
786
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.3 MARCH 2012

PAPER

WBC-ALC: A Weak Blocking Coordinated Application-Level
Checkpointing for MPI Programs

Xinhai XU†a), Student Member, Xuejun YANG†, and Yufei LIN†, Nonmembers

SUMMARY As supercomputers increase in size, the mean time be-
tween failures (MTBF) of a system becomes shorter, and the reliability
problem of supercomputers becomes more and more serious. MPI is cur-
rently the de facto standard used to build high-performance applications,
and researches on the fault tolerance methods of MPI are always hot topics.
However, due to the characteristics of MPI programs, most current check-
pointing methods for MPI programs need to modify the MPI library (even
operating system), or implement a complicated protocol by logging lots of
messages. In this paper, we carry forward the idea of Application-Level
Checkpointing (ALC). Based on the general fact that programmers are
familiar with the communication characteristics of applications, we have
developed BC-ALC, a new portable blocking coordinated ALC for MPI
programs. BC-ALC neither modifies the MPI library (even operating sys-
tem) nor logs any message. It implements coordination only by the Barrier
operations instead of any complicated protocol. Furthermore, in order to
reduce the cost of fault-tolerance, we reduce the synchronization range of
the barrier, and design WBC-ALC, a weak blocking coordinated ALC uti-
lizing group synchronization instead of global synchronization based on the
communication relationship between processes. We also propose a fault-
tolerance framework developed on top of WBC-ALC and discuss an imple-
mentation of it. Experimental results on NPB3.3-MPI benchmarks validate
BC-ALC and WBC-ALC, and show that compared with BC-ALC, the av-
erage coordination time and the average backup time of a single checkpoint
in WBC-ALC are reduced by 44.5% and 5.7% respectively.
key words: Application-Level Checkpointing, weak coordinated, MPI,
fault tolerance, consistency

1. Introduction

In recent years, with the performance improvement of su-
percomputers, the reliability problem has become more and
more serious. On the one hand, with the development of
manufacturing technology, the single chip integrates more
and more transistors, and it is more vulnerable to transient
faults because of high temperature [1]; on the other hand,
in order to obtain higher performance, the scale of super-
computers keeps growing. For example, the top ten super-
computers in the top500 list of Jun. 2011 have more than
100 k nodes (cores) on average [2]. However, the reliability
of a parallel computing system is inversely proportional to
its degree of parallelism [3]. Some researchers have pointed
out that the mean time between failures (MTBF) of future
Exascale supercomputers will reduce to days or even hours.
However, in order to improve the precision of results, some
applications need to run several days even on the fastest su-

Manuscript received September 5, 2011.
Manuscript revised November 7, 2011.
†The authors are with National Laboratory for Parallel and Dis-

tributed Processing, School of Computer, National University of
Defense Technology, Changsha, China.

a) E-mail: xuxinhai@nudt.edu.cn
DOI: 10.1587/transinf.E95.D.786

percomputer [4], and the execution times of these applica-
tions are much longer than MTBF. So fault tolerance meth-
ods are necessary for guaranteeing the execution of these
applications.

In the distributed and parallel computing area, Check-
point/Restart (C/R), i.e., checkpointing methods are widely
used fault tolerance methods [5], [6]. These methods peri-
odically save the checkpoint data, namely the states of the
computation, to stable storage. If some failure happens in
system, the program will roll back to an appropriate check-
point, and the computation is restarted after recovering the
state. Generally, checkpointing can be classified along two
orthogonal dimensions.

Firstly, according to the level of saving states, check-
pointing methods can be classified into two kinds: System-
level checkpointing (SLC) and Application-level check-
pointing (ALC) [7]. SLC stores all the states of the whole
system periodically. It is a transparent method for the pro-
grammer, but its implementation relies on the concrete hard-
ware and software environments. ALC reduces the fault-
tolerance overheads with the help of programmers, who ap-
point the location and data of checkpoint. Checkpointing
function codes are inserted into the original program, so
ALC can satisfy the requirements of different hardware and
operation systems.

Secondly, according to the manner of maintaining con-
sistency, checkpointing methods can be classified into coor-
dinated checkpointing and uncoordinated checkpointing [8].
Coordinated checkpointing needs to harmonize all processes
to generate a consistent global state. It simplifies the re-
covery procedure, but its overhead expands as the system
scale grows. In uncoordinated checkpointing, each pro-
cess saves its checkpoint data independently, so each pro-
cess can save its state at a convenient time. However, unco-
ordinated checkpointing may lead to the domino effect [9].
Furthermore, according to the manner of coordination, coor-
dinated checkpointing can be classified into blocking coor-
dinated checkpointing and non-blocking coordinated check-
pointing. Blocking techniques bring all processes to a stop
before taking a global checkpoint. Non-blocking coordi-
nated checkpointing implements coordination by exchang-
ing special markers or control tokens between processes. In
order to form a global checkpoint, a global coordination pro-
tocol is used to orchestrate the saving of the states of indi-
vidual processes and the contents of certain messages.

