
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.2 FEBRUARY 2012
677

LETTER

Skew-Tolerant Key Distribution for Load Balancing in MapReduce

Jihoon SON†a), Hyunsik CHOI††b), Nonmembers, and Yon Dohn CHUNG††c), Member

SUMMARY MapReduce is a parallel processing framework for large
scale data. In the reduce phase, MapReduce employs the hash scheme in
order to distribute data sharing the same key across cluster nodes. However,
this approach is not robust for the skewed data distribution. In this paper,
we propose a skew-tolerant key distribution method for MapReduce. The
proposed method assigns keys to cluster nodes balancing their workloads.
We implemented our proposed method on Hadoop. Through experiments,
we evaluate the performance of the proposed method in comparison with
the conventional method.
key words: skew-tolerance, MapReduce, load balance, key distribution

1. Introduction

The MapReduce framework [1] is proposed for parallel pro-
cessing of a huge volume of data. MapReduce consists of
two steps, map and reduce, and adopts the key-value data
model. In the map step, each mapper scans and processes
data sequentially. After the map step, the intermediate re-
sults of the map step are grouped by their keys, and then the
grouped results are transmitted to reducers as their inputs.
In this process, data sharing the same key are assigned to
the same reducer.

However, this approach is not robust for the skewed
data. After the map step, keys of intermediate results are
assigned to reducers evenly, but data are assigned according
to their keys. If the data distribution for keys is skewed, the
amount of assigned data for each reducer is also skewed.
This may cause significant performance degradation, and
thus uniform data assigning is important.

This is a well-known problem of the load balancing
in parallel/distributed systems. The load balancing problem
is known as NP-hard [2]. There have been some research
works for load balancing in MapReduce, but they still have
some scalability problems [3]–[5].

In this paper, we propose a skew-tolerant key distribu-
tion method for the MapReduce framework. In the proposed
method, workloads are evenly distributed to reducers by uni-
form assignment of data to each of them. Due to the evenly
distributed workloads, the total run time is reduced com-
pared to the conventional method. Our contributions are

Manuscript received August 31, 2011.
†The author is with the Center for Advanced Mobile Solutions,

Korea University, Seoul, Korea.
††The authors are with the Department of Computer Science

and Engineering, Korea University, Seoul, Korea.
a) E-mail: jihoonson@korea.ac.kr
b) E-mail: hyunsikchoi@korea.ac.kr
c) E-mail: ydchung@korea.ac.kr

DOI: 10.1587/transinf.E95.D.677

summarized as follows.

• We model the load balancing problem in MapReduce.
• We propose a skew-tolerant key distribution method

which reduces the overall run time by distributing
workloads to reducers evenly.

• We propose an implementation of the proposed method
without modifying the MapReduce framework.

• We show the performance evaluation results comparing
our proposed method and the conventional one.

2. Related Work

There have been many studies to address the load balancing
problem. [2] presented a greedy solution for the general load
balancing problem. However, this solution requires a large
memory space, which may cause the scalability problem.

In parallel database management systems (PDBMSs),
there have been research works for the load balancing.
DeWitt et al. proposed a load balancing method which
uses multiple algorithms specialized for different data skew-
ness [6]. In [7], the authors proposed hierarchical PDBMSs
which are shared-nothing systems whose nodes are shred-
memory multiprocessors. Rahm et al. proposed a multi-
resource load balancing method [8], [9]. In these methods,
the combination of inter-query/inter-transaction is consid-
ered for complex queries in multi-resource systems. How-
ever, the above methods focused on PDBMSs, and thus are
hard to be applied to MapReduce directly.

Recently, some studies have been presented for solving
the load balancing problem in MapReduce [3]–[5]. In [3],
authors proposed a system, called Scarlett, which adopts a
replication policy based on access patterns of files. Scarlett
decides the number of replicas of each file based on its ac-
cess frequency, and places them on as many distinct ma-
chines as possible. In this paper, we focus on the key as-
signment method for load balancing in MapReduce.

Shadi Ibrahim et al. [5] proposed LEEN which is a key
partitioning method considering the data locality and the
workload distribution. During the map phase, each mapper
collects the frequencies of keys. Before the shuffle phase,
LEEN sorts keys by their localities and then assigns them
to reducers in the sorted order while balancing the work-
load distribution. This assignment information is used by
the partitioner in the shuffle phase. This method requires
to maintain the mapping table of keys and reducers, which
may cause the scalability problem similar to [2].

