
636
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.2 FEBRUARY 2012

PAPER

A Fast Multi-Object Extraction Algorithm Based on Cell-Based
Connected Components Labeling

Qingyi GU†a), Takeshi TAKAKI†b), Nonmembers, and Idaku ISHII†c), Member

SUMMARY We describe a cell-based connected component labeling
algorithm to calculate the 0th and 1st moment features as the attributes for
labeled regions. These can be used to indicate their sizes and positions
for multi-object extraction. Based on the additivity in moment features,
the cell-based labeling algorithm can label divided cells of a certain size in
an image by scanning the image only once to obtain the moment features
of the labeled regions with remarkably reduced computational complexity
and memory consumption for labeling. Our algorithm is a simple-one-
time-scan cell-based labeling algorithm, which is suitable for hardware and
parallel implementation. We also compared it with conventional labeling
algorithms. The experimental results showed that our algorithm is faster
than conventional raster-scan labeling algorithms.
key words: fast multi-object extraction, connected component labeling

1. Introduction

Connected component labeling is a basic method that is used
to extract multiple objects from an image as segmented re-
gions. Many labeling algorithms have been used to calculate
their image features such as number of labeled regions, size,
and position for practical machine inspection in factory au-
tomation, biomedical, and other applications. In most cases,
they have been applied to video images with video signal
formats (e.g., NTSC 30 fps, PAL 25 fps); however, there is
a strong requirement for simultaneous labeling and feature
extraction to capture and recognize rapidly moving objects
in an image that are too fast for the human eye to see.

Many types of high-speed vision systems that can oper-
ate at high frame rates of 1000 fps or more have been devel-
oped for simultaneous video processing. Vision chips [1]–
[4] are on-chip solutions for simultaneous video process-
ing; these are produced by fabricating sensors and pro-
cessors on a compact die. Field-programmable gate array
(FPGA)-based high-speed vision platforms have been de-
veloped for the hardware implementation of various types
of image processing algorithms. For example, massively
parallel co-processors have been implemented for multi-
target tracking [5]; Hough transforms have been imple-
mented on an FPGA [6]; and a high-speed vision platform
for 1024 × 1024 pixel images [7] has been developed to ex-
ecute real-time image processing algorithms such as color

Manuscript received April 11, 2011.
Manuscript revised September 8, 2011.
†The authors are with the Department of System Cybernetics,

Hiroshima University, Higashihiroshima-shi, 739–8527 Japan.
a) E-mail: gu@robotics.hiroshima-u.ac.jp
b) E-mail: takaki@robotics.hiroshima-u.ac.jp
c) E-mail: iishii@robotics.hiroshima-u.ac.jp

DOI: 10.1587/transinf.E95.D.636

marker tracking, feature point tracking, and optical flow es-
timation. If we could implement a real-time image process-
ing function to extract image features of labeled regions in
an image on such high-speed vision platforms, it would be-
come possible to carry out multi-object extraction at a higher
frame rate than the NTSC frame rate of 30 fps.

However, conventional labeling algorithms are not al-
ways suitable for fast multi-object extraction because most
of them require a large memory area, depending on the im-
age size with sequential scanning for an entire image; this
makes it difficult to carry out high-speed image processing
on a high-speed vision platform. In this study, a cell-based
connected component labeling algorithm that can remark-
ably reduce computational complexity and memory con-
sumption is proposed to accelerate moment features calcu-
lation of the labeled regions in an image. Section 2 sum-
marizes previous works for connected component labeling
and their problems in high-speed implementation. Section 3
introduces a cell-based labeling algorithm that can segment
all the divided regions of a certain size in an image to ob-
tain their 0th and 1st moment features; these moment fea-
tures can express their sizes and positions for multi-object
extraction. In Sect. 4, the execution times and accuracies
of our cell-based labeling algorithm on a personal computer
(PC) are evaluated for several image patterns, and these re-
sults are compared with those obtained for several conven-
tional connected component labeling algorithms. Memory
consumption of our algorithm is also discussed in Sect. 4.

2. Previous Works

Rosenfeld’s algorithm [8] is one of the earliest works on
connected component labeling with sequential image pro-
cessing. This algorithm carries out two passes over an entire
image to relabel and temporarily store label equivalences as
an image until the second scanning is completed. To re-
duce the number of scanned pixels for labeling, Haralick
proposed an improved algorithm [9] that does not store the
label equivalences explicitly by iterating the forward-and-
backward scans alternatively until no further merging is pos-
sible. This algorithm cannot always guarantee its execution
time in the worst case for real-time applications because the
number of image scans varies with the complexity of the
connected components. To solve this problem in connected
component labeling with bidirectional scanning, several im-
proved algorithms [10], [11] that introduce relabeling tables
to Haralick’s algorithm have recently been proposed.

Copyright c© 2012 The Institute of Electronics, Information and Communication Engineers

GU et al.: A FAST MULTI-OBJECT EXTRACTION ALGORITHM BASED ON CELL-BASED CONNECTED COMPONENTS LABELING
637

To reduce the time for assigning new labels, He et al.
have proposed a fast two-scan run-based algorithm [12] that
considers the connectivity between runs instead of pixels.
Although this algorithm can be accelerated by reducing the
number of relabeling operations using equivalent-label sets
and a representative label table, it is only efficient for run-
length-encoded images and its computational complexity in-
creases when general images are handled. An improved fast
two-scan algorithm [13] has been also proposed by simpli-
fying the label assignment strategy to avoid the calculation
for small connected components. However, it still requires
high memory consumption and two-scan at least, which are
disadvantages in accelerating labeling process.