The Message Passing Interface (MPI) [10] is currently
the de facto standard used to build high-performance appli-

Copyright c© 2012 The Institute of Electronics, Information and Communication Engineers



XU et al.: WBC-ALC: A WEAK BLOCKING COORDINATED APPLICATION-LEVEL CHECKPOINTING FOR MPI PROGRAMS
787

cations. How to perform fault-tolerance for MPI programs
with C/R is always a hot topic. Many researches [11]–[14]
have designed and optimized the checkpointing for MPI
programs from different points of view. Nonetheless, in
order to get a global consistency checkpoint, the methods
above either modify the MPI library (even operating sys-
tem) or implement a coordination protocol by logging lots
of messages. These methods are complicated to implement
and will bring heavy fault-tolerance overheads. Based on
the ideas of ALC and blocking coordinated checkpointing,
this paper develops BC-ALC, a blocking coordinated ALC
for MPI programs. This method need not modify the MPI
library or operating system, and programmers only need to
appoint the positions of checkpoints in an MPI program. A
global consistency checkpoint can be obtained by synchro-
nization, implemented by Barrier operations, without any
complicated coordination protocol.

The classical blocking coordinations are usually imple-
mented by global barriers. However, the synchronization
overhead of global barriers is very expensive, and all pro-
cesses must backup data together after the global barrier,
which will exacerbate the pressure on I/O bandwidth. So
the blocking coordinated checkpointing based on global bar-
rier is considered as a poor scalable checkpointing method.
In order to reduce the overheads of synchronization and
backup, based on the analysis of the communication charac-
teristics of MPI programs, this paper develops WBC-ALC,
a weak blocking coordinated ALC using group barrier to
implement synchronization.

To the best of our knowledge, this is the first work in-
vestigating the development of checkpointing methods for
MPI programs without modifying MPI library or logging
MPI messages. The contributions of this paper are summa-
rized below:

• We introduce BC-ALC, a new portable blocking coor-
dinated ALC without modifying MPI library or logging
any message, for MPI programs.
• We design WBC-ALC, a weak blocking coordinated

ALC using group barrier instead of global barrier to
implement synchronization for MPI programs to re-
duce fault-tolerance overheads.
• We present a WBC-ALC-based fault-tolerance frame-

work for providing reliability guarantees for MPI pro-
grams, and describe an implementation of this frame-
work.
• We demonstrate the validations of BC-ALC and WBC-

ALC by making experiments on NPB3.3-MPI bench-
marks. Experiment results illustrate that programmers
can use BC-ALC or WBC-ALC easily in MPI pro-
grams. Compared with BC-ALC, the average coordi-
nation time and the average backup time of a single
checkpoint in WBC-ALC are reduced by 44.5% and
5.7% respectively.

The rest of the paper is organized as follows. Sec-
tion 2 introduces the blocking coordinated ALC method for
MPI programs to overcome the difficulties in ALC of MPI

programs. Section 3 reduces the synchronization range of
BC-ALC, and introduces the basic idea and synchroniza-
tion mechanism of WBC-ALC. Section 4 describes a fault-
tolerance framework developed based on WBC-ALC for
MPI programs. Section 5 presents an implementation of
WBC-ALC. Section 6 describes our evaluation methodol-
ogy, demonstrates the correctness of BC-ALC and the effec-
tiveness of WBC-ALC. Section 7 reviews the related work.
Finally, Sect. 8 concludes the paper.

2. Blocking Coordinated ALC for MPI

In this section, we first introduce the difficulties in ALC of
MPI programs, then we present the basic idea of BC-ALC,
a high portable blocking coordinated ALC, and describe its
mechanism of blocking coordination.

Same as most previous researches on checkpointing,
we assume the communications between processes are reli-
able. Therefore, we will concentrate on the faults of com-
puting nodes, and assume the fail-stop fault model [15].

2.1 Difficulties in ALC of MPI Programs

As shown in Fig. 1, we describe a parallel program with
checkpointing as follows: the program is constituted by n
processes, denoted by P0, P1, . . . , Pn−1; during the normal
execution of Pi (0 ≤ i < n), there are mi checkpoints, de-
noted by Ci, j (0 ≤ i < n, 0 < j ≤ mi); these checkpoints
divide the normal execution of Pi into mi + 1 epochs, de-
noted by Ei, j (0 ≤ i < n, 0 ≤ j ≤ mi). And we call the set
of j-th epoch from each process system epoch j, denoted by
E j.

Based on the description above, we give the following
definitions:

Definition 1: Global checkpoint is a checkpoint set L =
{C0,k0 ,C1,k1 , . . . ,Cn−1,kn−1 }, which contains one and only one
checkpoint from each process.

Definition 2: Given a global checkpoint L = {C0,k0 ,C1,k1 ,
. . . ,Cn−1,kn−1 } and a message M, which is sent from Ea,b to
Ec,d, M is a late message for L if b < ka and kc ≤ d, and an
early message for L if ka ≤ b and d < kc.

For example, in Fig. 1 M1 is a late message for L′ and
M2 is an early message for L′.

Definition 3: Given a global checkpoint L, L is a consis-
tent global checkpoint if there is no early message for L, a
transitless global checkpoint if there is no late message for
L, and a strong-consistent global checkpoint if there is no
late or early message for L.

