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PAPER

Robust Gait-Based Person Identification against Walking Speed
Variations

Muhammad Rasyid AQMAR†a), Nonmember, Koichi SHINODA†b), Senior Member,
and Sadaoki FURUI†c), Fellow

SUMMARY Variations in walking speed have a strong impact on gait-
based person identification. We propose a method that is robust against
walking-speed variations. It is based on a combination of cubic higher-
order local auto-correlation (CHLAC), gait silhouette-based principal com-
ponent analysis (GSP), and a statistical framework using hidden Markov
models (HMMs). The CHLAC features capture the within-phase spatio-
temporal characteristics of each individual, the GSP features retain more
shape/phase information for better gait sequence alignment, and the HMMs
classify the ID of each gait even when walking speed changes nonlin-
early. We compared the performance of our method with other conventional
methods using five different databases, SOTON, USF-NIST, CMU-MoBo,
TokyoTech A and TokyoTech B. The proposed method was equal to or
better than the others when the speed did not change greatly, and it was sig-
nificantly better when the speed varied across and within a gait sequence.
key words: gait recognition, CHLAC features, GSP features, hidden
Markov models

1. Introduction

Human gait refers to the motion of an individual character-
ized by his/her spatio-temporal movement while walking.
The study of gait analysis in relation to human identifica-
tion has gained momentum in recent years. Several stud-
ies in the field of psychophysics have indicated that humans
are capable of recognizing a person’s characteristics, such
as IDs and genders, from only limited information on gait
cues that have been visualized by means of small light bulbs
attached to body joints [1], [2].

Automatic person identification using human gait has
been extensively studied [3]–[5]. Philips et al. [3] used the
difference in binary silhouettes between frames. Huang
et al. [4] used optical flow as features and derived Eigen-
gait. Kale et al. [5] used exemplar-based silhouettes and
hidden Markov models (HMMs) to represent structural and
dynamic characteristics of gait sequences.

People can walk at various speeds in real life, and their
motion changes nonlinearly in terms of its speed [6]. Speed
variations can appear across and within a gait sequence, and
they significantly affect the performance of gait-based per-
son identification. Therefore, many studies have been con-
ducted to build a gait-based person identification system ro-
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bust against variations in walking speed [7]–[9]. Unfortu-
nately, most of those studies assume that the speed change
is linear across the sequence, and hence fail to address the
problem of nonlinear speed changes.

In this paper, we propose a novel method of iden-
tifying humans from their gait under speed variations,
where we combine cubic higher-order local auto-correlation
(CHLAC) features and a statistical HMM framework [10].
We also employ the concatenation of CHLAC and
gait silhouette-based principal component analysis (Gait-
Silhouette-PCA, or GSP) as features and combine them with
HMM. CHLAC captures shape and motion characteristics
for discriminating the subjects accurately. GSP retains more
shape information of the subjects to distinguish different gait
phases more precisely. HMM is able to match sequences
that have different speeds. We expect that this combination
can perform better than using them separately.

This paper is organized as follows. Section 2 presents
previous work on gait recognition related to the problem
with speed variations. Section 3 reviews CHLAC-based fea-
tures, Sect. 4 explains our method combining CHLAC fea-
tures, GSP features and HMMs. Section 5 reports the results
obtained from our experiments on the proposed method and
Sect. 6 concludes the paper.

2. Related Work

The problem with speed variations in gait can be further di-
vided into two sub-problems:

1. Finding a feature that is invariant against speed varia-
tions,

2. Preventing misalignment between time-sequence pat-
terns.

The CMU MoBo database [7], which consists of gait
data with different speeds, was built to tackle these prob-
lems. Several studies have been done using this database.
For example, Zhao et al. [8] proposed fractal-scale wavelet
moments. Lee et al. [9] proposed a shape variation-based
frieze pattern.