One-scan labeling algorithms [14], [15] have been pro-
posed that would scan connected components in an image
by tracking their contours. Their computational speeds de-
pend on the complexity of the connected components and
they require that an image should be initially stored to track
the contours of connected components with complex trajec-
tories. However, these algorithms are not suitable for hard-
ware implementation because of their irregular image mem-
ory access. A one-scan labeling algorithm [16] for hardware
implementation has been also reported, while it theoreti-
cally requires 50% horizontal blanking period to solve la-
bel equivalences after scanning one line. Many parallelized
labeling algorithms have been proposed for implementation
on various types of parallel computers [17]–[19]; these algo-
rithms can label sub-images on divided block regions of an
image in parallel and merge the labeled results into a labeled
image for the entire area. Most of them still need to carry
out complicated merge processing for the divided block re-
gions and labeled data of the image size have to be stored
temporarily during processing.

Most of the above algorithms have been designed to ob-
tain a labeled image by scanning all the pixels in an image;
however, there are many cases in which only the image fea-
tures of labeled connected components are required, such as
in blob processing. Amir et al. developed a hardware imple-
mentation of a labeling algorithm [20] with a single image
scan that processes each scan line as it becomes available to
obtain only the 0th and 1st moment features and bounding
boxes of connected components in an image for the pupil
tracking of human eyes. They also developed an embedded
system for human eye detection by hardware-implementing
their algorithm; this system can process a 640 × 480 pixel
image in real-time at 60 fps. Gabbur et al. [21] extended this
algorithm by introducing tree structures to merge equivalent
labels. Although these algorithms do not need to temporar-
ily store input images and their labeled images during label-
ing, there exist many constraints that limit their application
to multi-object extraction at a high frame rate of 1000 fps
or more; (1) sequential image scan for all pixels in an im-
age, which make difficulties to parallelize labeling process
at high speed; (2) too many label equivalences for connected
components when there exist non-convex objects and iso-
lated points in an image, which often require large memories
of image size or more to store image features of the labeled

regions.

3. Cell-based labeling algorithm

3.1 Concept

By cropping the image to be scanned with a certain interval,
we can easily speed up image feature extraction for con-
nected components in an image, while the extracted image
features are degraded in space resolution. Therefore, in this
study, we introduce a concept of cell-based labeling to ex-
tract the 0th and 1st moment features of connected com-
ponents; this can reduce the number of scanned pixels for
labeling and memory size to store label equivalences with-
out accuracy degradation in space resolution by dividing an
image into subimage regions of a certain size as cells.

Our designed algorithm based on the concept of cell-
based labeling can obtain moment features Mpq(Ol) for la-
beled regions Ol (l = 0, . . . , L − 1) in a binary image
B(x, y) of N × N pixels; B(x, y) is divided into M2 cells Γab

(a = 0, . . . ,M − 1, b = 0, . . . ,M − 1) of n × n pixels when
N = nM,

Γab = {(x, y)|(an + s, bn + t), 0≤ s<n, 0≤ t<n}. (1)

Two processes are included in our algorithm, as shown
in Fig. 1: (1) calculation of moment features Mpq(Γab) for
M2 cells, which requires pixel-level computation having a
complexity of the order O(N2), and (2) labeling M2 cells
with updated moment features Mpq(Ol) for L labeled regions
Ol, which requires cell-level computation having a complex-
ity of the order O(M2). In the case of 4-neighbor connected
components, our algorithm only requires M2/2 label equiva-
lences at maximum in labeling process, whereas pixel-based
labeling algorithms require N2/2 label equivalences at max-
imum.

Therefore, by exchanging its computation sequence in
labeling process for cells, the computational complexity and
label equivalences required for labeling can be remarkably
reduced in cell-based computation of the order O(M2). Here
moment features of connected components extracted by our
cell-based labeling algorithm are not always matched with
those of pixel-based connected component labeling algo-
rithms when their cell size is larger than 1 × 1 pixel, that is,
n > 1, because the pixels belonging to different connected
components in the same cell or neighboring cells may be of-
ten misidentified as the same labeled regions based on the

Fig. 1 Concept of cell-based labeling algorithm.

638
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.2 FEBRUARY 2012

connectivity of cells. This means that our cell-based la-
beling algorithm is not perfectly equivalent to pixel-based
connected component labeling algorithms, and we have to
consider a trade-off relationship between its computational
complexity and equivalency to pixel-based connected com-
ponent labeling.

3.2 Additivity in Moment Feature Calculation

The p-th and q-th moment features ((p, q) = (0, 0), (1, 0),
(0, 1)) for x and y in a region Γ for an image B(x, y) are
written as,

Mpq(Γ) =
∑

(x,y)∈Γ
xpyqB(x, y). (2)

When a region Γ can be divided into K sub-regions
Γ0, . . . ,ΓK−1, moment features Mpq(Γ) can be calculated
by adding the moment features Mpq(Γk) for sub-regions
Γ0, . . . ,ΓK−1 as follows,

Mpq(Γ) =
K−1∑
k=0

Mpq(Γk). (3)

This additivity in moment feature calculation implies
that the moment feature for an image region can be ob-
tained by calculating the moment features for its divided
sub-regions and then adding them, which is the process of
commutativity in moment feature calculation. Based on this
commutativity, our algorithm can reduce its computational
complexity by exchanging its computation sequence for the
connected component labeling of divided cells after calcu-
lating the moment features for n × n pixel cells.