Apparently, there is no message crossing any strong-
consistent global checkpoint, so a system does not have to
log any message at any strong-consistent global checkpoint.

[13] analyzed the difficulties in ALC of MPI programs,
and the difficulties are as follows:

• Delayed state-saving: different from SLC, which may



788
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.3 MARCH 2012

Fig. 1 The basic model of ALC.

Fig. 2 BC-ALC model.

be taken at any time during a program’s execution,
ALC can only be taken when a program runs to the
positions of checkpoints.
• Handling late and early messages: there may be late

and early messages in system when taking checkpoints,
so in order to recover the system state correctly, these
messages must be carefully dealt with.
• Non-FIFO message delivery at application level: in an

MPI application, a process P can use tag matching to
receive messages from Q in a different order than as
they were sent.
• Collective communication: there are many kinds of

collective communications in MPI programs, and these
communications involve a group of processes. If some
processes make a collective communication call before
taking their checkpoints, and others after, the restart
from this global checkpoint may lead deadlock.
• Problems Checkpointing MPI Library State: there are

two kinds of MPI calls: one is used to manage the

MPI environment, such as MPI Init, MPI Comm rank,
MPI Comm split, etc; the other is used to operate the
variables, such as MPI Send, MPI Allreduce and so on.
All the states of these MPI calls must be stored when
taking checkpoints.

2.2 Blocking Coordination Mechanism

For the difficulties of ALC in MPI programs, we introduce
BC-ALC, a new blocking coordinated ALC for MPI pro-
grams. As shown in Fig. 2, in BC-ALC, all processes must
synchronize together via global barrier before backup, and
thus form a global checkpoint. If some failure happens in
system, all processes just roll back to their last checkpoint,
i.e., the system recovers from the last global checkpoint.

As shown in Fig. 2, we modifies the basic model of
ALC into the BC-ALC model. Firstly, each process must
take a global barrier before taking checkpoint, so during the



XU et al.: WBC-ALC: A WEAK BLOCKING COORDINATED APPLICATION-LEVEL CHECKPOINTING FOR MPI PROGRAMS
789

normal execution, all processes take checkpoints the same
times, i.e., m0 = m1 = . . . = mn−1. We denote the number
as m for short. Secondly, system can only recover from the
global checkpoint Li = {C0,i,C1,i, . . . ,Cn−1,i}, (0 < i ≤ m).

ALC does not know the exact send/receive time of a
specific message, and message delivery at application level
does not follow the FIFO rule, so we analyze the commu-
nication relationship among processes based on application
level communications, which are implemented by commu-
nication primitives. In MPI programs, there are two kinds
of communications: point-to-point communication and col-
lective communication. The former involves two processes,
which respectively call Send primitive and Receive primitive
to accomplish the data transfer. For this kind of communi-
cation, there is an application level communication from the
process that calls Send primitive to the process that calls
Receive primitive. A collective communication involves a
group of processes, all of which call the same collective
communication primitive to exchange data. For the collec-
tive communications, we conservatively assume that there
is an application level communication between any two pro-
cesses in the process group.

Apparently, messages are caused by application level
communications, so we make the following definition:

Definition 4: Given an application level communication T
from process Pi to Pj, the message active area of T is an
primitive quadruple (Ii,x, Ii,y, I j,v, I j,z), in which primitive Ii,x

and Ii,y respectively start and complete the Send operation
of T in Pi, and primitive I j,v and I j,z respectively start and
complete the Receive operation of T in Pj.

In non-blocking point-to-point communications, Ii,x

(I j,v) and Ii,y (I j,z) are implemented by two different prim-
itives, which usually appear in pairs, such as MPI Isend
(MPI Irecv) and MPI Wait. In blocking point-to-point
communications, Ii,x (I j,v) and Ii,y (I j,z) are implemented
by the same primitive, which takes charge of starting
and completing the operation together, such as MPI S end
(MPI Recv). In collective communications, all of the four
primitives in the message active area are the same primitive,
which is called twice by Pi and Pj.

As shown in Fig. 3, for a message active area
(Ii,x, Ii,y, I j,v, I j,z), from the application level, process Pi can
send messages at any time between tx and ty, and process Pj

can receive messages at any time between tv and tz. From
the system level, between min{tx, tv} and max{ty, tz}, there

Fig. 3 Message active area.

are lots of information about the messages in the system, in-
cluding message queues, message buffers and the network.
Consequently, in order to avoid storing the information of
messages at checkpoints, for any application level commu-
nication T with message active area (Ii,x, Ii,y, I j,v, I j,z), all the
primitives Ii,x, Ii,y, I j,v and I j,z must be in the same system
epoch.

Based on the general fact that programmers are famil-
iar with the communication characteristics of applications,
programmers can guarantee that no message active area will
cross any global checkpoint in BC-ALC by inserting appli-
cation level checkpoints at appropriate positions. This is not
a tough work for programmers as we know from the exper-
iment results shown in Sect. 6. Apparently, with the pro-
grammers’ effort, no message will cross the global check-
points after global barriers, so all the global checkpoints
Li (0 < i ≤ m) are strong-consistent ones. Consequently,
BC-ALC overcomes all the difficulties except “Problems
Checkpointing MPI Library State”. To tackle this difficulty,
we only need to deal with the MPI calls which manage the
MPI environment, and it can be done at implementation
level, as described in Sect. 5.