Kobayashi et al. [11] proposed three-way (x-, y-, and
time-axis) autocorrelation features that effectively repre-
sent spatio-temporal local geometric characteristics of hu-
man motions. It is called cubic higher-order local auto-
correlation (CHLAC). When the shape of a human is not
changed significantly, CHLAC is expected to be robust
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against variations in walking speed. This is because it only
uses the sum of local features over a gait sequence, and thus,
does not explicitly use the phase information of the gait. To
the best of our knowledge, this method outperforms all other
gait-recognition methods.

Most of these methods including CHLAC, however,
have focused on the first sub-problem and not dealt with
the second sub-problem. Their performance may degrade
greatly because of misaligned gait cycles and/or phases
when walking speed varies significantly.

It is well known that human motion changes nonlin-
early in terms of its speed [6]. A straightforward way of
tackling the second sub-problem is to find a way of estimat-
ing the nonlinear time-warping function between two time-
sequence patterns with different speeds. Veeraraghavan
et al. [12] used Dynamic time warping (DTW), which is
a well-known method of explicitly estimating the warping
function. A hidden Markov model (HMM) is an exten-
sion of DTW to a probabilistic framework. HMM-based
gait recognition has often been studied [5], [13] to tackle this
second sub-problem. The mixture of distributions (Gaussian
mixture) is often used as an output probability in HMMs in
order to achieve robustness against variations in observation
features. However, few studies based on DTW and HMMs
have directly focused on the first problem (to utilize robust
features) of speed variations.

Some other studies focused on modeling shape varia-
tion. Tanawongsuwan et al. [14] proposed a method based
on the silhouette transformation by normalizing the stride
length of a double-support pose and keyframes similarity.
Tsuji et al. [15] improved the transformation not only by us-
ing the stride normalization method but also by adding the
time synchronization. Since we mainly focus on the speed
variation itself, we will leave the shape variation problem
for our future research.

3. CHLAC Features

CHLAC features are shape and motion features extracted
from local autocorrelation [11]. One of their most important
properties is their shift invariance. They do not change if the
position of a person varies inside a frame image.

Let f (x, y, t) represent pixel intensity on the image re-
gion, where x and y are pixel coordinates in one frame im-
age, and t is the time index. Each of the N-th order autocor-
relation functions is defined as:

RN(a1, . . . , aN)

=
∑

x,y,t∈Ds

f (x, y, t) f (x + a1x, y + a1y, t + a1t)

. . . f (x + aNx, y + aNy, t + aNt), (1)

where ai (i = 1, . . . ,N) is a displacement vector from the
reference point, r = (x, y, t). A set (r, r + a1, . . . , r + aN)
represents a local mask pattern. Figure 1 shows their exam-
ples. Ds is a spatio-temporal region where the correlation
coefficient for each pixel are summed up. The size of Ds

Fig. 1 Examples of mask pattern in CHLAC.

is m × n × T , where m and n is the height and the width
of the region, and T is the time window width to be opti-
mized in the experiments. For each i, ai = (aix, aiy, ait). aix

is ±Δx or 0, aiy is ±Δy or 0, and ait is ±Δt or 0, where Δx
and Δy denote the spatial displacement in pixels and Δt de-
notes the frame interval in frames. Here, they use the same
value for Δx and Δy and denote this as Δr. When the order
of correlation is N = 0, N = 1, and N = 2, the numbers
of mask patterns (the dimensions of a CHLAC feature vec-
tor) are 1, 14, and 251 respectively. The spatial displace-
ment is set to Δr ≤ 16 which is corresponding to the up-
per bound width of human body in an image. They assume
the relation Δr = 2Δt by observing the walking trajectories
of lower portion (below the torso) movement of the sub-
jects. The trajectories of walkers on the x-axis are plotted
against the time-axis. For each stride, each left and right
leg movement forms a trajectory with a particular gradient
(XT− slice). Each walker has his/her own trajectory’s gra-
dient represented by (Δt/Δr) parameters. In this sense, the
parameters represents the rate or speed of the walker. Let the
parameter pair, (Δt,Δr) = (k, 2k), be denoted as uk, where
k = 1, . . . ,K. They prepare several pairs with different k.

