
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.2 FEBRUARY 2012
523

PAPER Special Section on Architectures, Protocols, and Applications for the Future Internet

A New TCP Congestion Control Supporting RTT-Fairness

Kazumine OGURA†a), Yohei NEMOTO†, Student Members, Zhou SU†, and Jiro KATTO†, Members

SUMMARY This paper focuses on RTT-fairness of multiple TCP flows
over the Internet, and proposes a new TCP congestion control named “HRF
(Hybrid RTT-Fair)-TCP”. Today, it is a serious problem that the flows hav-
ing smaller RTT utilize more bandwidth than others when multiple flows
having different RTT values compete in the same network. This means that
a user with longer RTT may not be able to obtain sufficient bandwidth by
the current methods. This RTT fairness issue has been discussed in many
TCP papers. An example is CR (Constant Rate) algorithm, which achieves
RTT-fairness by multiplying the square of RTT value in its window in-
crement phase against TCP-Reno. However, the method halves its win-
dows size same as TCP-Reno when a packet loss is detected. This makes
worse its efficiency in certain network cases. On the other hand, recent
proposed TCP versions essentially require throughput efficiency and TCP-
friendliness with TCP-Reno. Therefore, we try to keep these advantages in
our TCP design in addition to RTT-fairness. In this paper, we make intuitive
analytical models in which we separate resource utilization processes into
two cases: utilization of bottleneck link capacity and that of buffer space
at the bottleneck link router. These models take into account three charac-
teristic algorithms (Reno, Constant Rate, Constant Increase) in window in-
crement phase where a sender receives an acknowledgement successfully.
Their validity is proved by both simulations and implementations. From
these analyses, we propose HRF-TCP which switches two modes accord-
ing to observed RTT values and achieves RTT fairness. Experiments are
carried out to validate the proposed method. Finally, HRF-TCP outper-
forms conventional methods in RTT-fairness, efficiency and friendliness
with TCP-Reno.
key words: transport protocol, RTT-fairness

1. Introduction

TCP (Transmission Control Protocol) is widely used in
the current network and provides end-to-end, reliable data
transport. The majority of data services from web surf-
ing to HTTP multimedia streaming (like YouTube and P2P
streaming) in the Internet are carried by TCP. In principle,
an AIMD (Additive Increase and Multiplicative Decrease)
mechanism [1] had been widely adopted. However, since
the AIMD mechanism of original TCP-Reno autonomously
determines a sending rate according to the self-clocking
principle, it is well-known that it suffers from RTT (Round
Trip Time) unfairness [2]–[7]. Therefore, RTT-fairness had
been focused by many TCP papers such as TCP-Libra [3],
BIC-TCP [6], CUBIC-TCP [7] and FAST-TCP [8].

CUBIC-TCP, which is an advanced version of BIC-
TCP, is designed to support RTT-fairness, efficiency and
TCP-friendliness. This protocol has a unique window con-

Manuscript received May 16, 2011.
Manuscript revised September 20, 2011.
†The authors are with Waseda University, Tokyo, 169–0072

Japan.
a) E-mail: ogura@katto.comm.waseda.ac.jp

DOI: 10.1587/transinf.E95.D.523

trol using elapsed time from a last packet loss into its
window increment phase. This control indeed alleviates
RTT-unfairness, but is not sufficient as shown in our past
work [9], [15]. FAST-TCP improves RTT-fairness by its
window size updating phase using RTT value as a parameter.
However, it has a critical shortcoming when competing with
TCP-Reno and suffers from throughput degradation [15].

In the classical work [4], CR (Constant Rate) was pro-
posed to achieve RTT-fairness by incorporating the square
of RTT value into its window increase algorithm. Its char-
acteristics were studied in [5], and TCP-Libra was proposed
as its extension. TCP-Libra adds components that lower
the throughput variance and adapt its scalability in win-
dow increment phase according to link capacity. However,
same as CR, TCP-Libra does not change its window decre-
ment phase practically, namely using halved window size.
This leads to inefficient network utilization over lossy, long
fat (high-speed and long delay) or small buffer size net-
work. Therefore, our TCP applies a clever algorithm (TCP-
Westwood [10]) as its window decrement phase.