3. Weak Blocking Coordinated ALC

Although all the global checkpoints Li (0 < i ≤ m) are
strong-consistent ones in BC-ALC, the overheads of global
barriers before taking checkpoints are very high. In order
to reduce these overheads, this section introduces the basic
idea behind WBC-ALC, and describes the optimized coor-
dination mechanism of WBC-ALC.

3.1 Basic Idea behind WBC-ALC

From Fig. 4 (b), it is not difficult to find out that there is only
one communication between P0 and P1 in system epoch E0,
so once P0 and P1 have completed the computation in E0,
the two processes need not rollback if P2 occurs a failure in
E0. So P0 and P1 can take their checkpoints after synchro-
nizing with each other at the end of E0,0 and E1,0 respec-
tively. Similarly, P2 can take checkpoint at the end of E2,0

without synchronizing with any other process.
Based on the analysis above, we reduce the synchro-

nization range of the barrier in BC-ALC: as shown in
Fig. 4 (c), at the end of a epoch, a process can take check-
point after synchronizing with the processes that have com-
municated during this epoch. If some failure happens in sys-
tem, all the processes rollback to their last checkpoints, and
recompute from the global checkpoint. We call this block-
ing coordinated ALC with group synchronization instead
of global synchronization weak blocking coordinated ALC
(WBC-ALC).

Different from BC-ALC, processes in WBC-ALC only
synchronize with a part of processes. So processes are not
necessarily running in the same system epoch, neither in the
normal execution nor after the recovery. Compared with
BC-ALC, there are three advantages in WBC-ALC:



790
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.3 MARCH 2012

Fig. 4 BC-ALC v.s. WBC-ALC.

• The overhead of group synchronization is lower than
that of global synchronization.
• Group synchronization provides the processes the

chance to take checkpoints at different time, which
eases the pressure on I/O bandwidth, and thus can re-
duce the overhead of backup.
• With group synchronization, processes execute asyn-

chronously: on the one hand, different processes
can compute the epochs belong to different system
epoches; on the other hand, a process’s checkpoint can
be taken while another process is performing the nor-
mal computation. So the asynchronism can reduce the
total overhead of fault-tolerance.

3.2 Coordination Mechanism of WBC-ALC

The key difference between BC-ALC and WBC-ALC is
changing global synchronization into group synchroniza-
tion. This section describes the coordination mechanism of
WBC-ALC. Since BC-ALC ensures that all primitives of a
message active areas are in the same system epoch, we make
the definitions as follows:

Definition 5: In a system with a process set Proc =
{P0, P1, . . . , Pn−1}, if Pi and Pj satisfy one of the following
conditions, Pi is communication-related with Pj in system
epoch Ek. We denote this relation as < Pi, Pj >k.

1. i = j.
2. There is an application level communication between

Pi and Pj in Ek.
3. There is a process Px that satisfies the two relations
< Pi, Px >k and < Px, Pj >k.

It is not difficult to prove that the communication rela-
tion <, >k is reflexive, symmetric and transitive, so <, >k is
an equivalence relation.

Definition 6: In a system with a process set Proc =
{P0, P1, . . . , Pn−1}, given a communication relation <, >k, we
denote the equivalence class of Pi under <, >k as [Pi]k =

{Pj| < Pi, Pj >k}, and call [Pi]k the communication related
process group of Pi in Ek.

Definition 7: In a system with a process set Proc =
{P0, P1, . . . , Pn−1}, given a communication relation <, >k

and a partition of Proc
∏
= {S 0, S 1, . . . , S v−1},∏ is a con-

sistent partition of system epoch Ek if for any communi-
cation related process group [Pi]k (0 ≤ i < n), there is a
S j (0 ≤ j < v) so that [Pi]k ⊆ S j.

Based on the definitions above, the coordination mech-
anism of WBC-ALC is: in a system with a process set
Proc = {P0, P1, . . . , Pn−1}, given a consistent partition of
system epoch Ek

∏
= {S 0, S 1, . . . , S v−1}, all the processes

belong to the same S j (0 ≤ j < v) synchronize with each
other before taking checkpoints. We implement this mech-
anism by splitting the processes of the system into v groups



XU et al.: WBC-ALC: A WEAK BLOCKING COORDINATED APPLICATION-LEVEL CHECKPOINTING FOR MPI PROGRAMS
791

corresponding to
∏

, and synchronizing the processes in the
same group by group barriers.

Theorem 1: In WBC-ALC, if some failure happens in the
system, the global checkpoint, constituted by the last check-
points of all processes, is a strong-consistent global check-
point.