Then, the CHLAC features are mapped to the (c − 1)-
dimensional (c is the total number of classes) feature vector
using Fisher discriminant analysis (FDA) to better separate
classes in the feature space. We call the resulting features
CHLAC+FDA.

In the original framework [11], a k-nearest neighbor (k-
NN) classifier was used where the Euclidean distance was
used as the distance measure between feature vectors. The
number of neighbors k was set to 10. The window width, T ,
was set to 30.

Next, the number of nearest neighbors belonging to
each ID i, Mk(i), is counted for each of parameter pairs uk.
Then, the ID i with the maximum number of neighbors over
all parameter pairs is selected:

î = arg max
i

Mk(i). (2)
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Fig. 2 Gait model training and continuous gait recognition.

The same process is repeated for all the frames. Finally,
the ID i that most frequently appears over all the frames is
selected.

Since all the possible parameter pairs related to walk-
ing speed (uk) are used during the recognition process,
CHLAC+FDA features are relatively robust against varia-
tions in speed across samples when changes in speed are
almost constant in each gait sequence. When walking speed
varies within one gait sequence, however, optimal parameter
pair may change for some cycles and/or phases. This may
degrade recognition performance.

4. Combination of CHLAC+FDA and GSP with
HMMs

We use CHLAC+FDA and Gait-Silhouette-PCA (GSP) con-
catenation as observation vectors in our scheme and use
an HMM as a classifier instead of the k-NN classifier in
[11]. HMMs have often been used in speech recogni-
tion [16] since they are powerful for modeling time-varying
sequences of patterns. CHLAC+FDA discriminates accu-
rately between classes, GSP distinguishes gait phases more
precisely, while HMMs have excellent properties to match
sequences that have different speeds. We expect their com-
bination will be robust against speed variations, even when
the speed varies within a gait sequence. Figure 2 illustrates
our framework.

4.1 Feature Extraction

We extract silhouette images from the video frames in
the preprocessing stage for feature extraction. Since
CHLAC+FDA features do not have much gait phase/cycle
information, it is difficult to train HMMs solely with
CHLAC+FDA features. Therefore, we not only extract

CHLAC+FDA features from silhouette images, but also an-
other feature which have more explicit phase information,
such as silhouette features by principal component analy-
sis (PCA). We apply PCA to a set of vectors of all binary
silhouette images in training data and calculate the eigen-
vectors. We call the resulting features GSP.

Kobayashi et al. [11] set the window length, T , for
CHLAC+FDA at 30 (frames), which roughly corresponded
to the duration of a complete gait cycle. In our approach us-
ing HMMs, this window length should be smaller to capture
features at a certain phase in a gait cycle. Too small window
length (e.g. T=1) is, however, not enough to capture phase
information. We set T at five (frames) according to the re-
sults from our preliminary experiments which will be shown
in Sect. 5.2.

4.2 Feature Normalization and Concatenation

We concatenate CHLAC+FDA features and GSP features
to make an input feature vector for HMMs (feature level
fusion). Then, the input vector o is normalized as follows:

õ = D−
1
2 (o − μ), (3)

where μ and D are the mean vector and the covariance ma-
trix respectively calculated for each gait sequence. We ig-
nore off-diagonal elements. The purpose of normalization is
not only to make the value of feature components lie within
similar dynamic ranges but also for suppressing the outlier
or noise in the observation features.

In [11], they used several parameter pairs (Δt,Δr) =
(k, 2k) where k = 1, . . . ,K. In our method, we only
use one parameter pair (Δt,Δr)=(2,4) which performed the
best among those pairs in our preliminary experiment (see
Sect. 5.2 for detail).
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(a) SOTON (b) USF-NIST (c) CMU-
MoBo

(d) TokyoTech A (e) TokyoTech B

Fig. 3 Examples of samples in five gait databases.

4.3 Recognition

We prepare one HMM for a half-gait cycle assuming there is
symmetry between the first and the second half of the cycle
in the sagittal plane view. Its topology is left-to-right with-
out any skips. We use a mixture of Gaussian distributions
as an output probability. We set the number of states in an
HMM to eight. This number gave the best performance in
our preliminary experiment.