On the other hand, recent implemented TCP ver-
sions, as represented by CUBIC-TCP (for Linux OS) and
Compound-TCP (for Windows OS) [11], are designed for
throughput efficiency and TCP-friendliness with TCP-Reno.
Various hybrid (loss/delay-based) TCPs [11]–[15] have been
proposed for this purpose. Our TCP also belongs to hybrid
TCPs and tries to keep their advantages.

In this paper, we make analytical models for achieve-
ment of RTT-fairness using the algorithm. In the models, we
separate resource utilization processes into two cases. One
is to utilize the bottleneck link capacity, and the other is to
utilize the buffer space of the bottleneck router. From the
model, we then propose a new congestion control named
HRF (Hybrid RTT-Fair)-TCP to share these resources fairly
in both cases. We combine the ideas of CR, CI (Constant
Increase, refer [4]) and TCP-Westwood (TCPW) [10] into its
method. HRF switches two modes (CR and CI) according to
observed RTT values. Through simulation and implementa-
tion results, we will show HRF brings much better perfor-
mances in RTT-fairness, throughput efficiency and friendli-
ness with TCP-Reno.

This paper is organized as follows: Section 2 presents
research background. Section 3 explains our analysis model
on RTT-fairness according to buffer utilization status. Sec-
tion 4 introduces our proposal, and Sect. 5 demonstrates ex-
perimental results. Finally, Sect. 6 provides conclusions of
this paper.

Copyright c© 2012 The Institute of Electronics, Information and Communication Engineers



524
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.2 FEBRUARY 2012

2. Research Backgrounds

In this section, we explain RTT-unfairness of the AIMD con-
gestion control, TCP-Westwood, CR and CI, respectively.
In the following sections, we define “window increment
phase” as window size updating phase with successful ac-
knowledgement, and “window decrement phase” as window
size updating phase with 3 duplicate acknowledgements (a
packet loss happens).

2.1 RTT-Unfairness of AIMD Mechanism

A window increase rate of the AIMD congestion control
based on TCP-Reno is inverse proportional to RTT values
in principle. For example, [6] provides an analytical result
of RTT unfairness of the AIMD congestion control, in which
throughput ratio of two TCP flows having different RTT val-
ues is given by

throughput1

throughput2
∝

(
RTT2

RTT1

) 1
1−d

(1)

where throughputi is an average throughput of flow i (i =
1, 2), RTTi is an average RTT of flow i, and d is a constant
which is determined by the congestion control mechanisms
(e.g. d is 0.5 for TCP-Reno, 0.5∼1.0 for BIC-TCP, 0.82 for
High-speed TCP and 1.0 for Scalable TCP). This equation
proves RTT unfairness, according to which TCP flows with
smaller RTT values expel TCP flows with longer RTT val-
ues.

2.2 TCP-Westwood

TCPW-RE (Rate Estimation) [10] improves throughput effi-
ciency in window decrement phase. In window increment
phase, the behavior of TCPW is the same as TCP-Reno.
Window decrement phase of this protocol is expressed by

cwnd = max

(
RTTmin

RTT
· cwnd,

cwnd
2

)
(2)

where RTTmin and RTT are the minimum RTT and RTT just
before the packet loss, respectively. The first term of Eq. (2)
just clears a buffer of a bottleneck router instead of halving
congestion window and causes no vacant capacity. If cwnd*
RTTmin/RTT is smaller than cwnd/2, TCP-W selects cwnd/2
not to decrease congestion window size less than TCP-Reno.
Due to this fact, TCPW-RE can achieve better throughput
efficiency than TCP-Reno.

2.3 CR (Constant Rate)

CR (Constant Rate), which was briefly introduced in [4],
achieves RTT-fairness by multiplying the square of RTT to a
window increment value. Its window increment/decrement
phase are shown by

cwnd+ = k · RTT2 [per RTT] (3)

cwnd = cwnd/2 (4)

where k is a constant and decide aggressiveness of this pro-
tocol. TCP flows using CR algorithm increase their win-
dow sizes by k * RTT packets (or bytes) in one second and
their throughput by k packets/sec (or bytes/sec) irrespective
of RTT. Eq. (4) is the same window decrease strategy as
Reno.

2.4 CI (Constant Increase)

CI (Constant Increase), which was also briefly mentioned in
[4], is a linear version of CR’s window update algorithm.
In this paper, we define CI’s window increase behavior in
congestion avoidance phase by

cwnd+ = k′ · RTT [per RTT] (5)

where k′ is similar to k in Eq. (3). TCP flows using CI al-
gorithm increase their window sizes by k′ packets (or bytes)
in one second irrespective of RTT and their throughput by
k′/RTT packets/sec (or bytes/sec). This protocol halves its
window size same as Eq. (4) when a packet loss is detected.

