliability.

As shown in Table 1, there are different strategies for
different kinds of instructions. All ALU instructions includ-
ing integer operations and float point operations are stored
in IRB for reuse. For branch target instructions, the IRB is
only used for the target address calculation. For load/store

Table 1 Different strategies for different kinds of instructions.

Instruction Method

ALU instruction Store the ALU instruction itself

Brach Target Instruction Store the branch the branch target adress
calculation operation

Load/Store instruction Store the adress calculation operation

Fig. 3 Instruction execution pipeline under different circumstances. The
solid lines show the flow of the original instructions in the primary stream
and the dashed lines show the flow of duplicated instructions, which have
possibility to skip the issue window (reuse test success).

instructions, the IRB is used for the address calculation.
As shown in Fig. 3, the FECC-IRB pipeline is an im-

proved five stage pipeline, including fetch stage, dispatch
stage, issue stage, Writeback stage and commit stage. Each
instruction is duplicated in ROB, respectively correspond-
ing to the O-Ins and D-Ins. O-Ins is always executed in
FUs. After entering the pipeline (fetch stage), the D-Ins per-
forms a lookup with its PC to find a relevant entry in IRB.
If there is a PC hit, further reuse test is stimulated to test the
operands. According to whether there is a IRB hit, there are
two different situations: (a) IRB hit. D-Ins skips the FU by
reusing the FECC of the former execution from IRB at the
Writeback stage. (b) IRB miss (PC miss or reuse test failed).
D-Ins has to be executed in ALU.

To ensure the instruction reliability, a FCU is used to
calculate the FECC for the result of the O-Ins at the Write-
back stage, which is used to update the IRB for future reuse
when instructions are committed.

FECC-IRB can decrease the certain redundant execu-
tions imposed by DIE. In addition, the FECC stored in the
IRB that is a potential factor to correct the results of the
error instructions within its correcting capacity if soft er-
rors are detected at the Writeback stage. Obviously, if the
instruction is damaged so serious that the error is beyond
FECC’s correcting capacities, both O-Ins and D-Ins have to
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be re-executed.

3.3 Pipeline Process

The FECC-IRB pipeline is shown in Fig. 4.
O-Ins is always executed in ALU. At the Writeback

stage, FCU calculates the FECC for the O-Ins. However,
it has to wait for commitment until the instruction pair is
checked with each other.

D-Ins has a different execution process. In the Fetch
stage, it performs a lookup of IRB with its PC to find
whether there is a possible reuse entry. If there is no entry
(PC miss), the instruction has to be executed in ALU. Other-
wise (PC hit), further reuse test is performed before the issue
stage. If the execution has the same input operands with the
one stored in the IRB, it can reuse the FECC from the cor-
responding item and bypass the execution. If the reuse test
is failed, the D-Ins must be executed in ALU.

When both O-Ins and the D-Ins reach the Writeback
stage, a comparison is performed according to whether there
is a IRB hit:

(a)Hit in IRB
The comparison is performed between the reused

FECC and the FECC calculated for the O-Ins. If they are
equal, the results of the O-Ins are reliable enough to be com-
mitted. Otherwise, if they are different, the reused FECC
from the IRB can be used to correct the results of the O-Ins
within its ability rather than to stimulate the error recover
process, which has a considerable performance penalty. If
the errors are so serious that the results cant be repaired with
the FECC, the instruction pair has to be re-executed.

(b)Miss in IRB
D-Ins has to be executed without skipping the execu-

tion. The comparison is performed between results of the
O-Ins and the D-Ins at the Writeback stage. If their results
are equal, the O-Ins is committed. Otherwise, because there
is no reused FECC can be utilized to correct the results, a
conventional recover penalty is inevitable.

Fig. 4 FECC based IRB double execution process.

3.4 Correctness of the FECC

IRB does not need any extra protection even if errors could
happened on the FECC reused from it. According to the
pipeline process, the P-Ins is always executed in the FU.
The FECC for its result value is always calculated by the
FCU. For the D-Ins, if there is no IRB hit, the D-Ins has
to be treated the same way as the P-Ins. Thus, any error
occurred during the FECC calculation can be detected by the
comparison of FECC. If the is a IRB hit, the D-Ins directly
reuse the FECC from IRB. Errors occurred both during the
FECC calculation process of the P-Ins and on the IRB can be
detected by the comparison of FECC. The difference is that
the invalid FECC can not be used to correct the error. Thus,
all instructions from the error point have to be re-executed.