We employ a continuous gait-recognition framework
which we allow the transition from the exit state to the entry
state. A task grammar is represented in an extended Backus-
Naur form notation as (< g1 > | < g2 > | . . . | < gn >).

Given a gait sequence of observation vectors, O =

o1 . . . , o f ( f is the number of frames), the probability of gait
ID gi is:

P(gi|O) =
P(O|gi)P(gi)

P(O)
, (4)

where P(gi) is the prior of gait ID gi, which is assumed to
be uniform over all IDs. The most probable gait ID î can be
selected as

î = arg max
i

P(O|gi). (5)

We simultaneously obtain the probability, P(O|gi), and
gait-cycle segmentation by using the Viterbi algorithm.

5. Experiments

We first compared our method with other conventional ap-
proaches under conditions where walking speed did not
change significantly. Second, we evaluated it under con-
ditions where the walking speed was changed.

5.1 Database

For the first evaluation, we used the University of
Southampton’s (SOTON) large database [17] (115 subjects)
and the University of South Florida’s (USF)-NIST database
Probe A [3] (71 subjects). Walking speed in both of them
were the same.

For the second evaluation, we used the Carnegie
Mellon University-Motion of Body (CMU-MoBo) [7] (25
subjects), our own TokyoTech database A (30 subjects), and
TokyoTech database B (15 subjects). These databases in-
clude subjects walking at various speeds.

Table 1 Average (μ) and standard deviation (σ) of half-gait cycle periods
(sec) in SOTON and USF-NIST Probe A databases.

SOTON USF-NIST
μ σ μ σ

Training set 0.55 0.07 0.59 0.08
Testing set 0.55 0.06 0.58 0.08

The SOTON large database [17] consists of 115 subjects.
It has one variation, in the camera view (left and right).
This database was collected indoors with a uniform back-
ground, as can be seen in Fig. 3 (a). The speed variations
were very small. We measured the average period of a half
gait cycle for all subjects in the database (Table 1), and ob-
served that the speed variations in this database were not
significant. The training set for the SOTON database was
the data recorded by the left-view camera, while the testing
set was recorded by the right-view camera.

The USF-NIST database [3] was collected in an outdoor
environment with a complex background, as can be seen
in Fig. 3 (b). The number of subjects was 71. The database
has three types of variations: the surface type, camera
view, and shoes. The database was constructed based on
a combination of these variations. The speed variations
in this database were also not very significant (Table 1).
In our experiments, we used as the training set those data
recorded from the grass surface, using shoe-type A, and
from the right-camera view (Gallery). As our test set,
we selected data recorded from the left-camera view, that
recorded on the grass surface, in which the subjects wore
shoe-type A (Probe A). The difference of the training and
testing set was only the camera-view.

The CMU-MoBo database [7] consists of 25 subjects.
The database has six types of camera views: 0◦, 45◦, 90◦,
180◦, 225◦, and 315◦, and four types of walking condi-
tions: slow, fast, incline walking, and walking with a ball
recorded on a treadmill. One data sample can be seen in
Fig. 3 (c). We only used the slow and fast speed with the
sagittal plane view (90◦). The slow speed was recorded on
the treadmill at 3.3 km/hr, and the fast speed was recorded
on a treadmill at 4.5 km/hr. There was only one sample
for each speed for each subject. The experiment using this
database was conducted with four types: (S-S) the slow se-
quence was divided into 50% for the training set and 50%
for the testing set, (F-F) the fast speed sequence was di-
vided into 50% for the training set and 50% for the test-
ing set, (S-F) the slow speed was used as the training set
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Table 2 TokyoTech database A.

Speed type Slow Normal Fast Mixed
Speed (km/hr) 2 3 4.5 3 and 4.5
No. of samples 605 550 447 300

while the fast speed was used as the testing set for a whole
sequence, (F-S) the fast speed was used as the training set
while the slow speed was used as the testing set for a whole
sequence.