3. Model Definition

We analyze TCP flows’ behaviors until a packet loss hap-
pens by overflow. Assume the network has a single bottle-
neck link. Let B [pkt/s], R [pkt/s], RTTmin [s], S [pkt] and n
represent the bottleneck link capacity, residual link capacity,
minimum RTT value without buffering delay, the buffer size
of a bottleneck router and the number of competing flows,
respectively. In this model, we consider three characteristic
protocols (TCP-Reno, CR and CI), but omit TCP-Westwood
because TCP-Westwood behaves in the same way as TCP-
Reno in window increment phase. xRTT stands for the in-
crement amount of the congestion window size per RTT.
Table 1 shows xRTT [pkt/RTT] of each protocol.

We separate the model into two cases according to the
bottleneck router buffer status. Figure 1 shows the win-
dow size behavior of TCP-Reno. Model I (before buffering)
is the case where there is residual capacity and no buffer-
ing delay. In this case, window size is always less than
BDP (Bandwidth Delay Product), which is calculated by
RTTmin * B. Model II (after buffering) is the case in which
packet buffering is carried out at the bottleneck link router
and a packet loss happens due to overflow. We evaluate win-
dow size behaviors of these two cases in the following sub-
sections.

3.1 Model I: Vacant Case

In Model I, there is residual capacity on the bottleneck link

Table 1 Increment amount of window size of each protocol.



OGURA et al.: A NEW TCP CONGESTION CONTROL SUPPORTING RTT-FAIRNESS
525

Fig. 1 The window size behavior of TCP-Reno.

Table 2 Time to fill residual capacity of each protocol.

and no buffering delay, which means that RTT is always
equal to RTTmin.

Let R/n [pkt/s] represents the individual available
bandwidth if n nodes fairly utilize the residual capacity and
t1 represent the time to fill the bottleneck link as shown in
Fig. 1. Relationship between t1 and R is expressed by

t1 =

(
RTTmin

xRTT

)
·
(R

n
· RTTmin

)
(6)

where RTTmin/xRTT is the time to increase the window size
by one packet and R/n * RTTmin is the number of packets
needed to fill the residual capacity.

Table 2 shows t1 calculated by using Table 1 and
Eq. (6). This table demonstrates that t1 of CR is constant
irrespective of RTT. This means that flows with different
RTT can utilize residual capacity fairly and contributes to
RTT-fairness before packet buffering starts. However, t1 of
TCP-Reno and CI are variables of RTT and become longer
as RTT increases. This means that shorter RTT flows domi-
nate shared network resource against larger RTT flows when
multiple flows compete.

Let us consider parameter setting of k and k′ for CR and
CI flows to behave similar to TCP-Reno having RTTReno,min.
This is done by setting

k =
1

RTT2
Reno,min

(7)

k′ =
1

RTTReno,min
(8)

which result in the same t1 as TCP-Reno.

3.2 Model II: Buffered Case

In Model II, packet buffering is carried out at the bottleneck
router buffer until overflow. In this case, RTT becomes a

Table 3 Total buffering time of each protocol.

time-varying variable of RTT round and is represented by
RTT = RTTmin + α, where α gives the number of buffered
packets. Specifically, in case of TCP-Reno, RTT of the i-th
RTT round is given by

RTTi = RTTmin +
i
B

(9)

where i of the right term provides the amount of buffered
packets.

On the other hand, let Δt′i represent the time to increase
the window size by one packet, which is given by

Δt′i =
RTTi

xRTTi

(10)

where xRTTi denotes increment amount of the congestion
window of the i-th RTT round. Then, let S/n [pkt] denote
the available buffer size if n nodes fairly utilize buffer size
at the bottleneck router and t2 shows the total buffering time
until overflow, which is given by

t2 = Δt′1 + Δt′2 + · · · + Δt′S/n (11)

Summation form of Eq. (11) is

t2 =
S/n∑
i=1

RTTi

xRTTi

(12)

where RTT in Table 1 is replaced to RTTi, t2 of the three
protocols are calculated as shown in Table 3.

