
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.2 FEBRUARY 2012
437

LETTER Special Section on Reconfigurable Systems

Optimisations Techniques for the Automatic ISA Customisation
Algorithm

Antoine TROUVE†a), Nonmember and Kazuaki MURAKAMI†, Member

SUMMARY This article introduces some improvements to the already
proposed custom instruction candidates selection for the automatic ISA
customisation problem targeting reconfigurable processors. It introduces
new opportunities to prune the search space, and a technique based on dy-
namic programming to check the independence between groups. The pro-
posed new algorithm yields one order less measured number of convexity
checks than the related work for the same inputs and outputs.
key words: reconfigurable computing, custom instruction generation, op-
timisation

1. Introduction

Dynamically reconfigurable processors (DRP) are proces-
sors which a part of the instruction set architecture (ISA) can
be modified at runtime. By making it possible to adapt the
instruction set to the executed application, such processors
can potentially be more efficient than their general purpose
counter-parts. However, the success of DRPs has been hin-
dered by two challenges: (1) the performance of the hard-
ware lags behind other solutions (2) the problem of finding
the best ISA per application is intractable. This article fo-
cuses on the second one.

Automatic ISA customisation algorithms (AICA) aim
at extracting from a given input applications the custom
ISA (made of custom instructions, written CIs) which yields
the best performance with respect to some important met-
rics (decided by the user). The custom ISA can be gener-
ated at run-time [1] or at compile time [2]–[5]. Hardware
generation enables binary compatibility with existing gen-
eral purpose processors (GPP). However, the quality of
so-generated CIs is lower than with software implementa-
tions as designers have to keep the AICA simpler to miti-
gate the hardware overheads due to the presence on the chip
of a hard-wired ACA. This article focuses on AICA im-
plemented at the compiler intermediate representation (IR)
level, as a compiler pass [2], [4], [5], [7], [9].

The remainder of this article is organised as follow.
The two first sections present the related work and the con-
text regarding the exact solution CI candidate selection for
AICA. The next section presents some optimisations to the
algorithm, which constitutes the article contribution, before
assessing their benefits through experiments.

Manuscript received April 27, 2011.
Manuscript revised August 12, 2011.
†The authors are with the Department of Informatics, Kyushu

University, Fukuoka-shi, 812–8581 Japan
a) E-mail: trouve@isit.or.jp

DOI: 10.1587/transinf.E95.D.437

2. Related Work

The automatic ISA customisation problem is intractable. In
a program P containing |P| instructions, there are 22|P| dif-
ferent possible custom ISA (the number of sub-sets of the
set containing all the clusters of instructions). Hence, most
of the works in the literature endeavour to mitigate the com-
plexity of the problem. First, many approximate solutions
have been proposed. For instance Pozzi et al. [4] use ge-
netic algorithms to iteratively select the best CI candidates.
Clark et al. [2] use a greedy algorithm which grows clusters
of CIs until some conditions are satisfied. Brisk et al. [3]
tries to find common patterns in the data flow graph. While
they have prove to be able to generate good CIs under some
conditions, those algorithms do behave poorly in the general
case. Mei et al. [9] use an original approach based on loop
scheduling which yields good results, but only for applica-
tions in which such loop analysis can be carried out success-
fully. On the other hand, some other works strive to solve
the problem exactly by smartly pruning the design space.
Atasu et al. [5] proposed such algorithm which leverages a
topological sorting of the nodes and take into consideration
micro-architectural constraints early. More recently, Ahn et
al. [7] introduced a method to balance the memory usage
and the execution time through dynamic programming tech-
niques and memoisation.

This article aims at introducing further improvement of
Atasu et al.’s algorithm using a different approach than Ahn
et al. [7] (i.e. memoisation). Especially, it concentrates on
the CI candidate selection phase, which aims at parsing all
the clusters of nodes of the programs (the candidate CIs)
which are likely to be included into the custom ISA.