3.3 Algorithm

3.3.1 Calculation of Cell-Based Moment Features

First, the cell-based moment features M′pq(Γab) are calcu-
lated for every cell Γab of n × n pixels,

M′pq(Γab) =
n−1∑
s=0

n−1∑
t=0

sptqB(an + s, bn + t). (4)

Here, we use a feature M′pq(Γab) to reduce the memory con-
sumption, which is similar to Mpq(Γab) using a coefficient
sptq with a smaller bit length than that of (an + s)p(bn + t)q.
Mpq(Γab) and M′pq(Γab) have the following relationship,

M00(Γab) = M′00(Γab), (5)

M10(Γab) = M′10(Γab) + an · M′00(Γab), (6)

M01(Γab) = M′01(Γab) + bn · M′00(Γab). (7)

3.3.2 Labeling of Cells with Updated Moment Features

Next, all the cells are labeled by using the calculated cell-
based moment features in order to extract the moment fea-
tures of the labeled regions as connected components in an

image. The labeling process for the cells is carried out by
scanning Pab of M × M cells from the upper left cell to the
lower right one. Here Pab is a flag map of M × M cells to
judge whether a cell Γab should be labeled or not. In this
study, this flag map is defined by checking M′00(Γab) with a
threshold θ, which is the sum of the active pixels in Γab,

Pab =

{
1 (M′00(Γab) ≥ θ)
0 (otherwise)

. (8)

By adjusting a threshold θ, robustness and sensitivity in con-
nected component labeling can be controlled in our algo-
rithm. When θ is large, we can eliminate isolated noises
and undesired effects due to other noises in labeling process
with little accuracy degradation in moment feature calcu-
lation because some non-active cells are ignored although
there exist active pixels in the cells. When θ is small, mo-
ment features are almost accurately calculated for connected
components whereas small connected components caused
by noises may adversely affect in labeling process, as shown
in pixel-based connected component labeling algorithms.

When Γab is a current cell in scanning, we assume that
the labels l0b−1, . . ., lM−1b−1 for M cells Γ0b−1, . . ., ΓM−1b−1 in
the previous row (b−1) and the tentative labels l′0b, . . ., l′a−1b
for a cells Γ0b, . . ., Γa−1b in the current row b are already
given. For L labeled regions O1, . . . ,OL, m00(l), m10(l), and
m01(l) (l = 0, . . . , L − 1) are used as memories to update
the 0th and 1st moment features for labeled regions in se-
quential scanning. The memory r(l) is also prepared for the
relabeling process after scanning every row.

The labeling process of cells in our algorithm includes
(1) a tentative labeling sub-process with updated moment
features in every cell, and (2) a relabeling sub-process in ev-
ery row. In this study, our algorithm is designed to label cells
based on 4-neighbor connectivity. Moreover, this cell-based
labeling algorithm can be easily expanded to 8-neighbor
connectivity by using upper-left, upper, upper-right, and left
cells to assign a new label to the current cell, whereas up-
per and left cells are used in label assignment based on 4-
neighbor connectivity.

(1) Tentative labeling sub-process in every cell

When a flag Pab = 1, that is, a current cell Γab is active,
its label is tentatively obtained by using the relationship be-
tween its upper cell Γab−1 and left cell Γa−1b. To determine
a tentative label l′ab and update moment features m00(l′ab),
m10(l′ab), and m01(l′ab), we consider the following five cases
shown in Fig. 2.

Case 1) Pab−1 = Pa−1b = 0.
When both the upper and the left cells are not active, a

Fig. 2 Relationship between neighboring cells in tentative labeling.

GU et al.: A FAST MULTI-OBJECT EXTRACTION ALGORITHM BASED ON CELL-BASED CONNECTED COMPONENTS LABELING
639

current cell Γab obtains a new label lnew as a new con-
nected component, which is not assigned to any other
cell, and mpq(l′ab) for a new labeled region Olnew are set
to the cell-based moment features Mpq(Γab) of the cur-
rent cell Γab.

(A) determine tentative label

l′ab = lnew. (9)

(B) update moment features

mpq(l′ab) = Mpq(Γab). (10)

Case 2) Pab−1 = 1, Pa−1b = 0.
When only the upper cell Γab−1 is active, a current cell
Γab succeeds the label lab−1 of its upper cell. Based on
the additivity in moment feature calculation, mpq(l′ab)
are updated by adding m̂pq(l′ab) to Mpq(Γab) of the cur-
rent cell. Here m̂pq(l) is defined as mpq(l) in the previ-
ous cell in scanning.

(A) determine tentative label

l′ab = lab−1. (11)

(B) update moment features

mpq(l′ab) = m̂pq(l′ab) + Mpq(Γab). (12)

Case 3) Pab−1 = 0, Pa−1b = 1.
When only the left cell Γa−1b is active, a current cell
succeeds the tentative label l′a−1b of its left cell and
mpq(l′ab) are updated by adding m̂pq(l′ab) to Mpq(Γab) in
the same manner as Case 2.

(A) determine tentative label

l′ab = l′a−1b. (13)

(B) update moment features

mpq(l′ab) = m̂pq(l′ab) + Mpq(Γab). (14)

Case 4) Pab−1 = Pa−1b = 1, and lab−1 = l′a−1b.
When both the upper and the left cells are active and
they have a common label, a current cell succeeds the
tentative label l′a−1b of its left cell as the common label.
mpq(l′ab) are updated by adding m̂pq(l′ab) to Mpq(Γab) in
the same manner as Case 2.

(A) determine tentative label

l′ab = l′a−1b. (15)

(B) update moment features

mpq(l′ab) = m̂pq(l′ab) + Mpq(Γab). (16)

Case 5) Pab−1 = Pa−1b = 1, and lab−1 � l′a−1b.
When both the upper and the left cells are active and
they have different labels, a current cell Γab selects a
smaller label in the neighboring cells. Then, mpq(l′ab)
are updated by adding both m̂pq(l′a−1b) and m̂pq(lab−1)
for the previous two labels to Mpq(Γab) based on the
additivity in moment feature calculation. Additionally,

a memory r(l) is updated for the relabeling process to
record which labels are unified.