The TokyoTech database A was constructed by ourselves
that included 30 subjects walking at various fixed speeds.
The gait data were categorized into four types: slow, nor-
mal, fast, and mixed (Table 2). A treadmill was used to
ensure that all subjects walked at exactly the same speed
in each speed category. The sagittal plane of the subjects
was taken using a 30-fps video camera with a pixel-frame
size of 480 × 720. The setting for recording can be seen
in Fig. 3 (d). To eliminate the possible effect of shoe dif-
ferences, all subjects wore shoes with the same shape and
color. The total length of the video data recorded for the
30 subjects was around 324 min.

We divided the slow data into two parts, 60% for train-
ing (363 samples) and 40% for testing (242 samples). The
training set only consisted of slow data. The testing set
consisted of the rest of the slow data and data with the other
three speeds. While the testing set in the CMU-MoBo
database only included one sequence for one subject for
each type of speed, TokyoTech database A provided sev-
eral numbers of sequences so that the results from the eval-
uation become more statistically convincing. In each eval-
uation, one sample was a gait sequence that contained five
gait cycles from one subject.

We also manually created mixed data, where there were
two different speeds within one gait sequence. The pur-
pose was to evaluate what effect variations had within one
gait sequence. We concatenated two different speeds in
a gait sequence in the point when both left and right leg
passes each other from the sagittal plane point of view. 150
samples are constructed by concatenating three gait cycles
from the normal data and two gait cycles from fast data,
and 150 samples are constructed from the concatenation
of three gait cycles from the fast data and two gait cycles
from the normal data.

The TokyoTech database B. To evaluate the methods in
a more realistic environment, we constructed TokyoTech
database B that included 15 subjects walking at slow and
fast speed. The subject walked on the ground floor with a
non-uniform background and illumination condition.

The sagittal plane of the subjects was taken using video
camera with a pixel-frame size of 720 × 576 and 30 fps
frame rate. We categorized the data into four different
walking style (Table 3): (A) the subjects walked at slow
speed, (B) the subjects walked at faster speed, (C) the sub-
jects at first walked at slow speed in the first half of the

Table 3 TokyoTech database B.

Speed type Slow Fast SlowFast FastSlow
No. of samples 300 300 150 150

Fig. 4 Cumulative distance between neighbouring CHLAC features. For
each T , we summed up the Euclidean distance of two successive CHLAC
feature vectors over all the training samples.

sequence, and then walked faster in the next half of the se-
quence, (D) the subjects at first walked at fast speed in the
first half of sequence, and then walked slower in the next
half of the sequence. The number of samples in (A), (B),
(C), (D) are 300, 300, 150, 150 samples respectively.

We divided Data (A) into two parts, and used 75% (225
samples) for training and 25% (75 samples) for testing.
The training set only consisted of slow data. The testing
set consisted of (B), (C), (D), and the rest of (A).

5.2 Experimental Setup

We assumed that a background image was available in the
preprocessing stage. After a certain threshold for the inten-
sity of each pixel was set, the foreground pixels were ex-
traced as a binary silhouette image. Then, the bounding box
around the silhouette was resized into m × n pixels. Silhou-
ette images were kept in the center region (registered). We
set m = 128 and n = 88 following the case in NIST dataset.

We used the 0th to 2nd order CHLAC features and ap-
plied FDA. FDA is carried out using all training data†.
The window width, T , of CHLAC features in our approach
should be wide enough to capture a certain phase in a gait
cycle and should maintain a steady pose during that pe-
riod. We carried out a preliminary experiment to select T
using cumulative distances between neighbouring CHLAC
features (Fig. 4.). We expected that the gait-phase informa-
tion between two successive CHLAC feature vectors could
be more easily distinguished if the distance between them
was larger. We summed up the Euclidean distances of two
successive CHLAC feature vectors for each T over all the
training samples. T = 5 (five) frames gave the highest cu-
mulative distance. We used T = 5 in the following experi-
ments.