3. Definition of the Problem

3.1 Automatic ISA Customisation

Taking into input a data-flow graph (DFG) generated by the
compiler at the IR level, the automatic ISA customisation
problem consists in finding which nodes or cluster of nodes
(the groups, or cuts) should become parts of the custom ISA.
In the case where the processor does not contain any base
ISA (i.e. a general purpose one), the custom ISA should be
an exact cover of the program’s DFG. A AICA is similar
to hardware / software partitioning and can be clustered into
two sub problems. First, the CI candidate selection explores

Copyright c© 2012 The Institute of Electronics, Information and Communication Engineers

438
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.2 FEBRUARY 2012

all the possible groups inside the program and keeps them
into a pool P . Second, the CI election selects the subset
P ∈ 2P of the pool which yields the better results regard-
ing an objective function: this is the custom ISA. In the
work by Atasu et al. [5] the CI election phase strives to find
only one CI per compilation unit (|P| = 1); this is however
not mandatory and one can think of extracting more CIs per
compilation unit (|P| ≥ 1). The focus of this work is the
CI candidate selection phase. Like Atasu et al. [5] and Ahn
et al. [7], we limit the study to groups which do not include
any branches; in other words the compilation unit is the ba-
sic block. The reason for this limitation is that including
branches in CIs raises several challenges which resolution
is not the purpose of this article; in particular expanding the
compilation unit to more than one basic block may have a
severe impact on the measured compilation time.

3.2 CI Candidate Selection

CI candidate selection boils down to visiting all the possible
sub-graphs of a program’s data flow graph (DFG). As the
compilation unit is a basic block, the considered DFGs do
not contain any cycle. As introduced by [5], CI candidate
selection consists in building groups by adding nodes one
by one. This operation is called growing. For a program P,
it defines initially the set Grow1 = {{u} | u ∈ P}; then iterates
on this set to define the Growi (i > 1) through the following
recursion:

Growi = {G ∪ {u} | G ∈ Growi−1, u � G} (1)

At each iteration, the algorithm determines among the ele-
ments of Growi which would be suitable to be candidate CI.
Those are to be the inputs of the CI election phase down-
stream (not considered in this article).

In the worse case for a program P, |Growi| =
(

i
|P|
)
,

and there are
∑i

j=1

(
j
|P|
)

candidate CIs †. However, as sug-
gested by other authors [5], [8], the search space can be
pruned regarding micro-architectural and convexity con-
straints. The former consists in removing groups which can
not be mapped on the target hardware. Convexity is an in-
trinsic mandatory property for a CI to be mapped on a dat-
apath. A group G is convex if ∀ nodes u, v ∈ G, ∀ path P
between u and v, ∀ w ∈ P, w ∈ G. Atasu et al. [5] mentions
that convexity can be checked quickly but omits to develop
further. Ahn et al. [7] introduces an algorithm which makes
it possible to check the convexity in O(1) by maintaining
for each growing group a set of watcher inputs, which neg-
atively impacts the memory usage of the algorithm expo-
nentially in the worse case. The stance of this paper is that
convexity checks are expensive (wether in execution time or
memory usage), and that reducing their number is an im-
portant challenge when designing a CI candidate selection
algorithm.

Moreover, the same authors further noticed that it is not
mandatory to consider all the G∪{u} (G ∈ Growi and u ∈ P).
By defining a topological order on the nodes of P (noted ≺)

so that ∀u, v ∈ P, u ≺ v if and only if there is a path from
u to v, and by considering for a group G only the elements
of {u | ∀g ∈ G, u ≺ g}, it is possible to mitigate the number
of groups to be considered by the algorithm. By doing so,
Eq. (1) can be re-written as follow:

Growi = {G ∪ {u} | G ∈ Growi−1, u ≺ G} (2)

This article uses this algorithm as a baseline and in-
troduces a method which aims at reducing the number of
convexity checks it performs by noticing that most of the
G ∪ {u}, u ≺ G are not convex (cf. Eq. (2)).

4. Improvements to the CI Candidate Selection

4.1 Reducing the Number of Groups to Visit

For two nodes u, v ∈ P, let us write u → v if there is an
edge in the DFG from u to v; u � g if there exists a path
from u to v in the DFG. Moreover, let us define Pu�v the set
of all such paths. For a group G, let us also write C (G) to
express the convexity of G. Let us further define the notion
of parallelism between groups and nodes:

Definition 1. Let F and G be two groups on the program
P. We say that F and G are parallels if there are no data
dependencies between both. The notation F ||G will be used
to express this property.