(A) determine tentative label

l′ab = min(lab−1, l
′
a−1b). (17)

(B) update moment features

mpq(l′ab)= m̂pq(lab−1)+m̂pq(l′a−1b)+Mpq(Γab).(18)

(C) update memory r(l)

r(max(lab−1, l
′
a−1b)) = l′ab. (19)

In sub-process (1), m̂pq(l) are initially set to zero in the
left upper cell Γ00. When there exist no upper or left cells
around the cells Γ0 j or Γi0 (i = 0, . . . ,M−1, j = 0, . . . ,M−1)
in the first row or column, the neighboring cells are virtually
set as non-active cells in this study.

(2) Relabeling sub-process in every row

After all the cells in the current row are scanned for sub-
process (1), their tentative labels l′ab still remain to be up-
dated while the moment features mpq(l′ab) for labeled regions
have already been updated. Here the labels for all the cells
in the current row should be memorized as upper cell data
before starting to label cells in next row. In Case 5, the con-
nected cells in the same row have different labels in the ten-
tative labeling of sub-process (1) when “U” shape compo-
nent is handled as shown in Fig. 3. In this study, we solved
this problem by updating tentative labels l′ib to new labels
lib for all the cells Γib (i = 0, . . . ,M − 1) in the current row
b from right to left when a row is completely scanned. By
using the memory r(l), which indicates which labels are uni-
fied, the relabeling process is executed as follows,

r(l′ib) = r(r(l′ib))
lib = r(l′ib)

(i = 0, . . . ,M − 1)
.

(20)

Here the number of unified tentative labels may in-
crease in sub-process 2-a) when Case 5 often occurs. There-
fore, memory areas of moment features for abandoned ten-
tative labels also increase, and they may disturb high-speed

Fig. 3 Relabeling process.

640
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.2 FEBRUARY 2012

processing and hardware-implementation of cell-based la-
beling in the worst case. To reduce the memory areas for
the abandoned labels, they are released for recycling as new
labels after the relabeling process. The memory r(l) for re-
labeling is then reset as follows,

r(l) = l (l = 0, · · · , L − 1). (21)

After scanning all the rows for sub-processes (1)
and (2), moment features Mpq(Ol) for labeled regions Ol are
finally obtained as follows,

Mpq(Ol) = mpq(l). (22)

By using the 0th and 1st moment features Mpq(Ol) for la-
beled regions Ol, we can calculate the centroids (xl, yl) and
areas S l of all the labeled regions as the positions and sizes
for multi-object extraction in an image as follows,

(xl, yl) =

(
M10(Ol)
M00(Ol)

,
M01(Ol)
M00(Ol)

)
, (23)

S l = M00(Ol). (24)

4. Evaluations

4.1 Execution Time on a PC

First, we evaluated execution times to obtain the 0th and
1st moment features of multiple objects in an image by
software-implementing our cell-based labeling algorithm
with different cell sizes on a PC. N × N pixel images
(N = 128, 256, and 512) were evaluated for the four types
of binary image patterns shown in Fig. 4; (a) crown water,
(b) monkey face, (c) Lena, and (d) grass texture. These test
images were collected from the image database at the Uni-
versity of Southern California† and the Columbia-Utrecht
Reflectance and Texture Database††, and (a) – (d) show the
images of 512 × 512 pixels to be evaluated, which were
binarized using Otsu method [22]. The images of different
sizes to be evaluated were generated by cropping these im-
age patterns proportionally. The cell sizes in the cell-based
labeling algorithm were set to n × n pixels (n = 1, 2, 4, and
8), and the maximum number of labeled regions was set to
be half the number of cells, L = M2/2. In the evaluation,
we used a PC with an ASUSTeK P5E mainboard, Intel Core
2 Quad Q9300 bulk CPU, 4 GB memory, and Windows XP
Professional 32 bit OS. A threshold parameter θ to deter-
mine active cells was set to 1 in all the cases, and the ex-
ecution times were evaluated without considering the fact
that the objects in the images may be lost or degraded in
the cropping. Here it is noted that the results labeled with
our cell-based labeling algorithm are perfectly matched with
those with conventional labeling algorithms when n = 1.

Figure 5 shows the execution times on the PC for our
cell-based labeling algorithm for different image sizes, com-
pared with those for conventional labeling algorithms listed
in Table 1; Suzuki’s algorithm [10] is a well-known four-
scan algorithm for fast pixel-based connected components

(a) crown water (b) monkey face

(c) Lena (d) grass texture

Fig. 4 image patterns in evaluating execution times on a PC.

labeling; He’s algorithm [15] is a fast raster-scan-based la-
beling algorithm; Chang’s algorithm [12] is a fast one-scan
labeling algorithm using contour tracing. In the figures,
“1 × 1”, “2 × 2”, “4 × 4”, and “8 × 8” imply execution
times for connected components labeling and moment fea-
ture calculation of the labeled regions when the cell size is
set to n = 1, 2, 4, and 8, respectively, in the cell-based label-
ing algorithm.

For the “crown water” image of 512 × 512 pixels,
the execution times of cell-based labeling algorithm with
n = 1, 2, 4, and 8 were 2.25 ms, 1.92 ms, 1.57 ms, and
1.34 ms, respectively, and those of Suzuki’s algorithm, He’s
algorithm, and Chang’s algorithm were 7.03 ms, 3.48 ms,
and 2.26 ms, respectively. For the “monkey face” image
of 512 × 512 pixels, the execution times of cell-based la-
beling algorithm with n = 1, 2, 4, and 8 were 4.58 ms,
3.45 ms, 2.34 ms, and 2.27 ms, respectively, and those of
Suzuki’s algorithm, He’s algorithm, and Chang’s algorithm
were 15.03 ms, 6.48 ms, and 4.97 ms, respectively. For the
“Lena” image of 512 × 512 pixels, the execution times of
cell-based labeling algorithm with n = 1, 2, 4, and 8 were
4.06 ms, 2.90 ms, 2.04 ms, and 1.86 ms, respectively, and
those of Suzuki’s algorithm, He’s algorithm, and Chang’s al-
gorithm were 10.54 ms, 4.77 ms, and 3.18 ms, respectively.
For the “grass texture” image of 512 × 512 pixels, the execu-
tion times of cell-based labeling algorithm with n = 1, 2, 4,
and 8 were 2.66 ms, 2.60 ms, 1.83 ms, and 1.80 ms, respec-
tively, and those of Suzuki’s algorithm, He’s algorithm, and
Chang’s algorithm were 9.70 ms, 5.08 ms, and 3.75 ms, re-
spectively. The execution times of cell-based labeling al-