From this table, t2 of CI does not include RTTi so
that total buffering time is always constant irrespective of
RTT. This contributes to fair utilization of buffering space
and RTT-fairness. However, other results suggest that TCP-
Reno takes longer buffering time as RTT increases but CR
takes shorter time until overflow.

Let us consider parameter setting of k and k′ for CR and
CI flows to behave the same as TCP-Reno having RTTReno,
similar to the previous subsection. By combining Eq. (9)
and Table 3, k and k′ are given by

ki =
1

RTT2
Reno

=
1(

RTTReno,min +
s
B

)2
(13)

k′i =
1

RTTReno
=

1(
RTTReno,min +

s
B

) (14)

where s [pkt] provides the amount of buffered packets,
which is updated according to network condition. These set-
tings result in the same t2 as TCP-Reno.



526
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.2 FEBRUARY 2012

4. Proposal

In this section, we present our proposal named “HRF (Hy-
brid RTT-Fair)-TCP” which achieves RTT-fairness along
with throughput efficiency improvement and inter-protocol
friendliness with TCP-Reno. This protocol requires only
sender side modifications. Since we would like to satisfy
fair utilization of common network resources (bottleneck
capacity and buffer space), HRF-TCP has two phases in its
window increment phase. Congestion window control of
HRF-TCP is carried out as follows:

cwnd+ = k · RTT2 [per RTT]

when RTT = RTTmin (15)

cwnd+ = k′ · RTT [per RTT]

when RTT > RTTmin (16)

cwnd = max

(
RTTmin

RTT
· cwnd,

cwnd
2

)

when a packet loss is detected (17)

where k and k′ are parameters of RTT which are set accord-
ing to Eq. (7) and Eq. (14), respectively. When vacant ca-
pacity exists (Model I, i.e. RTT = RTTmin), HRF-TCP in-
creases its window size by CR algorithm. When buffering
starts at the bottleneck router (Model II, i.e. RTT > RTTmin),
it switches the mode to CI algorithm. Finally, when a
packet loss happens, HRF-TCP decreases its window size
like TCP-Westwood using Eq. (17) to keep throughput effi-
ciency (i.e. clear the router buffer) and returns to CR or CI
mode according to buffering status at the bottleneck router.
Total behavior of HRF-TCP is shown in Fig. 2, where buffer
size of the bottleneck router is less than BDP and HRF-TCP
applies RTTmin/RTT for window decrement after packet
losses.

5. Experiments

We carried out simulation experiments using ns-2 [16] and
implementation experiments using Packet Storm [17].

Table 4 and Fig. 3 show the implementation environ-
ment and the experiment topology. There are n-flows, n-
senders, n-receivers and two routers. All packets from

Fig. 2 HRF-TCP behavior.

senders and receivers are forwarded by two intermedi-
ate routers. This scenario is called “dumbbell topology”.
Sender i communicates with receiver i (i = 1, 2, . . . , n).
Each sender connects to the router with 1 Gbps link of which
propagation delay is Di which is varied according to RTTi.
Each receiver connects to the other router with 1 Gbps link
of which propagation delay is 1 ms. Link speed and prop-
agation delay of the shared (bottleneck) link between two
routers are set to 100 Mbps and 1 ms, respectively.

We mainly use DT (Drop Tail) as the router buffer man-
agement algorithm. However, since DT is known to be vul-
nerable to the phase effect [4], as the solution, we show re-
sults of the random packet losses on the bottleneck link in
all experiments in this paper.

In the experiments, TCP-Libra provides almost same
results as CR so that we omit TCP-Libra by substituting
CR. We set parameters k and k′ of the CR/CI algorithms
to the values calculated by assuming TCP-Reno of RTT =
40 [ms]. Automatic RTT estimation of competing flows is
further study.

5.1 Model Verification

The first experiments are carried out to verify the window
behavior model of Sect. 3. We observe single flow behav-
iors of RTT = 40 [ms] or RTT = 80 [ms]. According to pa-
rameter setting, bottleneck bandwidth (= B [pkt/s]) is given
by

B =
100 · 106

1500 · 8 = 8333.33̇ [pkt/s]

where packet size is 1500 [byte]. We set S (bottleneck router
buffer size) to 500 [pkt] and compare window behaviors of
TCP-Reno, CR, and CI.

Table 4 Machine specifications in the implementation. (All machines
except the emulator are linux kernel 2.6.22)

Fig. 3 Simulation topology.



