
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.2 FEBRUARY 2012
681

LETTER

Detecting Partial and Near Duplication in the Blogosphere

Yeo-Chan YOON†, Myung-Gil JANG†, Hyun-Ki KIM†, Nonmembers, and So-Young PARK††a), Member

SUMMARY In this paper, we propose a duplicate document detection
model recognizing both partial duplicates and near duplicates. The pro-
posed model can detect partial duplicates as well as exact duplicates by
splitting a large document into many small sentence fingerprints. Further-
more, the proposed model can detect even near duplicates, the result of
trivial revisions, by filtering the common words and reordering the word
sequence.
key words: duplicate detection, sentence fingerprint, information retrieval,
blogs

1. Introduction

Since it has become easy to publish information in the blo-
gosphere, many bloggers tend to clip and post information
on their blogs in order to simply store the original, or add
their own opinions to the original. There are many differ-
ent types of clipping behaviors, such as clipping the entire
text, clipping a few phrases, or clipping and then correcting
some errors in the text [1]. However, web surfers typically
do not want to see redundant documents in search results,
and a whole lot of duplicate documents make a system less
efficient by consuming considerable resources [2]. For some
popular applications such as spam site detection and dupli-
cate web page removal in search engines [3], some duplicate
document detection approaches have been proposed as fol-
lows.

First, the document fingerprinting approaches [4]–[7]
insert a document fingerprint, which is generated based on
some representative words extracted from each compara-
ble document into the hash table and then decide whether
a target document is duplicated with the comparable docu-
ments by retrieving the target document’s fingerprint from
the hash table. For efficient duplicate document detection,
the document fingerprint is generated based on significant
words without common words [4], [5], named entities and
multi-word terms [6], or shingles indicating contiguous sub-
sequences [7]. Still, these approaches cannot detect the par-
tial duplicates that agglomerate segments of many origi-
nals [2], [3] as presented in (b) of Fig. 1.

Second, the segment fingerprinting approaches [2], [3]
generate a segment fingerprint from each segment in the

Manuscript received August 2, 2011.
Manuscript revised October 5, 2011.
†The authors are with Speech/Language Information Research

Center, ETRI, Gajeong-dong, Yuseong-gu, Daejon, Korea.
††The author is with Division of Digital Media Technology,

SangMyung University, 7 Hongji-dong, Jongro-gu, Seoul, Korea.
a) E-mail: ssoya@smu.ac.kr (corresponding author)

DOI: 10.1587/transinf.E95.D.681

Fig. 1 Partial duplicate sample document (b) including two segments ex-
tracted from the original documents (a) and (c).

Fig. 2 Near duplicate sample sentences (d), (e), and (f) having same key
words with one another.

comparable document, and mark the target document as a
duplicate when some segment fingerprints in the target doc-
ument are retrieved from the hash table. Therefore, these ap-
proaches can detect the partial duplicates by comparing the
segments rather than the documents themselves. Because
these approaches focus on the exactly duplicated segments,
the approaches still cannot detect the near duplicates, which
are trivially revised as illustrated in (d), (e), and (f) of Fig. 2.

Third, the bag-of-words approaches [8], [9] compute
the similarity between the target document and the com-
parable documents by comparing the sentences based on
some models, such as a tf-idf model [8], a probabilistic
model used in the statistical machine translation system [8]
or a fuzzy set information retrieval model [9]. These ap-
proaches are suitable for finding semantically similar doc-
uments, rather than duplicate documents. Although news
articles talking about the same people on the same topic
might relate to different events [3], the approaches can mark
these news articles as duplicates. Also, the approaches are
too computationally intensive to use in real-time applica-
tions. Specifically, the similarity between the target docu-
ment and too many comparable documents requires an in-
feasible amount of time.

In this paper, we propose a partial and near duplicate
document detection model that checks whether a target doc-
ument is duplicated with the comparable documents or not
according to the number of the hash collisions. In order
to detect partial duplicates as well as exact duplicates, the
proposed model splits the large document into many small
sentence fingerprints. For the purpose of detecting even
near duplicates, which is represented by the result of triv-
ial revisions, the proposed model filters the common words

Copyright c© 2012 The Institute of Electronics, Information and Communication Engineers



682
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.2 FEBRUARY 2012

from the sentence and alphabetically reorders the word se-
quence. Considering time and space efficiency, the proposed
model utilizes the hash algorithm to convert a large, possibly
variable-sized amount of word sequence into a small fixed-
length value.