Since each walker has his/her own trajectory’s gradient
represented by uk parameters, we measured the average ab-
solute gradient of the trajectories for each subject in the XT-

†We apply the FDA result for all gait phases. This is because
we have to use the same features for all phases in our continuous
recognition framework using HMMs.
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Fig. 5 The XT-slice plot from silhouette (a) and after skeletonization (b).
The gait gradients are depicted by solid and dashed lines in (b).

slice (Fig. 5). We used the same constraint as in [11]. We
set K to 8 in our experiment for parameter pairs. Thus, pa-
rameter pairs were set to be (1,2), (2,4), (3,6), (4,8), (5,10),
(6,12), (7,14), and (8,16). We tested those parameter pairs
and selected parameter pair (2,4) since it performed best in
our experiment.

The dimension of CHLAC+FDA feature is 114 for SO-
TON, 70 for USF-NIST, 24 for CMU-MoBo, 29 for the
TokyoTech A, and 14 for the TokyoTech B. These dimen-
sions were automatically determined by the number of sub-
jects to be classified. We set the dimension of GSP features
to be 1

2 (c − 1) where c is the number of classes/subjects for
each database. We found that if the GSP dimension was
larger than CHLAC+FDA dimension, the performance de-
creased. This might be because the subject discrimination
information from CHLAC+FDA became less dominant than
GSP. We determined the GSP dimension in feature concate-
nation based on grid search among c − 1, 3

4 (c − 1), 1
2 (c − 1),

and 1
4 (c−1) dimensions using two-fold cross-validation. We

selected 1
2 (c − 1) dimension which gives the best perfor-

mance in average. We used 57-dimensional GSP features for
SOTON, 35 for USF-NIST, 12 for CMU-MoBo, 15 for the
TokyoTech database A, and 7 for the TokyoTech database B.
The cumulative contribution rates of the eigenvectors for the
concatenated GSP dimension were 86.2%, 81.1%, 67.0%,
77.4%, and 64.3% for SOTON, USF-NIST, CMU-MoBo,
TokyoTech database A, and TokyoTech database B respec-
tively. We also used 60-dimensional GSP features, which
are not combined with CHLAC+FDA features, in our eval-
uation using the TokyoTech database A. The cumulative
contribution rate of the first 60 eigenvectors (principal com-
ponents) was 86.7%.

We used a single Gaussian distribution in each state of
the HMMs in our evaluation using the SOTON, USF-NIST,
and CMU-MoBo due the limited number of training sam-
ples. We used a Gaussian-mixture distribution with 16 mix-
tures in our evaluation using the TokyoTech A and B since
the number of training samples on both databases was rela-
tively large. The number of Gaussian-mixture used for each
database was determined by employing leave-one-out cross
validation using the training data. We used HTK [20] to im-

Table 4 Gait recognition accuracy (%) for SOTON and USF-NIST
Probe A databases. In CHLAC+FDA-k-NN, CHLAC+FDA was used
as features and k-NN as a classifier. In CHLAC+FDA+GSP-HMM,
CHLAC+FDA+GSP was used as features and HMM as a classifier (pro-
posed method).

SOTON USF-NIST
Foster et al. [18] 75.0 –
Tolliver et al. [19] – 82.0
Kale et al. [5] – 99.0
CHLAC+FDA-k-NN 98.3 100.0
CHLAC+FDA-HMM 98.3 100.0
CHLAC+FDA+GSP-HMM 98.3 100.0

plement HMMs.
We examined the segmentation of gait half-cycles

to confirm how well HMM states were aligned the gait
phases/cycles. We defined a gait half-cycle segment as a se-
quence of frames from a single-support gait pose to the next
single-support gait pose. A single-support gait pose is the
pose or point when the right and the left leg/foot overlap in
a gait cycle. The segmentation result for each test sequence
was compared to the manual labels/groundtruth. For the
groundtruth, we manually marked by hand the frames which
contain a single-support gait pose as segmentation bound-
aries. We chose the frame where one foot was completely
overlapped by the other one as the segment boundary. We
defined the misalignment for each boundary in a gait se-
quence as the number of frames difference between the
groundtruth and that obtained automatically by the HMM.
We then calculated the average misalignment over all gait
test sequences. The average mis-alignments of frames from
all databases when we used only CHLAC+FDA features and
after we employed features fusion (CHLAC+FDA+GSP)
were 13.4 and 12.3 frames respectively. We confirmed that
segmentation was better when we combined CHLAC+FDA
and GSP features.