†http://sipi.usc.edu/database/
††http://www1.cs.columbia.edu/CAVE/software/curet/

index.php

GU et al.: A FAST MULTI-OBJECT EXTRACTION ALGORITHM BASED ON CELL-BASED CONNECTED COMPONENTS LABELING
641

(a) crown water (b) monkey face

(c) Lena (d) grass texture

Fig. 5 Execution times for our cell-based labeling algorithm (n = 1, 2, 4 and 8) and conventional
labeling algorithms.

(a) crown water (b) monkey face

(c) Lena (d) grass texture

Fig. 6 Relationship between execution times and cell sizes in the case of a 512 × 512 pixel image
(N = 512).

Table 1 Labeling algorithms to be compared.

Algorithm Type Reference
Suzuki Four-scan Suzuki et al. [10]
Chang Contour tracing Chang et al. [15]
He Run-based two-scan He et al. [12]
CellBased Cell-based one-scan this paper

gorithm when n = 1 were less than those of the labeling
algorithms to be compared for all the tested image patterns
except in the case of Chang’s algorithm for the “Lena” im-
age. For all the image patterns and sizes, the execution time

of cell-based labeling algorithm decreased as the cell size n
increased, and the execution times of all the labeling algo-
rithms to be compared were greater than those of cell-based
labeling algorithm when n = 2, 4, and 8.

For the test image patterns of 512 × 512 pixels with the
different cell sizes where n = 1, 2, 4, and 8, Fig. 6 shows the
execution times for cell-based moment feature calculation
and labeling of cells in the cell-based labeling algorithm.
Here there is no need to calculate cell-based moment fea-
tures when n = 1, because the 0th moment feature of a
1 × 1 cell is equal to its pixel value and pixel-level accu-

642
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.2 FEBRUARY 2012

mulation for moment feature calculation is wholly involved
in the process for labeling of cells. When the “Lena” image
was labeled with 2 × 2 cells (n = 2), 1.84 ms and 1.06 ms
were the execution time for cell-based moment feature cal-
culation and that of labeling of cells, respectively, and its to-
tal time was 2.90 ms. Figure 6 shows that the total execution
time required for cell-based labeling decreased when the cell
size n increased. When the “Lena” image was labeled with
8×8 cells (n = 8), the execution times of cell-based moment
feature calculation, labeling of cells, and their total time,
were 1.78 ms, 0.08 ms, and 1.86 ms; they were 0.97 times,
0.08 times, and 0.64 times that when n = 2. From these fig-
ures, it can be seen that the execution time for cell-based
moment feature calculation was not so largely changed with
the increase of cell size n, because the computation involved
in cell-based moment feature calculation is pixel-level com-
putation of the order O(N2). On the other hand, the compu-
tation involved in labeling of cells was remarkably reduced,
because its computation order of O(M2) is 1/n2 times that
of the pixel-level computation. For labeling the other image
patterns, the similar tendencies can be observed in that the
execution times in cell-based labeling decreases when the
cell size n increases.

These evaluation results indicate that we can speed up
the cell-based labeling algorithm especially for labeling of
cells by setting a large cell size. Therefore, this implies that
multi-object extraction based on cell-based labeling can be
executed at a much higher speed if sufficient acceleration
is provided for cell-based moment feature calculation; this
requires pixel-level computation that can be easily imple-
mented on hardware logic circuits.

4.2 Accuracy Verification

Next, we evaluated how the processed results in the cell-
based labeling algorithm vary with the cell size n and thresh-
old parameter θ to determine active cells.

First, the 512 × 512 pixel binary image shown in
Fig. 7 (a), in which the letters of “a” and “b”, an ellipse and
a circle were located, was labeled using the cell-based la-
beling algorithm for cell sizes of n = 1, 2, 4, 8, and 16. Here
a threshold parameter θ was set to 1. Figure 8 shows flag
maps that indicate where active cells are in M×M cells when
n = 2, 4, 8, and 16. The flag map when n = 1 corresponded
to the image shown in Fig. 7 (a). In the evaluation, 4, 4, 4, 3,
and 2 labeled regions were counted when n = 1, 2, 4, 8, and
16, respectively. This is because the letter “a” and the neigh-
boring ellipse in the image were unified in the same labeled
region when n = 8, and the letter “b” and the neighbor-
ing circle were unified when n = 16. These unifications of
neighbor connected components in the image can be also
observed in the flag maps in Fig. 8.

Figure 9 shows the bargraphs of cell-based 0th moment
features when n = 1, 2, 4, 8, and 16. When n = 2 and 4, there
were no neighbor connected components and all the 0th mo-
ment features for the labeled regions were exactly matched
with those when n = 1, corresponding to the 0th moment

(a) image pattern 1 (b) image pattern 2

Fig. 7 Image patterns used in accuracy verification.

Fig. 8 Flag maps of image pattern 1 to indicate active cells for labeling.