Proof : Let the last checkpoint of Pi (0 ≤ i < n) be
Ci,lasti , and denote Llast = {C0,last0 ,C1,last1 , . . . ,Cn−1,lastn−1 }. If
Llast is not a strong-consistent global checkpoint, there must
be a message M that crosses Llast. Assume M is caused
by the application level communication T , whose message
active area is (Ia,x, Ia,y, Ib,v, Ib,z). On the one hand, in BC-
ALC/WBC-ALC, programmers must ensure that all the four
primitives belong to the same system epoch, denoted by Ek,
so Ia,x and Ia,y are on the same side of Llast and so do Ib,v

and Ib,z; On the other hand, since M crosses Llast, there
must be two primitives among {Ia,x, Ia,y, Ib,v, Ib,z} on differ-
ent sides of Llast. Consequently, Ia,x and Ib,z must reside
on the different sides of Llast, i.e., lastb < k ≤ lasta or
lasta < k ≤ lastb. However, based on Definition 5, Pa

is communication-related with Pb in system epoch Ek, i.e.,
< Pa, Pb >k, so Pa and Pb belong to the same communica-
tion related process group [Pa] ([Pb]). According to the co-
ordination mechanism of WBC-ALC, Pa and Pb must syn-
chronize with each other before taking checkpoints at the
end of Ek, i.e., lasta < k, lastb < k or k ≤ lasta, k ≤ lastb.
Apparently, lastb < k ≤ lasta or lasta < k ≤ lastb is oppo-
site to lasta < k, lastb < k or k ≤ lasta, k ≤ lastb, so Llast

must be a strong-consistent global checkpoint.
Based on Theorem 1, in WBC-ALC, each process only

need to maintain one checkpoint without saving any infor-
mation of messages.

In sum, given consistent partitions for all system
epochs, BC-ALC can be improved into WBC-ALC by sub-
stituting global barriers with group ones. The method of
partitioning is described in Sect. 5.1.

4. Framework of WBC-ALC

Carrying forward the idea of application level ALC, we
make use of the programmer’s understanding of the appli-
cations to help accomplish the fault-tolerance function of
WBC-ALC. This section presents the compiler-directed
fault tolerance framework developed on top of WBC-ALC.
In Sect. 4.1, we describe our programming method used to
facilitate fault tolerance of WBC-ALC. In Sect. 4.2, we
briefly introduce the functionalities of all key components
in our framework.

4.1 Programming Method

As shown in Fig. 5, in order to facilitate fault tolerance of
WBC-ALC, programmers need to modify the original MPI
programs as follows:

Firstly, programmers should define nCkpt, the number
of application level checkpoints in the source code, by the

Fig. 5 Programming method of WBC-ALC.

compiler directive “#define nCkpt N”. Note that nCkpt rep-
resents statically the number of checkpoints inserted in each
process. During program execution, a particular application
level checkpoint may be executed several times.

Secondly, programmers should appoint the positions of
the i-th application level checkpoints by the compiler di-
rective “#CKPT i”. Notice that the positions of applica-
tion level checkpoints must satisfy the blocking coordina-
tion mechanism in Sect. 2.2. It is not a hard work for pro-
grammers to find the positions, and Sect. 6 will show that
we can insert application level checkpoints in all the MPI-
version programs of NPB benchmark easily. For some com-
plicated MPI programs, we have implemented a source-to-
source pre-compiler ALEC to identify the safe checkpoint-
ing regions [16]. ALEC firstly constructs the CFG of MPI
programs, and then conservatively matches the MPI com-
munication primitives and finds all potential message active
areas over the CFG. A global checkpoint is safe, i.e., strong-
consistent if the virtual line that connects each checkpoint
location of this global checkpoint in the CFG does not cross
any potential message active area. Based on a live-variable
analysis for MPI programs, ALEC can also find out the data
which really need to be saved at checkpoints [17].

Thirdly, in order to implement the coordination mech-
anism of WBC-ALC, for each system epoch, we need the
communication relations among all processes to split these
processes into corresponding process groups. So the pro-
grammers have to implement a function named “ColorInit”
to afford the information. There are two parameters in
ColorInit: one is myrank, an integer stands for the ID of
the calling process; the other is ColorArray, an array of N
integers, in which ColorArray[i] is the color value of the
process Pmyrank at the i-th application level checkpoint. Each
process calls ColorInit to initialize its ColorArray, and all
the processes with same color value of ColorArray[i] are in
the same group at the i-th application level checkpoint.

4.2 The Framework

Figure 6 depicts our checkpoint-based fault-tolerance



792
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.3 MARCH 2012

Fig. 6 Framework of WBC-ALC.

framework. An MPI program with the compiler directives
shown in Fig. 5 is compiled by a source-to-source WBC-
ALC compiler into another program with all required fault-
tolerance code, which can be categorized into three types:

• Ckpt Init Code. After initializing the MPI environ-
ment, we generate code to initialize the variables for
checkpointing.
• Restart Jump Code. After Ckpt Init Code, we gen-

erate code to switch the program’s context to the last
checkpoint saved during last execution if the program
is restarted after some failure.
• Checkpoint Code with Weak Blocking Coordina-

tion. For each compiler directive “#CKPT x”, we gen-
erate code to take checkpoint after group synchroniza-
tion.