OGURA et al.: A NEW TCP CONGESTION CONTROL SUPPORTING RTT-FAIRNESS
527

5.1.1 Model I (Vacant Case)

We observe window behaviors until packets buffering starts
at the bottleneck router. Assume R (residual capacity) is
equal to B/2 [pkt/s], i.e. half utilization of the bottleneck
link capacity, as a starting point of the simulation. In the
end, window size reaches BDP and fills vacant capacity.

Figure 4 shows the window size behaviors obtained by
Eq. (6) in our model and ns2 simulation. We add a vertical
line corresponding to t1 of RTT = 40 [ms], which is the
time when the bottleneck link becomes fully utilized. As
described before, k and k′ in Eqs. (7) and (8) are calculated
by assuming TCP-Reno of RTT = 40 [ms].

In Fig. 4, all protocols of RTT = 40 [ms] behave the
same because of the parameter setting. t1 of these flows
are about 6.5 [s], which coincides with the estimated value
from Table 2. However, window size behaviors of flows
of RTT = 80 [ms] are different from each other. A most
significant result is about TCP-Reno, in which t1 is ap-
proximately 4 times as many as that of RTT = 40 [ms].
Since CI increases its window size in the same rate of the
RTT = 40 [ms] flow, it needs twice the time to fill vacant
capacity compared with the RTT = 40 [ms] flow. Finally,
t1 of CR is the same as the 40 [ms] case as we estimated in
Sect. 3.1. When we compare our model with simulation, all
the flows show similar behaviors. This validates Model I.

5.1.2 Model II (Buffered Case)

Congestion window size behaviors from buffering start to
overflow are shown in Fig. 5. The result shows ns2 simula-
tion and analytical estimation by our model using Eq. (12).
Window size right before overflow is BDP + S [pkt]. Pa-
rameters, k and k′, are calculated by Eq. (13) and Eq. (14),
respectively, with RTTReno,min = 40 [ms]. A vertical line
means t2 of the RTT = 40 [ms] case which represents the
time from buffering start to overflow.

In Fig. 5, congestion window size behaviors show
curved lines which mean that increment rates become slow

Fig. 4 Congestion window behaviors obtained by Eq. (6) and simulation
for Model I.

because of the extra delay caused by packet buffering. Al-
though all protocol flows of RTT = 40 [ms] behave the
same, flows of RTT = 80 [ms] perform differently. A TCP-
Reno flow slowly fills up buffer space but CR rapidly fills.
In case of CI, increment rates are the same and t2 is constant
regardless of RTT values. Both our model and simulation
results show almost the same behaviors. Then, validity of
Model II is also proved.

Though we omit here, implementation experiments
also brings similar results in Model I and Model II. From
the verification results so far, we can conclude that CR fairly
utilizes residual capacity and CI fairly utilizes buffer spaces.

5.2 Intra-Protocol RTT-Fairness

We inspect intra-protocol RTT-fairness in this subsection.
We define a notation for combined protocol usages by
Dec + M1 + M2, in which Dec means window decrement
phase upon packet losses, M1 means window increment
phase when bottleneck link is vacant (Model I), and M2
means window increment phase when packets are buffered
(Model II). For Dec, we consider TCP-Reno (halving con-
gestion window) and TCP-Westwood (clearing buffer), and
denote them by “Reno” and “W”, respectively. For M1 and
M2, we consider Reno, CR and CI, and denote them as they
are. Then, we compare next protocols:

• Reno
• CR
• CI
• W+CR+Reno
• W+CR+CR
• HRF (=W+CR+CI)

W+CR+Reno is an algorithm which uses CR algorithm
when there is residual capacity on the bottleneck link and
behaves as Reno after the link is fully utilized. Similar to
this, W+CR+CR is an algorithm which uses CR in whole
window increment phase. HRF is an intermediate between
W+CR+Reno and W+CR+CR, and it can be denoted by
W+CR+CI.

Fig. 5 Congestion window behaviors obtained by Eq. (12) and simula-
tion for Model II.



528
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.2 FEBRUARY 2012

In the experiments, two flows of the same protocol but
having different RTTs run in the topology in Fig. 3. One
flow has RTT = 40 [ms] (BDP = 333 [pkt]) and the other
flow has RTT = 120 [ms] (BDP = 1000 [pkt]). From Fig. 6
to Fig. 8, figures show throughput differences, Thr1-Thr2,
where Thr1 is a throughput of the RTT = 40 [ms] flow and
Thr2 is that of the RTT = 120 [ms] flow.