4. FECC Design

4.1 Limitation of the Conventional ECC

According to [12], it is a performance bottleneck to com-
pute the in-pipeline ECC bits for error detection. To avoid
this drawback, some microprocessors periodically sweep
through the array, checking the data integrity. This tech-
nique (called scrubbing) has lower error coverage than
checking ECC [18]. The characteristics of typical ECC are
listed in Table 2.

It can be found that in the conventional ECC tech-
niques, there are limited correcting performance. For ex-
ample, if a SECDED is used to protect multi-bit errors,
each word must store extra bits for the SECDED code-word,
and the instructions have to suffer the delay, calculating,
and comparing the SECDED code-words. From Table 2,
SECDED has only 1-bit error correction and 2 bit detection
capability with a hamming distance 4. Thus, it is unsuitable
to introduce conventional ECC techniques into pipeline to
protect multi-bit failures because of their low effieciency.

2D error coding techniques [13], which enables fast
common-case error-free operation while still maintaining
high error coverage with low VLSI overheads, is ideal to
be used in pipeline. The key point of the 2D error coding
is the combination of lightweight horizontal per-word error
coding with vertical column-wise error coding. The types of
codes used in the horizontal and vertical directions allow us
to trade-off the error coverage against the VLSI overheads

Table 2 Characteristics of the conventional ECC.

ECC Characters

SECDED 1-bit error correction, 2-bit error detection (Hamming dis-
tance = 4)

DECTED 2-bit error correction, 3-bit error detection (Hamming dis-
tance = 6)

QECPED 4-bit error correction, 5-bit error detection (Hamming dis-
tance = 10)

OECNED 8-bit error correction, 9-bit error detection (Hamming dis-
tance = 18)
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to tailor the design to the types and frequency of errors ex-
pected. The vertical codes enable correction of multi-bit er-
rors along rows up to and including entire row failures.

4.2 Two Dimensional ECC

A set of information bits is used to form a q× l square array.
A parity check bit is added to each row which is the parity
sum of the information bits in that row. Then a parity check
bit is added to each column that is the parity sum of the
bits in that column. The array is then (q + 1) × (l + 1) , with
(q+ l+1) parities added to the original information bits. The
resulting code has minimum distance four since changing a
single information bit requires changing three of the parity
bits to maintain all the parity equations.

To correct a single error anywhere in the array, the par-
ities of all of the rows are computed, as are the parities of
all of the columns. A parity failure in exactly one row and
exactly one column indicates an error in the bit in that row
and column; more than one row parity failure or more than
one column parity failure indicates the presence of multiple
errors. This permits any double error to be detected.

An error detection and correction example is given in
Fig. 5. The area colored with white is used to store data,
while the area colored with gray is used to store 2D ECC.
(a) shows the normal situation without error. When there
is one bit error happened in data area, as shown in (b), the
parity failure in exactly one row and exactly one column can
locate the exact error coordination. Thus, the error can be
recovered according to the error location provided by parity
failures in rows and columns as (c).

Let the information bits:
b(i, j), i = 0 . . . q − 1, j = 0 . . . l − 1
The row parities are the bits b(i, l), i = 0 . . . q, and the

column parities are the bits b(q, j), j = 0 . . . l. b(q, 1) is the
parity sum of the information bits, whether computed as a
sum of row parities or a sum of column parities.

Suppose that the values of the instruction result form a
codeword in the product code in which at most a single error
has occurred. To read bit b(i, j) three values are needed:

q∑

t=0

b(t, j) + b(i, j) (1)

l∑

t=0

b(i, t) + b(i, j) (2)

Fig. 5 If single bit error happened, a parity failure in exactly one row
and exactly one column indicates an error in the bit in that row and column.
Then the error bit is corrected as (c).

For b(i, j) itself, all sums are mod 2. The first is the
sum of all bits in the column except the bit itself; the sec-
ond is the sum of all bits in the row except the bit itself.
By virtue of the parity check condition, if no error has oc-
curred, all three values will be the same. The three sets of
bits are disjoint, and a single error can affect at most one of
the three. Consequently, if the value output is the majority
vote of these three, it is correct. However, a double error
clearly causes the emitted value to be in error. The presence
of a double or multiple errors would have to be detected by a
systematic computation of the parity sets that looks for two
or more row or two or more column parity violations.