The computation time for silhouette and CHLAC+
FDA extraction was 0.13 second for each frame, and the
recognition process of a gait sequence using HMM was 0.06
second using Intel Core 2 Duo 2.4 GHz with 2 GB RAM.

5.3 Results

Table 4 lists the results in SOTON and USF-NIST.
CHLAC+FDA+GSP-HMM yielded one of its best re-
sults. For the SOTON database, we have presented the
results for the area-based mask pattern-k-NN proposed by
Foster et al. [18] and CHLAC+FDA-k-NN [11] for com-
parison. The proposed CHLAC+FDA+GSP-HMM was
better than the area-based mask pattern-k-NN and equal
to CHLAC+FDA-k-NN. For the USF-NIST database,
we compared our method with three methods, Shape-
1-NN [19], Silhouette frame-to-exemplar-distance (FED)-
HMM [5], and CHLAC+FDA-k-NN [11]. The results for
these methods were taken from those published in corre-
sponding papers. We found that our method was signifi-
cantly better than Shape-1-NN and almost equal to FED-
HMM, CHLAC+FDA-k-NN, and CHLAC+FDA-HMM.
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Table 5 Gait recognition accuracy (%) for CMU Mobo database. In CHLAC+FDA-k-NN,
CHLAC+FDA was used as features and k-NN as a classifier. In CHLAC+FDA+GSP-HMM,
CHLAC+FDA+GSP was used as features and HMM as a classifier (proposed method). S-S: slow as
training set and slow as testing set. F-F: fast as training set and fast as testing set. S-F: slow as training
set and fast as testing set. F-S: fast as training set and slow as testing set.

S-S F-F S-F F-S Average
Kale et al. [5] 72.0 68.0 32.0 56.0 57.0
Lee et al. [9] 100.0 100.0 82.0 80.0 90.5
Liu et al. [13] - - 84.0 - -
CHLAC+FDA-k-NN 100.0 100.0 96.0 96.0 98.0
CHLAC+FDA-HMM 100.0 100.0 96.0 96.0 98.0
CHLAC+FDA+GSP-HMM 100.0 100.0 96.0 96.0 98.0

Table 6 Gait-based person identification accuracy (%) for TokyoTech A. In GSP-HMM, GSP was
used as features and HMM as a classifier. In CHLAC+FDA-k-NN, CHLAC+FDA was used as features
and k-NN as a classifier. In CHLAC+FDA+GSP-HMM, CHLAC+FDA+GSP was used as features and
HMM as a classifier (proposed method).

Speed Type Slow Normal Fast Mixed Average
GSP-k-NN 81.8 74.6 39.5 44.1 60.1
GSP-HMM 96.7 85.0 60.0 76.3 79.5
CHLAC+FDA-k-NN 100.0 95.5 91.0 92.0 95.4
CHLAC+FDA-HMM 100.0 98.2 95.3 95.6 97.3
CHLAC+FDA+GSP-HMM 100.0 98.2 95.8 96.7 97.6

Table 7 Gait-based person identification accuracy (%) for TokyoTech B.