Using those vocabulary and notations, the following
property can be demonstrated:

Theorem 1. During the growing phase of the group G, for
all node g′ so that g′ ≺ G,

C (G ∪ {g})⇒
{

g→ G or
g || G

The relation is an equivalence in the second case.

Proof. Let us demonstrate the first part of the theorem. Let
G be a group on the program P, and let us consider g ∈ P,
a node visited during group gathering to grow G ∈ Grow|G|
into G′ = G∪{g} (g ≺ G) so that C (G′). First, let us consider
the case where Pg�G � ∅; there exists a path φ in Pg�G. By
definition, ∀p ∈ φ\g, p ∈ G. Hence, g→ G (1). In the case
where Pg�G = ∅, there are no path from g to G. Moreover,
as g ≺ G, there are no path from G to g neither (2). By (1)
and (2), the first property is demonstrated.

The second property stances that additionally, g || G ⇒
(C)(G ∪ {g}). This is trivial as in this case Pg�G = ∅ by
definition. �

For the sake of the further explanations, let us define
the following sets for a group G: �G = {u | u → v, u � G, v ∈
G} and Ĝ = {u | u || G}.

†Which grows exponentially with i and |P| according to Lo-
vasz’s bound

LETTER
439

Using those definitions and the properties demon-
strated in this section, it is now possible to re-write the defi-
nition of Growi (previously defined in Eq. (2)) as bellow:

Growi =

{G ∪ {u} | G ∈ Growi−1, u ∈ �G ∪ Ĝ, u ≺ G} (3)

This article proposes to leverage this property to reduce
the average number of convexity checks performed by the
CI candidate selection. It considers �G and Ĝ instead of P
as a whole to grow groups, and checks the convexity of the
so-obtained groups only in the first case.

4.2 Fast Calculation of Ĝ

For a group G to grow, the previous section put into light
two sets, �G and Ĝ, useful to reduce the number of convexity
checks performed by the algorithm. �G corresponds to the set
of the inputs of G and is straightforward to calculate. This is
not the case for Ĝ. This section further introduces a strategy
based on dynamic programming to decide the ownership of
a nodes to this set.

Let us first define the sets Out(G) and In(G) to desig-
nate the input and output nodes of a group G as bellow:

Out(G) = {u ∈ G | ∃ v � G, v→ u}
In(G) = {u ∈ G | ∃ v � G, u→ v} (= �G)

Those sets can be parsed in constant time if we consider
that ∃ Min,Mout ∈ N, |In(G)| < Min, |Out(G)| < Mout for all
groups G an a program P. Additionally, let us define for a
program P the closure of a node u ∈ P (already mentioned
in Sect. 3.2) as the set ū = {v | u� v}.

With those definitions, the following property can be
demonstrated:

Theorem 2. For a group G and a node u ∈ P, u ≺ G

G || u ⇔ In(G) ∩ ū = ∅
⇔ ∀v ∈ In(G), v � ū

Proof. Let us notice first that (In(G) ∩ ū = ∅) ⇔
(∀v ∈ In(G), v � ū). With that said, let us demonstrate the
first equivalence. To this end, let us notice that there is no
path from G to u because u ≺ G. Then, let us consider u,
G || u. Furthermore, there is no path from u to G neither by
definition of ||, i.e. G is not in ū. This proves⇒. Let us con-
sider ∃ v ∈ G ∩ ū, this implies that there exists a path from
u to v and v ∈ G so there is a path from u to G and they are
not parallel. This proves⇐ ad absurdum. �

Hence, the pre-computation of the closure of all nodes
of P makes it possible to decide G || u in f operations in aver-
age, if we consider a data structure which makes it possible
to check the ownership to a set (e.g. ū) in O(1) operations,
and if f is the average value of |In(G)|.