5. Implementation of WBC-ALC

5.1 ColorInit

Function ColorInit computes the color values at every
checkpoint for each process, and it is the key of imple-
menting weak blocking coordination. We inherit the idea
of ALC, and leave the work to the programmers. Program-
mers can implement the function directly based on the well
understanding of the application, or analyze the colors at
different checkpoints one by one in the following steps:

• In Step 1, for an application level checkpoint C, pro-
grammers find out the statement set S(C), constituted
by all the statements between C and C’s predecessor
checkpoints. Notice that due to the branch and jump
statements, there may be several predecessor check-
points of C.
• In Step 2, programmers have to find out Pair(C), the

communication process pair set of checkpoint C. If
there exists a communication between process Px and
Py in S(C), the process pair (Px, Py) belongs to Pair(C).
There are three methods to obtain Pair(C):

1. Profile method: programmers can pre-run the pro-
gram and log the communication object processes
of the communication statements in S(C) for each

process. In order to implement this function, pro-
grammers can insert code at each communication
primitive to log communication objects. Also, the
tools TAU and Vampir can be used to implement
this function.

2. Static analysis method: based on an understand-
ing of the code or with the help of the com-
piler, programmers can obtain Pair(C) by static
analysis. Firstly, based on an analysis of control
dependence of communication statements [17],
[18] in S(C), programmers can obtain each pro-
cess’s communication statements, which will be
executed by the process in S(C). Secondly, by
traversing each process’s communication state-
ments, programmers can obtain each process’s ex-
pressions of communication objects. Thirdly, by
computing each process’s expressions of commu-
nication objects, programmers can obtain the ID
set of all communication object processes for each
process. Finally, for each process Px and its com-
munication object process Py, the process pair
(Px, Py) belongs to Pair(C).

3. Default method: for the programs which can
not be analyzed by the Profile or Static analysis
method, programmers can assume that each pro-
cess communicates with all others. Apparently,
this is a conservative method, and the weak block-
ing coordination reverses to the basic blocking co-
ordination.

• Step 3 is to form an undirected graph G(C) based on
Pair(C). The nodes of G(C) represent the processes
of the system, and the edge between two nodes repre-
sents the communication process pair of corresponding
processes.
• The final step is to assign the color values of processes

based on G(C). All the color values of the processes in
a connected subgraph of G(C) must be the same.

In sum, based on the understanding of communica-
tion characteristics of MPI programs, programmers can im-
plement the function ColorInit with the help of profiling
or compiler static analysis. In most practical MPI pro-
grams, processes communicate regularly, so it is not difficult
for programmers to define the color values of processes in
ColorInit, as shown in Sect. 6.

5.2 Ckpt Init

As shown in Fig. 7, in order to record the color values at all
application level checkpoints, we declare ColorArray, an
array of nCkpt integers, and initialize it by calling function
ColorInit. Meanwhile, in order to perform weak blocking
coordination by group barriers, we declare CommTeam, an
array of nCkpt integers, to store the handles of communi-
cators of group barriers, and initialize the array by calling
MPI Comm split.



XU et al.: WBC-ALC: A WEAK BLOCKING COORDINATED APPLICATION-LEVEL CHECKPOINTING FOR MPI PROGRAMS
793

Fig. 7 Codes of Ckpt Init.

Fig. 8 Codes of Restart Jump.

Fig. 9 Codes of Checkpoint.

5.3 Restart Jump

Similar as most previous checkpointing methods, in WBC-
ALC, if some failure happens in system, user or system
restarts the program with “Restart” state, which is recorded
in variable State. As shown in Fig. 8, after initializing vari-
ables and the MPI environment, processes check the state
of this execution. If State is Restart, each process reads the
checkpoint ID from its last checkpoint data, and jumps to the
code of corresponding checkpoint. Notice that because pro-
cesses do not backup the MPI environment at checkpoints,
the Restart Jump Code must be inserted after the initializa-
tion code of MPI environment.

5.4 Checkpoint with Weak Blocking Coordination

As shown in Fig. 9, in order to take checkpoints
with weak blocking coordination, for a compiler di-
rective “#define nCkpt N”, beside transforming it into
“Backup Checkpiont Data”, the function of saving data,
we also need to perform the group synchronization by

MPI Barrier. Of course, we also add recovery code at the
end of the checkpoint code.

6. Experiments

We demonstrate the validation of WBC-ALC (BC-ALC)
and the superiority of WBC-ALC over BC-ALC using the
MPI-version NPB benchmarks. Section 6.1 introduces the
benchmarks and experiment platform used. Section 6.2 de-
scribes the methodology used for evaluating this work. Sec-
tion 6.3 presents and analyzes our results.

6.1 Benchmarks and Platform

We select the NPB3.3-MPI benchmarks to evaluate WBC-
ALC (BC-ALC). These benchmarks consist of five parallel
kernels EP, MG, CG, FT and IS, and three simulated appli-
cations LU, SP and BT. In our experiments, the problem
sizes of all these benchmarks are Class C, and each bench-
mark is computed by 64 processes.

Our platform is a cluster with eight nodes, and each
node is equipped with two 2.93 G Intel Xeon X5670 CPUs
and 24 GB RAM. The interconnection is the same as de-
scribed in [19], and the simplex point-to-point bandwidth
is 80 Gb/s. Notice that although there are 6 cores in Xeon
X5670 CPU, we only allocate 4 processes on it. All these
benchmarks are executed in Redhat5.5.