Copyright c© 2012 The Institute of Electronics, Information and Communication Engineers



678
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.2 FEBRUARY 2012

In [4], the authors proposed an approximation algo-
rithm based on the clustering to handle the scalability prob-
lem. In this method, keys are clustered into a fixed number
of clusters. After that, clusters are assigned to reducers in
the same manner of the greedy solution in [2]. Here, some
clusters which have too heavy workloads are splitted into
several sub-clusters and each sub-clusters are assigned to
reducers. The performance of algorithm is highly affected
by the number of clusters because workloads are approxi-
mated within each cluster. However, details of the cluster
construction algorithm and the optimal number of cluster is
not presented in [2].

3. Problem Definition

In this paper, we focus on the load balancing problem in
MapReduce. We are given a MapReduce cluster consisting
of m identical nodes, N1,N2,N3, . . . ,Nm and n intermediate
results, where each result has a key k j and d j data (1 ≤ j ≤
n). For each intermediate result, an assignment specifies the
node to which the key is assigned and the amount of data
assigned to it. Any key can be assigned to any node. Here,
let Ki denote the set of keys assigned to the node Ni. Di, the
total amount of data assigned to the node Ni, is,

Di =
∑

k j∈Ki

d j. (1)

Since the workloads of a key grows with the increase
of data amount related to the key, the total workloads of Ni

also grows with the increasing Di. The problem we solve in
the paper is to find the assignment whose Dmax is minimum,
where Dmax = max1≤i≤m Di.

Since the load balancing problem is NP-hard, we adopt
the greedy approach for the heuristic solution.

4. The Proposed Method

4.1 Skew-Tolerant Key Distribution Method

In this paper, we propose a novel key distribution method in
MapReduce, called Skew-tolerant Key Distribution (SKD).
In SKD, workloads are evenly distributed to nodes by the
uniform distribution of data. In this paper, we assume that
we already know the data distribution for keys. It can be
easily obtained by scanning the whole data once. We also
assume that the cluster consists of identical nodes.

In the load balancing problem of MapReduce, the as-
signment is ideal when every node is assigned Dmean =∑n

i=1 di

m data, because Dmax = Dmean is minimized. Thus, each
node has Dmean capacity for assigned data in SKD. However,
the ideal assignment is not realistic because there are differ-
ent amounts of data sharing the same key. If nodes are re-
stricted to be assigned to up to Dmean data, in most of cases,
some nodes have assigned data less than Dmean, but others
have more data. To handle this problem, SKD uses a small
value Dθ as a threshold for allowing to assign a little more

Algorithm 1 Balanced key assignment algorithm
1: procedure BalancedKeyAssignment(a set of keys K, a set of data D, Dmean, Dθ)
2: Sort K by IDs.
3: A← φ � A is an assignment.
4: j← 1
5: while j ≤ n do
6: k j ∈ K
7: for each node Ni ∈ N do
8: Ki ← φ
9: while Di ≤ Dmean do

10: Ki ← Ki ∪ k j

11: Di ← Di + d j

12: j← j + 1
13: end while
14: if Di + d j ≤ Dmean + Dθ then
15: Ki ← Ki ∪ k j

16: Di ← Di + d j

17: j← j + 1
18: end if
19: A← A ∪ Ki

20: end for
21: end while
22: return A
23: end procedure

amount of data to each node. That is, each node are allowed
to be assigned maximally Dmean+Dθ data. The threshold Dθ
must be a value between 0 and dmax = max1≤ j≤n d j. We’ll
discuss about the reasonable value for Dθ in Sect. 4.2.

SKD consists of two algorithms, the balanced key
assignment (BKA) algorithm and the partition algorithm.
BKA is a preprocessing step for SKD. Before the Map-
Reduce process, keys are assigned to cluster nodes consid-
ering their workloads. When BKA begins, it sorts keys by
their IDs and chooses a node Ni. While Di ≤ Dmean is satis-
fied, keys are assigned to Ni in the sorted order. When a key
k j is selected for assigning, if (Di + d j) > Dmean, the key k j

is assigned to Ni if the condition (Di + d j) ≤ (Dmean + Dθ)
is satisfied. After that, BKA selects a next node Nh where
i � h and 1 ≤ h ≤ m, and continues assigning keys. This is
repeated until all keys are assigned.

Algorithm 1 shows our key assignment algorithm. The
input parameters of the algorithm are a set of keys K, a set
of data D, Dmean, and Dθ. At Line 2, keys are sorted by
their IDs. From Line 7 to Line 13, a node Ni is selected and
keys are assigned to Ni while Di ≤ Dmean is satisfied. From
Line 14 to Line 18, a key k j is assigned to Ni if (Di + d j) ≤
(Dmean + Dθ). At Line 22, BKA returns the assignment A.

After the map phase, the partition algorithm is called
for distribution of intermdediate results. For each result, this
algorithm finds the node which has a key range including the
key of the result, and returns the ID of the found node.