2. Partial and Near Duplicate Document Detection

The algorithm proposed in this study is partitioned into
two phase: the development phase which builds a hash ta-
ble from comparable documents and the application phase
which checks duplication of target documents with the hash
table built in the development phase. As shown in Fig. 3, the
application phase consists of a sentence splitter, a common
word filter, an alphabetical reorderer, a hash value genera-
tor, and a duplication checker.

Given a target document, the sentence splitter splits the
target document into sentences. Then for each sentences,
the common word filter removes insignificant words such as
preposition using document frequency (DF) cut-off. We as-
sumed that a word is not significant if it has very high DF.
To obtain the DF value for a term, we calculated the doc-
ument frequency of each term in about 500 thousand blog
posts. The alphabetical reorderer sorts the remaining words
in alphabetical order.

The hash value generator transforms the reordered
word sequence into a hash value by using the 128-bit MD5
algorithm [10]. Finally, the duplication checker compares
every hash value of the target document with each hash
value in the hash table which is built from comparable doc-
uments in the development phase, and decides whether the
target document is duplicated with the comparable docu-
ments or not according to the number of the hash collisions.
Because a well-designed hash table takes O(1) time on av-
erage [11], the proposed model requires O(n) time to detect
a duplicate where n denotes the number of all sentences in
the target document.

Figure 4 shows the example results generated by each

Fig. 3 Proposed model.

step such as the sentence splitter, the common word filter,
and the alphabetical reorderer. The sentence splitter splits
the target document (a) into many sentences, and the first
sentence indicates the title sentence “U.S. to Reveal Some
Rules on Security for Internet.” The common word filter
removes the common words such as “to,” “some,” “on,”
and “for” from the sentence and the alphabetical reorderer
changes the remaining word sequence “U.S. Reveal Rules
Security Internet” to the reordered word sequence “Internet
Reveal Rules Security U.S.” as represented in the right part
of Fig. 4. Given the comparable documents (b) and (c), the
duplication checker decides that the sentence “U.S. to Re-
veal Some Rules on Security for Internet” is duplicated with
the sentence “U.S. to Reveal Security Rules for Internet” in
the document (b) and the sentence “U.S. to Reveal Rules
on Internet Security” in the document (c); because the fi-
nal word sequences of these three sentences are the same by
alphabetically reordering the word sequences without com-
mon words.

The duplication checker can be defined as the follow-
ing two functions: a decide function and a collide function.
Given the hash value sequence h1n generated from n sen-
tences in the target document, the duplication checker ver-
ifies whether each hash value hi is retrieved from the com-
parable hash table H or not, as represented in the collide
function. When more than δ hash values collides in the hash
table, the duplication checker decides that the target docu-
ment is duplicated with the source documents, as described
in the decide function.

decide(h1n)

=

{ return DUPLICATED if
∑

i collidei(hi) > δ

return NOT else
collidei(hi)

=

{ return 1 if (hi) ∈ H

return 0 else

During the development phase, every comparable doc-
ument is transformed into a hash value sequence in the same
way that the target document does. Then, the hash table
is built by inserting each hash value of the sequence. For
the purpose of excluding insignificant common sentences
such as “Read the complete New York Times Electronic
Edition on a computer, just as it appears in print,” the pro-

Fig. 4 Sentence fingerprint examples extracted from documents.



LETTER
683

posed model eliminates the sentences occurring more than
300 times (empirically based value) from the hash table.

3. Experimental Results

3.1 Performance of Proposed Model

In order to examine the practical characteristics of the pro-
posed partial and near duplicate document detection model,
we have applied the proposed model to a target document
set consisting of 19,076 blog posts, written in Korean, and
its duplication result, as shown in Table 1. According to the
completed agreement among three human labelers, 924 doc-
uments are duplicated with some of 432,162 source docu-
ments while 18,152 documents are not. In this table, “sents”
and “docs” stand for “sentences” and “documents” respec-
tively.