5.2.1 Changing Buffer Size

We evaluate intra-protocol RTT-fairness when changing
buffer size at the bottleneck router. Buffering size at the
bottleneck router is variable between 111∼4000 [pkt].

From Fig. 6, we can recognize that HRF and CR
present the best RTT-fair result. In the non-buffered state
(Model I), CR is a more RTT-fair contributor than CI and
Reno. In case of CI and Reno, the smaller RTT flow gets
more resources than the longer RTT flow. In the buffered
state (Model II), W+CR+CR provides more resources for
longer RTT flow but W+CR+Reno does for smaller RTT
flow. The results prove that the CI behavior of HRF
contributes to better RTT-fairness. Using “W” instead of
“Reno” in window decrement phase cause different effects

Fig. 6 Throughput differences when changing buffer size.

to RTT-fair according to window increment phase behavior,
better (compare Reno with Westwood) or worse (compare
CR with W+CR+CR). We also note that adaptive switching
between CR and CI brings much better RTT-fairness perfor-
mance than the others when TCP-Westwood is used as the
decrement phase.

5.2.2 Changing RTT Value

To evaluate intra-protocol RTT-fairness by changing RTT
value, we set one flow to have constant RTT (= 40 [ms]) and
the other flow to have variable RTT (= 13.33∼480 [ms]).
Buffer size of the bottleneck router is fixed at 333 [pkt].

In Fig. 7, HRF and CR are almost RTT-fair regardless
of RTT values. In Model I, by comparisons of three proto-
cols (Reno, CI and CR), same trends as the previous section
are shown. CI and Reno get RTT-unfair as a RTT differ-
ence between two flows becomes large. In Model II, by
comparisons of three protocols (W+CR+Reno, HRF and
W+CR+CR), CI improves RTT-fair regardless of RTT val-
ues though CR and Reno negatively affect RTT-fairness.
Differently from the previous section, applying “W” into
Reno and CR make RTT-fair worse as a RTT difference be-

Fig. 7 Throughput differences when changing RTT value.



OGURA et al.: A NEW TCP CONGESTION CONTROL SUPPORTING RTT-FAIRNESS
529

tween two flows becomes large. We conclude that HRF gets
RTT-fairness without changing RTT value despite of using
“W” in window decrement phase.

5.2.3 Changing the Number of Flows

We carry out the experiments by changing the number of
flows of the same protocol. RTTs of half flows are 40 [ms]
and those of the others are 120 [ms]. Buffer size of bot-
tleneck is 333 [pkt]. There is a difference between simula-
tion and implementation. Due to hardware limitation of our
network emulator which has two incoming interfaces and
two outgoing interfaces, each node generates multiple TCP
flows and multiplex them on the access link.

Figure 8 shows that larger RTT flows of all protocols
tend to utilize more bandwidth as the number of flows in-
crease in the simulation case. This is because one flow tends
to dominate the bandwidth and does not provide any chances
to increase window sizes of the other flows. By contrast, in
the implementation experiments, Fig. 8 (b) shows relatively
stable results regardless the number of flows. The trends in
the term of RTT-fairness are similar to 5.2.1 section. Reno,
CI and W+CR+Reno flows with smaller RTT dominantly

Fig. 8 Throughput differences when changing the number of flows.

utilize bandwidth, but W+CR+CR behaves oppositely. Note
that HRF and CR are RTT-fair as we expected in spite of
changing the number of competing flows.

In conclusion, HRF, which combines Westwood, CR
and CI algorithm in each phase, brings much better RTT-fair
in all cases changing buffer size, RTT value, and the number
of flows.

5.3 Throughput Efficiency

Figure 9 compares throughputs of a single TCP flow when
RTT is varied from 13.33 [ms] to 480 [ms] and random
packet losses are caused by 10−6. Buffer size at the bot-
tleneck router is constant at 100 [pkt], which is smaller than
BDP and tends to cause vacant capacity in the bottleneck
link. In Fig. 9, continuous lines and dot lines are implemen-
tation and simulation results, respectively.