Fig. 9 0th moment features of labeled regions (“a” = the letter “a”, “b”
= the letter “b”, ell = ellipse, cir = circle).

features calculated by using other pixel-based connected
component labeling algorithms. Even when n = 8 and 16
with unification of the neighbor connected components, it
was confirmed that all the 0th moment features were exactly
matched with the added values of those of the two unified
connected components when n = 1. The same tendency was
also confirmed when calculating the 1st moment features for
the labeled regions. These evaluation results suggest that
the cell size n determines the separability for neighbor con-
nected components in cell-based labeling, whereas the 0th
and 1st moment features are exactly preserved by setting a
threshold parameter θ = 1 when there are no unified labeled
regions in an image. Our cell-based labeling algorithm is not
equivalent to conventional pixel-level labeling algorithms,
and the same label is often given to different but close con-
nected components because our algorithm only considers
the connectivity at cell level and does not consider that at
pixel level. Here cell-based labeling is equivalent to pixel-
level labeling when |xi − x j| >

√
5n(∀xi ∈ Oi,

∀ x j ∈ Oj) for
all the connected components Oi,Oj(i � j) in an image. In

GU et al.: A FAST MULTI-OBJECT EXTRACTION ALGORITHM BASED ON CELL-BASED CONNECTED COMPONENTS LABELING
643

Fig. 10 Flag maps of image pattern 2 to indicate active cells for labeling.

Fig. 11 Relationship between number of labeled regions and threshold
parameter θ.

this case, the cell-based moment features for multiple ob-
jects extracted by cell-based labeling, are also equivalent to
their moment features extracted in pixel-level labeling, be-
cause no connected component is mislabeled when the near-
est distance of two different connected pixels in an image is
greater than

√
5n.

Next, the 512 × 512 pixel binary image in Fig. 7 (b)
was labeled by using the cell-based labeling algorithm with
a cell size of 8 × 8 pixels (n = 8). The image contained a
large ellipse, ten small isolated circles, and a crossed-shape
object composed by two short-width ellipses. In the evalua-
tion, a threshold parameter θ was varied from 1 to 64. Here
θ = 1 implies that a cell is active for labeling if there exists
any active pixel in the cell, and θ = 64 implies that a cell
is active only when all the pixels in the cell are active. Fig-
ure 10 shows the flag maps for labeling when θ = 1, 24, 48,
and 64. Figure 11 shows the counted number of labeled re-
gions in varying θ from 1 to 64. It can be observed that the
number of labeled regions began to decrease at θ = 40 and
only two labeled regions remained for the large-sized ob-
jects at θ = 64, corresponding to the disappearances of the
isolated small circles in the flag maps for labeling as shown
in Fig. 10. These disappearances in the flag maps imply that
the small circles had no active cells, in which all the pixels
were active. In Fig. 10 (d) at θ = 64, the short-width ellipse
in horizontal direction, which is a part of the crossed-shape
object, was disappeared in the flag maps as well as the small
circles. Therefore, small or narrow connected components
caused by noises can be removed by adjusting a threshold
parameter θ, and this implies that we can control robust-
ness and sensitivity to extract multiple objects in an image
in cell-based labeling.

Figure 12 shows the 0th moment features and devia-

(a) 0th moment

(b) deviation of centroid position

Fig. 12 0th moment features and deviations from true centroid positions.

tions from their true centroid positions for the ellipse and
crossed-shape object in the image, varying with θ from 1 to
64. Here the 0th moment feature of the labeled region cor-
responds to its area. The centroid positions were calculated
by dividing the 1st moment features with the 0th moment
feature as shown in Eq. (23), and the true centroid positions
were assumed as those when θ = 1, which were exactly
matched with those calculated using pixel-based connected
components labeling algorithms. In Fig. 12, the 0th moment
feature of the ellipse decreased when θ increased, whereas
there was little deviation in the centroid position of the el-
lipse even when θ was large. For the crossed-shape object,
the decreasing degree of the 0th moment feature and the de-
viation of its centroid position became much greater than
those for the ellipse when θ increased. This is because the
narrow and asymmetric shape of the crossed-shape object
was strongly reduced in the flag map for labeling by setting
θ to a large value as shown in Fig. 10.

Therefore, when we adjust a threshold parameter θ to
determine the active cells in the cell-based labeling algo-
rithm, it can be seen that there is a trade-off relationship
between robustness to small and narrow connected compo-
nents in an image and accuracy in moment feature calcu-
lation for obtaining the positions and sizes of the labeled
regions.

4.3 Memory Consumption

Finally, we considered how the memory consumption for
moment features in executing the cell-based labeling algo-

644
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.2 FEBRUARY 2012

Table 2 Numbers and bit widths of labels in the case of a 512×512-pixel
image.

cell size number bit width
n L = M2/2 w = 	log2 L

1 131072 17 bits
2 32768 15 bits
4 8192 13 bits
8 2048 11 bits

Table 3 Memory consumption in the case of a 512 × 512-pixel image.

cell size (1) (2) (3) total
n QL Mw Lw
1 1,163,264 1,088 278,528 1,442,880
2 290,816 480 61,440 352,736
4 72,704 208 13,312 86,224
8 18,176 88 2,816 21,080

unit: byte = 8 bits

rithm varies with the cell size n and the maximum number
of labels L. For a binary image of N × N pixels, the 0th
moment feature consumes 	log2 N2
+1 bits, and the two 1st
moment features consume 2

⌈
log2

N(N−1)(N−2)
2

⌉
bits;