Considering the trend that bloggers can easily post
their opinion on news events or topics, the target document
set is collected from various blogs for one week (Nov. 9,
2008∼Nov. 15, 2008) while the source document set is col-
lected from news articles provided by 87 Korean newspaper
companies where the blog posting period is the same as the
news gathering period. As described in the average number
of sentences per document and the average number of words
per sentence of Table 1, the blog generally includes more
sentences, written in laconic style, than the news articles.

First, we analyzed some aspects of resources’ size with
various DF cut-off values which are exploited in the com-
mon word filter. Figure 5 includes one horizontal DF cut-off
value axis and two vertical axes where the left axis indicates
the number of insignificant words with the DF cut-off value
and the right axis indicates the number of hash table entries.
As the common word filter removes less words from a sen-
tence, the average number of words in the word sequence
increases from 4.09 words to 9.77 words. The number of
hash table entry with low DF cut-off value is much less than
high DF cut-off value because more sentences transformed

Table 1 Experimental document set.

Fig. 5 Resource size according to document frequency.

into empty word sequence with relatively low DF cut-off
since more words are filtered out.

Figure 6 shows the performance of the proposed model
according to the DF cut-off value. In this figure, the preci-
sion indicates the ratio of correct candidate documents from
candidate documents identified as duplicates by the pro-
posed model; while the recall indicates the ratio of correct
candidate documents from all of 924 duplicated documents.
F-measure indicates the harmonic mean of the precision and
the recall [12].

In this figure, the precision is low in the low DF cut-
off because the proposed model can treat two different sen-
tences as duplicates by removing too many words from each
sentence. On the other hand, the recall slightly decreases in
the high DF cut-off because the proposed model can treat
two nearly duplicated sentences as originals by not remov-
ing some insignificant words from each sentence. Given an
extreme case such as the common words without “some”
according to too high document frequency, for example, the
proposed model can decide that the sentence “U.S. to Reveal
Some Rules on Security for Internet” is not duplicated with
the sentence “U.S. to Reveal Security Rules for Internet”;
because the word sequence “Internet Reveal Rules Security
Some U.S” is different from the word sequence “Internet
Reveal Rules Security U.S.” Besides, too high DF cut-off
makes the common word filter ineffective because the num-
ber of common words can be approximately equal to zero.

Figure 7 indicates the performance of the proposed
model by varying threshold δ of the decide function de-
scribed in Sect. 2. We set DF cut-off value as 300,000
which achieved the best F-measure performance in Fig. 6.
When even more than one word sequence in the target doc-
ument collides in the hash table, there is much likelihood
of the given target document being duplicated with one of

Fig. 6 Performance according to document frequency.

Fig. 7 Performance according to the number of the hash collisions.



684
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.2 FEBRUARY 2012

Table 2 Comparison with previous models.

the comparable documents; because the hash table excludes
common sentences occurring more than 300 times in the
source documents. Since 276 duplicated target documents
of the experimental document set include only less than four
hashes colliding in the hash table, the recall is very low
(70.12%) although the precision is 99.79%, as shown at five
hash collisions in Fig. 7.

For the comparison with previous models in the same
environment, we have reimplemented a document finger-
printing approach (Chowdhury02) [4] and a segment finger-
printing approach (Wang09) [3] as represented in Table 2.
Then, we have applied these models to the same document
set on a general PC with a processor operating at 3.33 GHz
and 4 GB of RAM. For the proposed model, we set thresh-
old δ of the collide function as three as Fig. 6 shows the best
F-measure performance with the three hash collisions.

Unlike the other two models serving the sentence as the
fingerprint, the (Chowdhury02) model utilizes the document
as fingerprint; therefore, the (Chowdhury02) model is much
smaller than the other two models on the model size and
faster on the resource loading time. However, the (Chowd-
hury02) model is not much faster on the processing time per
request; since the model requires considerable time to alpha-
betically reorder the sequence of too many significant words
in the document. Like the (Chowdhury02) model, the pro-
posed model also filters the common words and reorders the
word sequence for each sentence; therefore, the proposed
model is somewhat smaller than the (Wang09) model in the
model size and slower in the processing time per request.
Although the proposed model’s hash table size is roughly
ten times larger than the (Chowdhury02) model, the pro-
posed model is not much slower than the (Chowdhury 02)
model in the processing time per request; because the word
ordering is simple in the short sentence as compared with
the long document.