Speed Type Slow Fast SlowFast FastSlow Average
CHLAC+FDA-k-NN 96.0 77.3 83.7 81.5 84.6
CHLAC+FDA-HMM 98.3 85.3 84.6 82.7 87.7
CHLAC+FDA+GSP-HMM 98.3 85.8 85.3 84.6 88.4

Next, we evaluated the robustness of our proposed
method against speed differences using CMU-MoBo,
TokyoTech A, and TokyoTech B. Table 5 shows the
results for the CMU-MoBo database. Our method,
CHLAC+FDA+GSP-HMM, was better than FED-HMM
and the Shape-variation based Frieze pattern, and it was
equal to the CHLAC+FDA-k-NN and CHLAC+FDA-HMM
method. It was also better than Liu et al. [13] which also
used CMU-MoBo and slightly better than Tsuji et al. [15]
which used their own database with similar settings as the
CMU-MoBo. Tsuji et al. [15] used their own database
where the speed is at 3 km/hr as training set against 4 km/hr
as testing set as an approximation for CMU-MoBo. The
identification rate of our method is 96%, while Liu et al. [13]
reported 84% and Tsuji et al. [15] also reported 84%. On a
reverse condition where the speed at 4.5 km/hr as training
set and speed at 3.3 km/hr as testing set, the identification
rate of our method is 96% and the identification rate of Tsuji
et al. [15] was also 96%.

The recognition results for TokyoTech A and B
are listed in Table 6 and Table 7 respectively. Our
method yielded better results than CHLAC+FDA-k-NN and
CHLAC+FDA-HMM. When walking speed was “Mixed”,
96.7% accuracy was achieved while the accuracies ob-
tained with the CHLAC+FDA-k-NN and CHLAC+FDA-
HMM were 92.0% and 95.6%, respectively for TokyoTech
A. When walking speed was “SlowFast” and “Fast-
Slow”, 85.3% and 84.6% accuracies were achieved by our

method respectively while the accuracies obtained with the
CHLAC+FDA-k-NN were 83.7% and 81.5%, respectively,
and the accuracies obtained with the CHLAC+FDA-HMM
were 84.6% and 82.7%, respectively for TokyoTech B.
The average recognition results of our method when us-
ing features concatenation (CHLAC+FDA and GSP) for
TokyoTech A and TokyoTech B were 0.3 and 0.7 point, re-
spectively better than when using only CHLAC+FDA. The
robustness against walking-speed variations across (“Nor-
mal” and “Fast” testing sets) and within (“Mixed”, “Slow-
Fast”, and “FastSlow” testing sets) sequences was con-
firmed.

One possible reason our method outperformed
CHLAC+FDA-k-NN under walking-speed variations might
be that CHLAC+FDA-k-NN assumed a constant period of
a gait cycle for each subject. Because the time width T pa-
rameter of CHLAC features in CHLAC+FDA-k-NN was set
to be close to gait cycle periods in the training set, it was not
suitable when the walking speed for each subject differed in
the testing set. In addition, the k-NN based method did not
utilize any timing information.

In TokyoTech A, five subjects out of 30 subjects had av-
erage identification error rate more than 10% (The average
identification rate is 87.6%). Their stride length difference
between slow and fast speed is larger than that of the rest
of the subjects. For the subject with the highest error rate,
the stride length difference between slow and fast speed is
around 30 pixels (Fig. 6). Even though our method outper-
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(a) Narrow (b) Wider

Fig. 6 Stride shape variation occured between training (a) and testing (b)
dataset.

formed the others, it was still insufficient when the shape
of the walker changed drastically. It is still needed to min-
imize the effect of shape variations to further improve the
identification performance.

6. Conclusion

We proposed a gait recognition method robust against speed
variations based on the combination of CHLAC+FDA, GSP
features and HMM. By using SOTON, USF-NIST, CMU-
MoBo, TokyoTech A, and TokyoTech B, we confirmed that
the proposed method performed well for different speed
rates both across and within sequences. On average, our
method successfully reduced the errors from 4.6% (by
CHLAC+FDA-k-NN) to 2.4% for TokyoTech A and from
15.4% (by CHLAC+FDA-k-NN) to 11.6% for TokyoTech
B.

In future work, we plan to investigate ways of minimiz-
ing the influence of shape variations. Also, we would like
to combine multiple CHLAC parameter pairs and apply an
adaptation scheme to the HMM-based framework to further
improve the recognition performance.
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