From this figure, we can recognize that HRF can
bring sufficient throughputs but the others cannot. TCP-
Westwood performs well for small RTTs but degrades for
larger RTTs because of its conservative window increment.
TCP-Reno and CI performs worse as RTTs become larger
due to their window halving upon packet losses. CR also de-
creases its throughputs as RTTs increases because, in these
cases, almost packet losses are caused by overflow and va-
cant capacity is increased. Even in such these cases, only
HRF performs well thanks to its RTT-adaptive window in-
crement and TCP-Westwood’s smart window decrement.
When RTT value becomes 480 ms, the throughputs of HRF
and CR in the simulation degrade far from those in the im-
plementation. The reason is that increment amount of win-
dow size per RTT by CR algorithm exceeds the buffer size,
which lead to the burst packet losses and timeout happens.
However, we reason that some factors (delay jitter) would
mitigate its effect in the implementation.

5.4 Inter-Protocol RTT Fairness

This subsection focuses on inter-protocol RTT fairness with
TCP-Reno. Buffer size is equal to BDP. Packet loss rate
is set to 10−4 to eliminate the phase effect. Figure 10

Fig. 9 Throughputs of various TCPs when RTT varies.



530
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.2 FEBRUARY 2012

Fig. 10 Throughputs of competing TCP-Reno flows having different
RTTs.

Fig. 11 Throughputs of competing TCP-Reno and HRF flows having
different RTTs.

shows throughputs of competing two TCP-Reno flows, and
Fig. 11 shows those of TCP-Reno and HRF flows. These re-
sults come from implementation. Simulation results are al-
most same as them. One TCP-Reno flow has constant RTT
(40 [ms]) and the other flow (TCP-Reno or HRF) has differ-
ent RTT varied from 13.33 [ms] to 480 [ms].

From these figures, we can observe that total through-
put of the HRF/Reno case is significantly larger than that of
the TCP-Reno only case. This is because HRF is an efficient
protocol as proved in the previous subsection. Figure 10
shows RTT-unfairness of TCP-Reno, which had been indi-
cated by many researchers. On the other hand, Fig. 11 shows
stable throughputs of TCP-Reno and HRF in spite of differ-
ent RTTs. This indicates that HRF can utilize bandwidth
efficiently without disturbing TCP-Reno, and achieve inter-
protocol RTT-fairness with TCP-Reno even if RTT changes.
HRF keeps friendliness with TCP-Reno by appropriate k
and k′ settings, which control proposal of tradeoff between
scalability and friendliness, though, we should take an in-
vestigation into those parameters.

6. Conclusions

In this paper, we focused on resource sharing (of the bottle-
neck link and the router buffer) and analyzed the unfairness
problems of them. By the different approach from the clas-
sical method named CR, we then presented a new conges-
tion control algorithm called “HRF-TCP” to support RTT-
fairness which switches CR and CI modes according to ob-
served delays and applies TCP-Westwood’s window decre-

ment mechanism. Both implementation and simulation re-
sults proved that HRF provides RTT-fairness, throughput ef-
ficiency and TCP-friendliness with TCP-Reno. As future
work, we should determine k and k′ automatically accord-
ing to the RTT estimation of competing flows.

References

[1] W.R. Stevens, “TCP slow start, congestion avoidance, fastretrans-
mit, and fast recovery algorithms,” IETF RFC 2581, 1997.

[2] H. Hisamatu, H. Ohsaki, and M. Murata, “Steady state analysis of
TCP connections with different propagation delays,” IEICE Techni-
cal Report, IN2002-97, Oct. 2002 (in Japanese).

[3] G. Marfia, C.E. Palazzi, G. Pau, M. Gerla, M.Y. Sanadidi, and M.
Roccetti, “Balancing video on demand flows over links with hetero-
geneous delays,” ACM MobiMedia 2007, Aug. 2007.

[4] S. Floyd and V. Jacobson, “On traffic phase effects in packet-
switched gateways,” ACM SIGCOMM Computer Communication
Review, vol.21, no.2, pp.26–42, 1991.

[5] T.H. Henderson, E. Sahouria, S. McCanne, and R.H. Katz,
“On improving the fairness of TCP congestion avoidance,” IEEE
Globecomm, 1998.

[6] L. Xu, K. Harfoush, and I. Rhee, “Binary increase congestion con-
trol (BIC) for fast, long distance networks,” Proc. INFOCOM, 2004.

[7] S. Ha, I. Rhee, and L. Xu, “CUBIC: A new TCP-friendly High-speed
TCP variant,” ACM SIGOPS Operating Systems Review, vol.42, Is-
sue 5, pp.64–74, July 2008.