4.2 Discussion of the Threshold Dθ

In this section, we’ll discuss about the value of Dθ. For each
node, Dθ is used for checking the last key whether it is as-
signed to the node or not. If Dθ is too small, most of nodes
would be assigned less than Dmean data, but the last assigned
node would be assigned more than Dmean data. On the con-
trary, if Dθ is too big, most of nodes would be assigned
more than Dmean data, but the last assigned node would be
assigned less than Dmean data.



LETTER
679

Let suppose the worst case. The worst case is when
every last key which has dmax data failed to be assigned to
every node except the last assigned node.

Lemma 4.1: In the worst case, Dθ > m−1
m × dmax.

Proof Let the last assigned node as Nm. In the worst case,
every node has data of the amount of (Dmean + Dθ − dmax)
except Nm. In this case, Dm, the amount of assigned data of
Nm, is ((dmax − Dθ) × (m − 1) + Dmean). Here, the condition
Dm ≤ (Dmean + Dθ) should be satisfied.

(dmax − Dθ) × (m − 1) + Dmean < Dmean + Dθ
(dmax − Dθ) × (m − 1) < Dθ
m − 1

m
× dmax < Dθ (2)

Therefore, Lemma 4.1 holds. �

Lemma 4.1 is for the worst case, and thus not suitable
to be used in general. In SKD, we define an average thresh-
old for the general case as follows.

Definition 1: Given a set of unordered keys, the expected
workload is defined as the expectation of the amount of data
for a randomly chosen key ki. The expectation is defined as
follows: E[d] =

∑n
i=1 di

n

Definition 2: The average threshold is defined as follows:
Dθ = m−1

m × E[d]

When the average threshold is used, SKD assigns all
remaining keys to the last node Dm to ensure that every key
is assigned. This may cause the skewed assignment. How-
ever, the workload distribution becomes similar to that of
the optimal as the number of keys increases. In Sect. 5, we
show that the workload distribution of the proposed method
is similar with that of the greedy algorithm.

4.3 Implementation Details

SKD can be easily implemented as the partitioner class
on MapReduce. We implemented skew-tolerant partitioner
(STP) class on the Hadoop framework. STP maintains the
key assignment which is the result of BKA, and informs the
proper reducer ID for the query key. Here, note that the as-
signed keys are sorted by their IDs. STP doesn’t require
a data structure which maintains the assignment of keys to
nodes such as a mapping table between keys and nodes. In-
stead, STP maintains only the range of assigned keys for
each node. Therefore, it requires very low memory space
and key search overhead. Also, STP can be easily used in
existing MapReduce programs by choosing STP instead of
the hash partitioner.

5. Performance Evaluation

In this section, we present the experiment results of SKD for
load balancing in MapReduce. We have implemented SKD
on the Hadoop (version 0.21) [11].

5.1 Experiment Setup

Our hadoop cluster consists of 8 identical nodes. Each clus-
ter node has the i5 760 CPU and the 1 GB RAM, and is
connected to other nodes with 100 Mbps LAN.

We implemented the equi-join on the Hadoop frame-
work for the performance evaluation. The equi-join is one
of the most representative applications of MapReduce. This
can be implemented in various ways. We used the reparti-
tion join method [12] which is the most commonly used join
algorithm in MapReduce. In this algorithm, two relations (L
and R) are dynamically partitioned on the join key and the
corresponding pairs of partitions are joined.

We experimented three methods: the conventional
method [1], the greedy method [2] and the proposed method.
The conventional method is the default key distribution
method of Hadoop. It uses the hash key distribution and is
denoted by HKD in our evaluation results. GRD denotes the
greedy algorithm. Note that all the previous load balancing
methods [2], [4], [5] basically follow the greedy heuristics,
and thus are not scalable at all in the MapReduce environ-
ment. This is because each node is required to maintain a
(possibly unlimited) set of keys.

For the equi-join experiment, we used the modified
TPC-H [13] to generate skewed data. We first experimented
three methods with varying key cardinalities to compare the
scalability. Table 1 shows the comparison of memory usage
of GRD and SKD. As shown in the table, the memory usage
of GRD is increased linearly with the increasing key cardi-
nality, and finally returns the out of memory error for the
data with 150 million keys due to the lack of memory space.
However, SKD uses only 1 KB memory for storing the key
ranges assigned to each reducer. HKD doesn’t require any
memory space because it uses the hash scheme instead of
any data structures to distribute keys.

5.2 Analysis of Results

Figure 1 shows the key and data assignment for each re-
ducer. In Fig. 1 (a), keys are assigned to reducers evenly
in HKD. However, in SKD, the key assignment is skewed
for the uniform distribution of workloads. Note that the
data distribution is skewed for keys. As it can be seen in
Fig. 1 (b), the amount of assigned data is uniform in SKD
whereas it is very skewed in HKD. Furthermore, the data
assignment of SKD is very similar with that of GRD.