Q = (log2 N2
 + 1) + 2

⌈
log2

N(N−1)(N−2)
2

⌉
, (25)

where 	x
 denotes the ceiling function which gives the
smallest integer ≥ x. When there are L connected compo-
nents to be labeled in the image, the number of bits needed
to express their label numbers is an unsigned integer of
w = 	log2 L
 bits. In this study, (1) QL bits for the 0th and
1st moment features of L labeled regions, (2) Mw bits for
the label numbers of M cells, and (3) Lw bits for the tenta-
tive memories for L label numbers in the relabeling process
were required in executing our cell-based labeling algorithm
with M × M cells of n × n pixels. For the maximum num-
ber of labeled regions set at L = M2/2, Table 2 shows L
and w when a 512 × 512-pixel image (N = 512) is pro-
cessed with cell sizes of n = 1, 2, 4, and 8. Table 3 shows
the memory consumption when a 512 × 512-pixel image is
processed with cell sizes of n = 1, 2, 4, and 8. Here, the
0th and 1st moment features consume Q = 71 bits for a
labeled region in a 512 × 512-pixel image. When n = 1,
(1) the moment features of L labeled regions, (2) the label
numbers of M cells, and (3) the tentative memories in the
relabeling process occupy 1,163,264 bytes, 1,088 bytes, and
278,528 bytes, respectively. The total memories consumed
are 352,736 bytes, 86,224 bytes, and 21,080 bytes, respec-
tively, when n = 2, 4, and 8; these values are 0.244 times,
0.060 times, and 0.015 times that of 1,442,880 bytes when
n = 1. In Table 3, it can be observed that our cell-based
labeling algorithm can greatly reduce memory consumption
in multi-object extraction with a larger cell size.

Table 4 shows the total memory consumption in ex-
ecuting the cell-based labeling algorithm with different cell
sizes for different image sizes when L = M2/2. It can be ob-
served that the memory consumption increases as the image
size N becomes larger, and there are similar tendencies in
which the total memories consumed are remarkably reduced

Table 4 Memory consumption in different image sizes and cell sizes.

cell size cell size cell size cell size cell size
image size n = 1 n = 2 n = 4 n = 8 n = 16
128 × 128 69 17 5 1 1
256 × 256 321 79 20 5 2
512 × 512 1,410 345 85 21 6

1024 × 1024 6,403 1,570 385 95 24
2048 × 2048 27,654 6,787 1,666 409 101

unit: kbyte

with a larger cell size n. The reduced memory consumption
with a larger cell size is effective in hardware-implementing
our algorithm for high-speed multi-object extraction.

For example, we consider memory consumption in im-
plementing the cell-based labeling algorithm as the hard-
ware logic in a commercial FPGA (Xilinx XC3S5000-
4FG900); this FPGA is specifically designed to meet the
needs of high-volume and cost-sensitive consumer elec-
tronic applications and has an embedded block RAM of
239 kbytes. When the block RAM in the FPGA can be
completely used for hardware implementation, a 128 × 128-
pixel image can be processed with the cell-based labeling al-
gorithm when n = 1, i.e., pixel-level connected components
labeling, whereas it is unable to implement pixel-level con-
nected components labeling for images of 256 × 256 pixels
or more in the FPGA because of the shortage of memory re-
sources. For images of 256 × 256 pixels, 512 × 512 pixels,
1024 × 1024 pixels, and 2048 × 2048 pixels, the minimum
cell sizes that enable hardware implementation of the cell-
based labeling algorithm in the FPGA are n = 2, 4, 8,
and 16, respectively. In fact, Gu et al. [24] have hardware-
implemented the cell-based moment feature calculation in
our cell-based labeling algorithm with a cell size of n = 8 in
a user-specific Xilinx XC3S5000 FPGA on a high-speed vi-
sion platform, and several experiments involving real-time
multi-object extraction have been performed at a frame rate
of 2000 fps.

From these considerations, it can be confirmed that our
cell-based labeling algorithm, with a larger cell size, can
be implemented without consuming large amounts of mem-
ory resources, even when higher-resolution images are pro-
cessed; this enables hardware implementation of high-speed
multi-object extraction in an FPGA with a limited memory
resource.

5. Conclusion

We introduced a cell-based connected components labeling
algorithm for fast multi-object extraction that can calculate
the 0th and 1st moment features of the labeled regions in
an image. We also verified its execution time and accuracy
on a PC, and compared these with those of conventional
connected components labeling algorithms. Although our
cell-based labeling algorithm is not equivalent to conven-
tional labeling algorithms when the cell size is larger than
1× 1 pixels, it can be accelerated for high-resolution images
without consuming a large amount of memory by adjusting
the cell size and number of labels. Although labeling of cells

GU et al.: A FAST MULTI-OBJECT EXTRACTION ALGORITHM BASED ON CELL-BASED CONNECTED COMPONENTS LABELING
645

that requires cell-level computation is not suitable for paral-
lel implementation, it can be easily accelerated by cell-based
labeling with larger cell sizes. Calculation of cell-based mo-
ment features requires pixel-level computation, and it can be
accelerated using hardware logic in an FPGA because this
process is suitable for parallel implementation. The con-
cept of cell-based labeling in this study can be applied not
only to moment features but also to various types of image
features with additivity for pattern recognition, such as color
histograms and higher local autocorrelation features. On the
basis of our results, we will extend the applications of this
concept to high-speed and intelligent blob-processing in var-
ious fields such as factory automation, and multi-object tar-
get tracking and motion capture technologies in multimedia
and robot control; our concept of cell-based labeling will be
effective especially when real-time processing at high speed
is strongly requested rather than pixel-level accuracy.

References

[1] T.M. Bernard, B.Y. Zavidovique, and F.J. Devos, “A programmable
artificial retina,” IEEE J. Solid-State Circuits, vol.28, no.7 pp.789–
797, 1993.

[2] J.E. Eklund, C. Svensson, and A. Astrom, “VLSI implementation
of a focal plane image processor - A realization of the near-sensor
image processing concept,” IEEE Trans. Very Large Scale Integr
(VLSI) Syst., vol.4, no.3, pp.322–335, 1996.

[3] T. Komuro, S. Kagami, and M. Ishikawa, “A dynamically recon-
figurable SIMD processor for a vision chip,” IEEE J. Solid-State
Circuits, vol.39, no.1, pp.265–268, 2004.