6.2 Evaluation Methodology

For each benchmark, we analyze its communication charac-
teristic and insert application level checkpoints into the pro-
gram at appropriate positions according to the coordination
mechanism of BC-ALC. In order to demonstrate the vali-
dation of BC-ALC, for each benchmark, during the execu-
tion of its MPI program with application level checkpoints,
we interrupt it randomly and restart it with “State=Restart”.
If the results of this program after restarting can pass the
results test, BC-ALC is validate for the benchmark. Be-
sides, we also evaluate the overheads (coordination time and
backup time per checkpoint) of BC-ALC.

In order to implement WBC-ALC, based on the analy-
sis of the communication characteristics of benchmarks, we
give the group information of each application checkpoint
by implementing function “ColorInit”. In the similar way
with BC-ALC, we demonstrate the validation of WBC-ALC
and examine the effect of the weak blocking coordination
optimization.

Since the optimization of checkpoint data is not the fo-
cus of this paper, we directly use the method in [17] to ob-
tain the checkpoint data at each checkpoint. And at a given
checkpoint, the checkpoint data in BC-ACL are the same as
those in WBC-ALC.



794
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.3 MARCH 2012

6.3 Results and Analysis

6.3.1 Overheads of BC-ALC

In order to implement BC-ALC in MPI programs, program-
mers need to follow the programming method, described
in Sect. 4.1, to insert application level checkpoints into the
original programs with compiler directive “#CKPT i”. The
positions of the checkpoints must satisfy the requirement
of the coordination mechanism of BC-ALC. Based on the
analysis of the eight benchmarks, we find a common char-
acteristic: for each benchmark, the major body of the corre-
sponding MPI program is a major loop, and an application
level communication that starts in an iteration of this loop
must completes in the same iteration. So for each program,
we can insert an application level checkpoint at the begin-
ning or end of its major loop’s body.

Concretely, due to the communication characteristics
of each benchmark, we insert checkpoints at different posi-
tions in different programs. For EP, CG, MG and LU, we
only insert checkpoints at the end of their major loops’ bod-
ies. For BT and SP, the bodies of their major loops can both
be split into four steps: three steps for computations and
communications in X/Y/Z dimension respectively and one
step for global computations and communications. So we
insert four checkpoints at the end of the four step respec-
tively. For FT, the computations and communications of the
major loop is organized based on the allocation of processes.
In implementation of FT, we map the processes onto a two-
dimensional Mesh topology, so we insert two checkpoints
into the program. The major loop’s body of IS is separated
by several global collective communications, so we insert
two checkpoints: one before these communications and the
other at the end of the loop’s body.

Based on the method in [17], programmers give the
checkpoint data at each application level checkpoint di-
rectly. Experiment results show that BC-ALC is validate
for all the benchmarks. Table 1 shows the average coordi-
nation time and average backup time of a single checkpoint
for these benchmarks. The average backup time is directly
proportional to the size of the checkpoint data.

Table 1 Overheads per checkpoint in BC-ALC.

Prog. Cktp Size (B) Coordination Time (S) Backup Time (S)

EP 144 2.297E-4 5.258E-5

MG 56M 3.942E-4 5.561E-1

CG 12M 1.163E-4 1.742E-1

FT 81M 2.060E-1 1.605

IS 18M 2.701E-1 2.115E-1

LU 7.8M 5.746E-3 2.240E-2

SP 25M 5.055E-2 2.274E-1

BT 8.1M 6.422E-3 2.462E-2

6.3.2 Optimization of WBC-ALC

To implement fault-tolerance by WBC-ALC, we must de-
fine the color values of application level checkpoints by
function “ColorInit”. There is no communication in the ma-
jor loop of EP, so for the unique checkpoint in EP, the color
value of a process is equal to its process ID myrank. For BT
and SP, the first three checkpoints are at the ends of X/Y/Z
dimension respectively, so the color values of these check-
points are the process’s coordinate in X/Y/Z dimension cor-
respondingly; the last checkpoint is after the global com-
putations and communications, so its color value is a con-
stant 0, which stands for that all processes are in the same
communication group. In the major loop of FT, there are
two communication groups split from global communica-
tors, and these two groups are just those needed for the two
checkpoints, so we use them for group barriers directly. For
IS, there is no communication before the first checkpoint,
so the color value of the first checkpoint is equal to the pro-
cess’s myrank; there are several global collective communi-
cations before the second checkpoint, so the color value of
the second checkpoint is a constant 0. For MG, CG, and LU,
the communications in their major loops are complicated, so
we conservatively assume that all processes communicate
with all others. The color value of each process is then con-
stantly 0, and the weak blocking coordination reverses to the
basic blocking coordination.

Experimental results show that WBC-ALC is validate
for all the benchmarks based on splitting groups above. As
shown in Fig. 10, compared to BC-ALC, the coordination
time of a single checkpoint in WBC-ALC is reduced by
44.5% on average and 99.1% on maximum. There are two
reasons for this improvement: on the one hand, group bar-
rier reduces the synchronization range of the barrier; on
the other hand, group barrier makes processes in different
groups execute asynchronously. Beside the coordination
time, WBC-ALC also reduces the backup time of a single
checkpoint by 5.7% on average and 31.2% on maximum,
and the percentage is larger when there are more checkpoint
data.