5. Experiments and Results

5.1 Simulation Platform

Our experiments were carried out using a modified sim-
outorder simulator from SimpleScalar 3.0 tool suite [14].
Besides the normal execution, we also extended it for DIE,
DIE-IRB, and the FECC-IRB scheme. The machine con-
figurations and simulation parameters are given in Table 3.
According to the characters of the 32-bit SimpleScalar in-
struction sets, each IRB item holds one 32-bit PC, one 8-bit
op-code, two 32-bit input operands, one 32-bit result. So
the size of the IRB item is 17 bytes, and the number of IRB
items is 1024, which means the IRB size is 17 KB. For work-
loads, we used 5 benchmarks from the Mibench suite [15]
for simulations.

5.2 IPC Analysis

IPC is the most important parameter, which is used to evalu-

Table 3 Processor parameters of the simulator.

Feature Simulation Parameters

Fetch/Decode/Issue/Commit Width 8

Fetch-Queue Size 8

Register Update Unit (RUU) Size 256

Load Store Queue (LSQ) Size 128

Integer Adder 4

Integer Multiplier 2

FP Adder 2

FP Multiplier 1

L1 Data Cache 8 KB, 1-way, LRU, 1 cycle la-
tency

L1 Instruction Cache 8 KB, 1-way, LRU, 1 cycle la-
tency

L2 Unified Cache 256 KB, 4-way, LRU, 6 cycle la-
tency

Instruction TLB 64 entries, 4-way, LRU, 30 cycle
latency

Data TLB 128 entries, 4-way, LRU, 30 cycle
latency

Memory Access Latency 18 cycles and 2 cycles (first,
rest)
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ate the high performance computer system. Compared with
the ordinary computer system. High reliability means in-
evitable IPC loss imposed by redundancy. The IPC loss can
be divided into two distinct parts£normal execution delay
and error recovery penalty. Only normal execution delay
is calculated in this section to find the IPC loss imposed
by DIE workload. The analysis including error recovery
penalty is taken in the following section.

The performance is compared without error occurrence
to observe the execution IPC gap (IPC difference between
different methods) easily. As shown in Fig. 6, the percentage
of IPC loss of the considered DIE, IRB and the FECC-IRB
compared with SIE system.

The first item indicates the IPC loss of DIE compared
with SIE. The average IPC gap between SIE and DIE is up
to 24.9%, which is a considerable performance loss caused
by the redundant workload. The second item presents the
IPC loss of DIE-IRB compared with SIE. It has an improve-
ment on performance, with the average 26.4% IPC enhance-
ment over the DIE. The third item presents the IPC loss of
FECC-IRB. It is higher than the conventional IRB, because
the FECC-IRB scheme has a FECC calculation penalty.

As shown in Fig. 6, the DIE approach has an IPC loss
compared with SIE alleviated by IRB scheme. Compared
with IRB, the FECC-IRB approach has higher IPC loss be-
cause only normal execution delay is calculated to find the
IPC loss imposed by DIE workload. However, the effect of
our FECC-IRB approach can be reflected in the following
analysis including error recovery penalty because it has an
improvement over the error recovery loss.

5.3 FECC-IRB Benefits

The comprehensive analysis including normal execution de-
lay and error recovery penalty is taken in this section in or-
der to observe the advantage of our FECC-IRB approach
over DIE-IRB in enhancing the system performance.

In Fig. 7, it presents the IPC of different schemes under
different soft error rates. The second and the third items give
the IPC gap between the IRB and the FECC-IRB scheme.
The third and the forth items present the IPC, where it is

Fig. 6 The IPC loss of DIE, IRB and FECC-IRB.

artificially set the IRB hit rate to be 100%, denoted as ideal
IRB and ideal FECC, which means all D-Ins skip the FU
and all soft errors are corrected by FECC respectively.

In Fig. 8, it presents the percentage of IPC improve-
ment of different schemes over different soft error rates. It
can be found that the ideal FECC-IRB has a recovery of
the IPC loss between 9.1% and 10.2%, reducing an aver-
age 9.2% of the IPC loss caused by redundant execution of
the DIE system. On the other hand, the ideal IRB scheme
can only reduce the IPC loss with the average being around
6.9%. As the soft error rate increased, the advantage of the
FECC-IRB is more obvious over the conventional IRB, be-
cause the FECC is used to reduce the error recovery penalty,
which is decided by soft error rates. However, the IPC gap
between normal FECC scheme and IRB is not so obvious.

Three factors contribute to the effect of FECC-IRB on
the IPC loss over the DIE approach:

(a) Soft error rate
Higher soft error rate can provide more opportunities

using FECC to correct the error affected instructions rather
than stimulate the conventional timing-critical recovery pro-
cess. Thus, the advantage of our FECC over the conven-
tional IRB is more obvious.