[4] I. Ishii, K. Yamamoto and M. Kubozono, “Higher order autocor-
relation vision chip,” IEEE Trans. Electron Devices, vol.53, no.8,
pp.1797–1804, 2006.

[5] Y. Watanabe, T. Komuro, and M. Ishikawa, “955-fps real-time shape
measurement of a moving/deforming object using high-speed vision
for numerous-point analysis,” Proc. IEEE Int. Conf. Robot. Autom.,
pp.3192–3197, 2007.

[6] S. Hirai, M. Zakoji, A. Masubuchi, and T. Tsuboi, “Realtime FPGA-
based vision system,” J. Robot. Mechat., vol.17, no.4, pp.401–409,
2005.

[7] I. Ishii, T. Taniguchi, R. Sukenobe, and K. Yamamoto, “Develop-
ment of high-speed and real-time vision platform, H3 Vision,” Proc.
IEEE/RSJ Int. Conf. Intelli. Rob. Sys., pp.3671–3678, 2009.

[8] A. Rosenfeld and J.L. Pfaltz, “Sequential operation in digital picture
processing,” J. Assoc. Comput. Mach., vol.13, pp.471–494, 1966.

[9] R.M. Haralick, “Some neighborhood operations,” in Real
Time/Parallel Computing, Image Analysis, eds. M. Onoe, K.
Pres-ton, A. Rosenfled, pp.11–35, Plenum Press, New York, 1981.

[10] K. Suzuki, I. Horiba, and N. Sugie, “Linear-time connected-
component labeling based on sequential local operations,” Comput.
Vis. Image Underst., vol.89, pp.1–23, 2003.

[11] K. Wu, E. Otoo, and K. Suzuki, “Two stategies to speed up
connected component labeling algorithms,” Tech. Rep. 59102,
Lawrence Berkeley National Lab, 2005.

[12] L. He, Y. Chao, and K. Suzuki, “A run-based two-scan labeling al-
gorithm,” Comput. Vis. Image Underst., vol.17, no.5, pp.749–756,
2008.

[13] L. He, Y. Chao, K. Suzuki, and K. Wu, “Fast connected-component
labeling,” Pattern Recognit., vol.42, pp.1977–1987, 2008.

[14] E. Mandler and M.F. Oberlander, “One-pass encoding of connected
components in multi-valued images,” Proc. IEEE Conf. Comp. Vis.
Patt. Recog., pp.64–69, 1990.

[15] F. Chang, C.-J. Chen, and C.-J. Lu, “A linear-time component la-
beling algorithm using contour tracking technique,” Comput. Vis.

Image Underst., vol.93, no.2, pp.206–220, 2004.
[16] D.G. Bailey and C.T. Johnston, “Single pass connected components

analysis,” Proc. Image and Vis. Comput., pp.282–287, 2007.
[17] C.J. Nicol, “A systolic approach for real time connected component

labeling,” Comput. Vis. Image Underst., vol.61, pp.17–31, 1995.
[18] A. Baumker and W. Dittrich, “A new parallel MIMD connected

component labeling algorithm,” Proc. Int. Parallel Process. Symp.,
pp.429–433, 1996.

[19] V. Chaudhary and J.K. Aggarwal, “Parallel image component label-
ing for target acquisition,” Opt. Eng., vol.37, no.7, pp.2078–2090,
1998.

[20] A. Amir, L. Zimet, A. Sangiovanni-Vincentelli, and S. Kao, “An
embedded system for an eye-detection sensor,” Comput. Vis. Image
Underst., vol.98, no.1, pp.104–123, 2005.

[21] P. Gabbur, H. Hua, and K. Barnard, “A fast connected components
labeling algorithm and its application to real-time pupil detection,”
Mach. Vis. and Appl., pp.779–787, 2009.

[22] N. Otsu, A threshold selection method from gray-level histograms,
IEEE Trans. Syst. Man Cybern., vol.9, no.1, pp.62–66, 1979.

[23] I. Ishii, T. Tatebe, Q. Gu, Y. Moriue, T. Takaki, and K. Tajima,
“2000 fps real-time vision system with high-frame-rate video
recording,” IEEE Int. Conf. Rob. Autom., pp.1536–1541, 2010.

[24] Q. Gu, T. Takaki, and I. Ishii, “2000-fps multi-object extraction
based on cell-based labeling,” Proc. IEEE Int. Conf. Image Process.,
pp.3761–3764, 2010.

Qingyi Gu received the B.E. degree in
Electronic and Information Engineering from
Xi’an Jiaotong University, China, in 2005.
He received the M.E. degree in Engineering,
Hiroshima University, Japan, in 2010. He is cur-
rently a Ph.D. student in Graduate School of En-
gineering, Hiroshima University, Japan. His pri-
mary research interest is high-speed image fea-
ture extraction.

Takeshi Takaki received the B.E. de-
gree and M.E. degree in Mechanical Engineer-
ing from Tokyo University of Science, Japan,
in 2000 and 2002, respectively. He received
the Ph.D. degree in Mechano-Micro Engineer-
ing from Tokyo Institute of Technology, Japan,
in 2006. He is currently an associate professor
in Graduate School of Engineering, Hiroshima
University, Japan. His general research interests
are robot hand, continuously variable transmis-
sion and force visualization mechanism.

Idaku Ishii received the B.E. degree, M.E.
degree and Ph.D. degree from the University of
Tokyo, Japan, in 1992, 1994, and 2000 respec-
tively. He is currently a professor in Graduate
School of Engineering, Hiroshima University,
Japan. His general research interests are high-
speed robot vision, sensory information process-
ing, sensor-based robot manipulation, and appli-
cations in industry and biomedicine.