Figure 2 shows the task timeline of HKD and SKD.
The task timeline of SKD begins after some small amount
of time taken by BKA. As it can be seen in the graph, BKA

Table 1 Comparison of the memory usage.

Data size 1 GB 10 GB 100 GB
Key cardinality 1.5 million 15 million 150 million

Memory usage of GRD 22.89 MB 228.89 MB n/a
Memory usage of SKD 1 KB 1 KB 1 KB
Memory usage of HKD 0 0 0



680
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.2 FEBRUARY 2012

(a) Key assignment

(b) Data assignment

Fig. 1 Key and data assignment.

(a) Task timeline of HKD

(b) Task timeline of SKD

Fig. 2 Task timeline.

takes very small amount of time (about 28 seconds). On the
other hand, the whole run time of SKD is shorter than that
of HKD because more keys are processed simultaneously in
SKD than in HKD.

6. Conclusion

In this paper, we proposed a skew-tolerant key distribution
method, SKD, for the load balancing in MapReduce. SKD
consists of balanced key assignment algorithm (BKA) and
the partition algorithm. In BKA, keys are assigned to each
node until the assigned workload is larger than the aver-
age workload. Here, one more key can be assigned to the

node if the amount of assigned data of the node is less than
the threshold. The mapping information is maintained as
the range of assigned keys for each node. When the re-
duce phase starts, the partition algorithm notifies the node
ID which processes each intermediate result. The very small
amount of memory space is required to maintain the assign-
ment and it doesn’t grow with the increasing amount of data.
This accomplishes the scalability. Furthermore, the total run
time is reduced due to uniform distribution of workloads in
SKD. Our experiment results indicated that SKD is more
efficient and scalable than the conventional methods.

Acknowledgments

This work (Grants No. 00043827-1) was supported by Busi-
ness for Cooperative R&D between Industry, Academy, and
Research Institute funded Korea Small and Medium Busi-
ness Administration in 2010.

References

[1] J. Dean and S. Ghemawat, “MapReduce: Simplified data processing
on large clusters,” Commun. ACM, vol.51, pp.107–113, Jan. 2008.

[2] T.H. Cormen, C. Stein, R.L. Rivest, and C.E. Leiserson, Introduction
to Algorithms, 2nd ed., McGraw-Hill Higher Education, 2001.

[3] G. Ananthanarayanan, S. Agarwal, S. Kandula, A.G. Greenberg, I.
Stoica, D. Harlan, and E. Harris, “Scarlett: Coping with skewed
content popularity in MapReduce clusters,” EuroSys, pp.287–300,
2011.

[4] B. Gufler, N. Augsten, A. Reiser, and A. Kemper, “Handling data
skew in MapReduce,” Proc. 2nd International Conference on Cloud
Computing and Services Science, pp.100–109, Noordwijkerhout,
The Netherlands, 2011.

[5] S. Ibrahim, H. Jin, L. Lu, S. Wu, B. He, and L. Qi, “Leen:
Locality/fairness-aware key partitioning for MapReduce in the
cloud,” CloudCom, pp.17–24, 2010.

[6] D.J. DeWitt, J.F. Naughton, D.A. Schneider, and S. Seshadri, “Prac-
tical skew handling in parallel joins,” Proc. 18th International Con-
ference on Very Large Data Bases, pp.27–40, San Francisco, CA,
USA, 1992.

[7] L. Bouganim, D. Florescu, and P. Valduriez, “Dynamic load bal-
ancing in hierarchical parallel database systems,” Proc. 22th Inter-
national Conference on Very Large Data Bases, pp.436–447, San
Francisco, CA, USA, 1996.

[8] E. Rahm and R. Marek, “Dynamic multi-resource load balancing
in parallel database systems,” Proc. 21th International Conference
on Very Large Data Bases, pp.395–406, San Francisco, CA, USA,
1995.

[9] E. Rahm, “Dynamic load balancing in parallel database systems,”
Proc. Second International Euro-Par Conference on Parallel Process-
ing, vol.I, Euro-Par ’96, pp.37–52, London, UK, 1996.

[10] Y. Xu and P. Kostamaa, “Efficient outer join data skew handling in
parallel DBMS,” Proc. VLDB Endow., vol.2, pp.1390–1396, Aug.
2009.

[11] Apache Software Foundation, “Hadoop,” 2006. http://hadoop.
apache.org/core

[12] S. Blanas, J.M. Patel, V. Ercegovac, J. Rao, E.J. Shekita, and Y.
Tian, “A comparison of join algorithms for log processing in Map-
Reduce,” Proc. 2010 International Conference on Management of
Data, pp.975–986, New York, NY, USA, 2010.

[13] TPC-H Benchmark. http://www.tpc.org/tpch/