(b) IRB hit rate
Higher IRB hit rate can provide more error correcting

Fig. 7 The IPC of different schemes under different soft error rates.

Fig. 8 The percentage of IPC improvement of different schemes over
different soft error rates.
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Table 4 Types of instruction stored in IRB and the percentage of each
kind of instruction in different programs.

Types math fmath long str cyc

ALU 28.97% 32.63% 35.83% 54.37% 30.91%

Branch 20.04% 21.15% 21.22% 18.00% 24.82%

Load/Store 59.85% 53.95% 48.69% 36.35% 53.63%

opportunities, too. Because only the FECC reused from the
IRB can be used to correct error affected instructions. Thus,
increasing the IRB hit rate is a factor to magnify the advan-
tages of our FECC-IRB approach.

(c) IPC of DIE system
It is another factor that can decide the percentage of

IPC improvement of the FECC-IRB over the conventional
IRB. The IPC loss of conventional DIE can be divided into
two distinct parts, the first part is normal execution delay,
and the second part is error recovery penalty. The FECC
mainly enhances the IPC loss of the error recovery penalty.

5.4 ALU Contention

In some programs such as cyc, the FECC-IRB does not pro-
vide as much IPC improvement (only 1.73% on average),
because the ALU bandwidth may not be the significant bot-
tleneck of the pipeline, which can be concluded from Table
4. Since the ALU bandwidth is not that much of a problem
(The ALU instructions in cyc is lower compared with other
testing programs), there is not enough contention that can be
released by FECC-IRB, which makes the effect seems not
obvious. In contrast, some programs such as str, the FECC-
IRB provides a IPC improvement by 8.21%, which is much
higher than cyc. This is because the ALU instructions in the
str is much more than in the cyc.

In general, the ALU contention level varies according
to testing programs, which is a important factor that decide
the effect of our FECC-IRB scheme. However, from the
ideal FECC-IRB, we can observe that this scheme can en-
hance the performance by reduce the error recovery penalty.

5.5 IRB Hit Rate

It is difficult to quantify the fault coverage of the considered
DIE based schemes. However, IRB hit rate can indirectly
evaluate the error detection and fault coverage of the FECC-
IRB approach. So, techniques for enhancing IRB hit rate
can be useful for alleviating the ALU bandwidth even fur-
ther. There are three different methods:

(a) More entries are held to reduce the conflict and the
IRB miss rate. Figure 9 shows the hit rate under different
IRB size. The number of sets in the IRB is controlled from 8
to 1024. It indicates that larger IRB size can insure a higher
hit rate and longer instruction life time in IRB.

(b) Even if the IRB size is limited, it can only keep the
useful entries in a smaller IRB, so that non-useful entries do
not conflict with the useful ones.

(c) It can proactively insert entries into the IRB to re-

Fig. 9 IRB hit rate with different table size.

duce the miss rate.

6. Conclusions

This paper proposed a novel solution to alleviate the per-
formance loss of instruction-level temporal redundancy in
an out-of-order superscalar microprocessor. It’s an average
up to 24.9% IPC loss on DIE over SIE for several bench-
marks from Mibench. An important contributor to this per-
formance gap is the in-sufficient ALU bandwidth since the
same number of resources provisioned for SIE need to han-
dle the workload imposed by DIE. The performance of the
conventional DIE system is enhanced by storing the FECC
into the IRB. D-Ins is directed to IRB, where it can directly
pick up the FECC as long as that instruction has been previ-
ously encountered with the same set of operands, instead of
execution on FUs. Otherwise, D-Ins is directed to the ALUs
as the normal DIE. The temporal redundancy is provided
by instruction reuse rather than re-execution. In addition,
FECC stored in IRB can help to correct the results rather
than cover them with re-execution.

According to the experiments, the ideal IRB hit rate
provides a 9.1%-10.2% reduction in the IPC loss between
SIE and DIE, with around 9.2% reduction on the average
over several benchmarks form Mibench suite.

Furthermore, there are several ways to enhance the ef-
fect of the FECC-IRB approach for our further research. (a)
Introducing the new encoding techniques which have high
efficiency and stronger error correcting capacity can make
FECC more powerful. (b) Enhancing the IRB hit rate, such
as larger IRB, can provide more opportunities to correct the
inaccurate results. (c) FECC calculation and error correct-
ing process can be integrated into the superscalar pipeline as
an extend execution stage.
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