Besides, the (Chowdhury02) model obtains much
lower recall than the other models because the model cannot
detect the partially duplicated document by using the docu-
ment fingerprint. Also, the (Chowdhury02) model has low
precision since the model to improve the recall filters too
many significant words from the document fingerprint. By
partitioning the document into the sentence fingerprints, the
other two models can detect the partially duplicated docu-
ments, and improve more than 10% on both of precision
and recall. Furthermore, the proposed model can improve
2.31% on recall because the proposed model can also detect

the nearly duplicated documents by filtering the common
words and reordering the word sequence while the (Wang09)
model misses them.

4. Conclusion

In this paper, we propose a near and partial duplicate doc-
ument detection model consisting of a sentence splitter, a
common word filter, an alphabetical reorderer, a hash value
generator, and a duplication checker. The proposed model
has the following characteristics.

First, the proposed model can detect partial duplicates,
agglomerates of segments of several originals, by splitting
the large document fingerprint into many small sentence
fingerprints. Experimental results show that the proposed
model improves both precision and recall by more than 10%
by using the sentence fingerprint.

Second, the proposed model can detect the near du-
plicates such as the trivially revised sentences by filtering
the common words from the sentence and alphabetically re-
ordering the word sequence. For this reason, the proposed
model additionally improves recall by 2.31%.

Third, the proposed model can reduce the model size
somewhat by filtering the common words and reordering the
word sequence before adding the word sequence to the hash
table. Experimental results show that the proposed model is
roughly 2% smaller than the (Wang 09) model.

References

[1] H.Y. Lee and E.H. Jung, “Analyzing distribution of digital contents
in terms of blog sphere,” KISDI Issue Report, vol.08-12, Dec. 2008.

[2] J. Seo and W.B. Croft, “Local text reuse detection,” Proc. 31st ACM
SIGIR, pp.571–578, Singapore, July 2008.

[3] J.H. Wang and H.C. Chang, “Exploiting sentence-level features for
near-duplicate document detection,” LNCS, vol.5839, pp.205–217,
2009.

[4] A. Chowdhury, O. Frieder, D. Grossman, and M.C. McCabe, “Col-
lection statistics for fast duplicate document detection,” ACM Trans.
Information Systems (TOIS), vol.20, no.2, pp.171–191, April 2002.

[5] J.G. Conrad, X.S. Guo, and C.P. Schriber, “Online duplicate docu-
ment detection: signature reliability in a dynamic retrieval environ-
ment,” Proc. 12th Int’l Conf. on Information and Knowledge Man-
agement, pp.443–452, Nov. 2003.

[6] J.W. Cooper, A.R. Coden, and E.W. Brown, “Detecting similar doc-
uments using salient terms,” Proc. 11th Int’l Conf. on Information
and Knowledge Management, pp.245–251, Nov. 2002.

[7] A.Z. Broder, S.C. Glassman, M.S. Manasse, and G. Zweig, “Syn-
tactic clustering of the web,” Proc. 6th Int’l World Wide Web Conf.,
pp.391–404, April 1997.

[8] D. Metzler, Y. Bernstein, W.B. Croft, A. Moffat, and J. Zobel,
“Similarity measures for tracking information flow,” Proc. 14th Int’l
Conf. on Information and Knowledge Management, pp.517–524,
Oct. 2005.

[9] R. Yerra and Y.-K. Ng, “A sentence-based copy detection approach
for web documents,” Proc. Fuzzy Systems and Knowledge Discov-
ery, LNCS, vol.3613, pp.481–482, 2005.

[10] R.L. Rivest, “The MD5 message digest algorithm,” request for com-
ments (RFC) 1321, Internet Activities Board, Internet Privacy Task
Force, April 1992.

[11] B. Sun, K. Wu, and U. Pooch, “Routing anomaly detection in mobile



LETTER
685

ad hoc networks,” Proc. 12th Int’l Conf. on Computer Communica-
tions and Networks, pp.25–31, Oct. 2003.

[12] C.K. Lee and M.G. Jang, “Fast training of structured SVM using

fixed-threshold sequential minimal optimization,” ETRI J., vol.31,
no.2, pp.121–128, April 2009.