[8] C. Jin, D.X. Wei, and S.H. Low, “FAST TCP: Motivation, archi-
tecture, algorithms, performance,” IEEE INFOCOM 2004, March
2004.

[9] Y. Nemoto, K. Ogura, and J. Katto, “TCP congestion control us-
ing RTT estimation by measuring ACK intervals,” IEICE Technical
Report, NS2010-270, March 2011 (in Japanese).

[10] C. Casetti, M. Gerla, S. Mascolo, M.Y. Sanadidi, and R. Wang,
“TCP westwood: Bandwidth estimation for enhanced transport over
wireless links,” Proc. ACM Mobicom 2001, July 2001.

[11] K. Tan. J.Song, Q. Zhang, and M. Sridharan, “Compound TCP: A
scalable and TCP-friendly congestion control for high-speed net-
works,” PFLDnet 2006, Feb. 2006.

[12] H. Shimonishi, T. Hama, and T. Murase, “TCP-adaptive reno for im-
proving efficiency-friendliness tradeoffs of TCP congestion control
algorithm,” PFLDnet 2006, Feb. 2006.

[13] S. Liu, T. Başar, and R. Srikant, “TCP-Illinois: A loss and delay-
based congestion control algorithm for high-speed networks,” VAL-
UETOOLS 2006, Oct. 2006.

[14] A. Baiocchi, A.P. Castellani, and F. Vacirca, “YeAH-TCP: Yet an-
other highspeed TCP,” PFLDnet 2007, Feb. 2007.

[15] K. Kaneko, T. Fujikawa, S. Zhou, and J. Katto, “TCP-fusion: A hy-
brid congestion control algorithm for High-speed networks,” PFLD-
net 2007, Feb. 2007.

[16] “ns-2 network simulator(ver.2),” http://www.mash.cs.berkley.edu/
[17] Packet Storm, http://www.packetstorm.com



OGURA et al.: A NEW TCP CONGESTION CONTROL SUPPORTING RTT-FAIRNESS
531

Kazumine Ogura received the B.Eng. de-
gree in computer engineering from Waseda Uni-
versity, Tokyo, Japan in 2008, and the M.Eng.
degree in computer engineering from Waseda
University, Tokyo, Japan in 2009. His current
research interests include the TCP, wired and
wireless networks. He is currently working to-
wards the Ph.D. degree in the Graduate School
of Science and Engineering, Waseda University.

Yohei Nemoto received the B.Eng. degree
in computer engineering from Waseda Univer-
sity, Tokyo, Japan in 2008. His current research
interests include the TCP, wired and wireless
networks. He is currently working towards the
M.Eng. degree in the Graduate School of Sci-
ence and Engineering, Waseda University.

Zhou Su received the B.E. and M.E. degrees
from Xi’an Jiaotong University, Xi’an, China, in
1997, 2000, and Ph.D. degree from Waseda Uni-
versity, Tokyo, Japan, in 2003, respectively. He
was an exchange student between Waseda and
Xi’an Jiaotong University from 1999 to 2000.
From 2001 he had been a research associate at
Waseda University and he is currently an assis-
tant professor at the same university. His re-
search interests include multimedia communica-
tion, web performance and network traffic. He

received the SIEMENS Prize in 1998, and ROCKWELL Automation Mas-
ter of Science Award in 1999. He is a member of the IEEE and IEE.

Jiro Katto received B.S., M.E. and Ph.D.
degrees in electrical engineering from Univer-
sity of Tokyo in 1987, 1989 and 1992, respec-
tively. He worked for NEC Coporation from
1992 to 1999. He also a visiting scholar at
Princeton University, NJ, USA, from 1996 to
1997. He then joined Waseda University in
1999. Since 2004, he has been a professor of the
Department of Computer Science, Science and
Engineering, Waseda University. From 2004 to
2008, he has also been a director of the Elec-

tronic and Information Technology Development Department, New Energy
and Industrial Technology Development Organization. His research inter-
est is in the field of multimedia communication systems and multimedia
signal processing. He received the Best Student Paper Award at SPIE Con-
ference of Visual Communication and Image Processing in 1991, and re-
ceived the Young Investigator Award of IEICE in 1995. He is a member of
IEEE, ACM, IPSJ and ITE.