Algorithm 1: The new growing function
Input: N node of the program (filtered and sorted), G the group

to grow
Output: The grown groups

1 NewGrowing← ∅;
2 for n ∈ �G, n ≺ G do
3 F ← G ∪ {n};
4 if C (F) then
5 NewGrowing← NewGrowing ∪ {F};
6 end if
7 end for

8 for n ∈ N, n ≺ �G do
9 if ∀g ∈ In(G), g � n̄ then

10 F ← G ∪ {n};
11 NewGrowing← NewGrowing ∪ {F};
12 end if
13 end for
14 → NewGrowing;

4.3 Consequence on the Growing Function

The new growing function for CI candidate selection which
takes advantage of the theorems introduced in the previous
sections is presented in Alg. 1. It consists of two loops.
The first loop (l. 2 to 7) considers opportunities to grow the
group G by parsing �G. It contains one convexity check at
line 4.

The second loop (l. 8 to 13) looks up for parallel nodes;
to this end it parses Ĝ by first considering all the nodes u ≺
�G and keeping only those which closure does not intersect
with In(G) as suggested by theorem 2. No convexity check
is performed in this loop (theorem 1).

5. Experimental Results

The previous section shown that by pre-computing the clo-
sure of all the nodes of a program P and taking advantage
of theorem 1, one can potentially sigificatly reduce the ex-
ecution time of the AICA first proposed by Atasu et al. [5].
This section shows experimental results led on the top of
the COINS compiler infrastructure † which confirms those
theoretical results.

Results are shown in Fig. 1 for the programs in
MiBench ††. The horizontal axis represents all the basic
blocks in the programs. Atasu expresses the number of con-
vexity checks carried out by the algorithm presented in [5].
The series Convexity plots the number of convexity checks
performed by the algorithm 1. Our algorithm performs
50.12 times less convexity checks than the algorithm from
Atasu et al. if we consider the arithmetic mean of the values.
This ratio however hides great disparities: if we consider the
geometric mean it drops down to 2.85. Indeed the optimisa-
tions presented in this paper are more efficient on large basic
blocks on which the opportunities to grow groups using par-
allel nodes are statistically more important. However, most

†www.coins-project.org
††Online: http://www.eecs.umich.edu/mibench/

440
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.2 FEBRUARY 2012

Fig. 1 Nodes visited and convexity check with our method.

basic blocks are small ones (less than 20 operations).

6. Conclusion

This article introduces some enhancement for the automatic
ISA customisation algorithm targeting reconfigurable pro-
cessors. It shows that by dividing the exploration space into
two parts during the growing phase of the groups, it is possi-
ble to significantly reduce the workload of the algorithm in
average: around 50 times less with respects to the number
of convexity checks.

References

[1] A.C.S. Beck, M.B. Rutzig, G. Gaydadjiev, and L. Carro, “Transpar-
ent reconfigurable acceleration for heterogeneous embedded applica-
tions,” DATE, pp.1208–1213, 2008.

[2] N. Clark, H. Zhong, and S. Mahlke, “Processor acceleration through
automated instruction set customization,” MICRO36, 2003.

[3] P. Brisk, A. Kaplan, R. Kastner, and M. Sarrafzedeh, “Instruction
generation and regularity extraction for reconfigurable processors,”
CASES, Oct. 2002.

[4] L. Pozzi, K. Atasu, and P. Ienne, “Exact and approximate algorithms
for the extension of embedded processors instruction sets,” IEEE
Trans. Comput.-Aided Des. Integr. Circuits Syst., vol.25, pp.1209–
1229, 2006.

[5] K. Atasu, L. Pozzi, and P. Ienne, “Automatic application-specific
instruction-set extensions under microarchitectural constraints,” DAC,
pp.256–261, June 2003.

[6] H. Noori, F. Mehdipour, K. Inoue, and K. Murakami, “A reconfig-
urable functional unit with conditional execution for multi-exit cus-
tom instructions,” IEICE Trans. Electron., vol.E91-C, no.4, pp.497–
508, April 2008.

[7] J. Ahn, I. Lee, and K. Choi, “A polynomial-time custom instruction
identification algorithm based on dynamic programming,” ASP-DAC,
pp.573–578, Jan. 2011.

[8] P. Biswas, N. Dutt, P. Ienne, and L. Pozzi, “Automatic identification of
application-specific functional units with architecturally visible stor-
age,” DATE, 2006.

[9] B. Mei, S. Vernalde, D. Verkest, H. De Man, and R. Lauwereins,
“Dresc: A retargetable compiler for coarse-grained reconfigurable
architectures,” Field-Programmable Technology, pp.166–173, Dec.
2002.