Fig. 10 Normalized overheads per checkpoint by WBC-ALC over BC-
ALC.



XU et al.: WBC-ALC: A WEAK BLOCKING COORDINATED APPLICATION-LEVEL CHECKPOINTING FOR MPI PROGRAMS
795

7. Related work

In order to implement blocking coordinated checkpoint-
ing, hardware blocking was used on the IBM SP-2 to take
system-level checkpoints; Software blocking techniques ex-
ploit barriers - when processes reach a global barrier, each
one saves its own state on stable storage [13]. Blocking co-
ordinated checkpointing with global barrier has been well
used in OpenMP programs [20]. However, this checkpoint-
ing method has not been used in MPI programs.

In coordinated checkpointing, the procedure of coor-
dination is costly. In order to reduce this cost, minimal
checkpoint coordination implements a protocol to reduce
the range of coordination by only harmonizing the pro-
cesses which it has communicated with since the last check-
point [21]. Xavier Besseron developed an optimized coor-
dinated protocol using a dataflow graph model for KAAPI
applications [22]. In this optimized coordinated protocol, a
process only synchronizes with its communication objects
based on the dataflow graph. However, this protocol is only
used for KAAPI applications.

For send-deterministic MPI applications, [11] devel-
oped an uncoordinated checkpointing to avoid domino ef-
fect by implementing a complicated protocol based on the
characteristic of send-deterministic. However, most of the
researches of checkpointing for MPI programs are focus-
ing on coordinated checkpointing. [12] compared block-
ing with non-blocking coordinated checkpointing for large-
scale fault tolerant MPI programs. The authors found out
that for high-speed networks, the blocking implementa-
tion gives the best performance for sensible checkpoint fre-
quency.

The above researches of checkpointing for MPI are
all SLC, which must modify the MPI library or operat-
ing system. Bronevetsky developed a automated ALC for
MPI programs [13]. A coordination layer is added between
the application and the MPI library, and a coordination
protocol is implemented. Bronevetsky also improved the
fault-tolerance method for collective operations in MPI pro-
grams [14]. However, Bronevetsky’s methods must inter-
cept all calls to the MPI library and save lots of information
of MPI library.

8. Conclusion

For the difficulties in ALC of MPI programs, we intro-
duce BC-ALC, a new portable blocking coordinated ALC
for MPI programs, and with the reduction of synchroniza-
tion range in blocking coordination, we develop WBC-ALC.
Based on this new method, we have developed a compiler-
directed fault tolerance framework for MPI programs and
an implementation for it. Our experimental results obtained
on NPB3.3-MPI benchmarks demonstrate that programmers
can use BC-ALC and WBC-ALC easily, and these two
methods are valid. Compared to BC-ALC, WBC-ALC can
reduce the fault-tolerance overhead effectively.

Acknowledgments

This work is supported by the National Natural Science
Foundation of China (NSFC) No.60921062, 61120106005.

References

[1] P. Shivakumar, M. Kistler, S.W. Keckler, D. Burger, and L. Alvisi,
“Modeling the effect of technology trends on the soft error rate of
combinational logic,” Proc. International Conference on Dependable
Systems and Networks, pp.389–398, June 2002.

[2] Top500. http://www.top500.org/lists/2011/06
[3] C.-D. LU, Scalable Diskless Checkpointing for Large Parallel Sys-

tems. Ph.D. Thesis, University of Illinois at Urbana-Champaign,
2005.

[4] M. Schulz, G. Bronevetsky, R. Fernandes, D. Marques, K. Pingali,
and P. Stodghill, “Implementation and evaluation of a scalable
application-level checkpoint-recovery scheme for mpi programs,”
Proc. 2004 ACM/IEEE Conference on Supercomputing, 2004.

[5] E.N. Elnozahy, L. Alvisi, Y.M. Wang, and D.B. Johnson, “A survey
of rollback-recovery protocols in message-passing systems,” ACM
Comput. Surv., vol.34, no.3, pp.375–408, 2002.

[6] J.S. Plank, “An overview of checkpointing in uniprocessor and dis-
tributed systems, focusing on implementation and performance,”
Technical Report UT-CS-97-372, Department of Computer Science,
University of Tennessee, July 1997.

[7] E. Roman, “A survey of checkpoint/restart implementations,”
Berkeley Lab Technical Report (publication LBNL-54942), July
2002.

[8] M. Chandy and L. Lamport, “Distributed snapshots: Determining
global states of distributed systems,” ACM Trans. Comput. Syst.,
vol.3, no.1, pp.63–75, 1985.

[9] G.-M. Chiu and C.-R. Young, “Efficient rollback-recovery technique
in distributed computing systems,” IEEE Trans. Parallel Distrib.
Syst., vol.7, no.6, pp.565–577, June 1996.

[10] The Message Passing Inteface (MPI) Standard.
http://www-unix.mcs.anl.gov/mpi

[11] A. Guermouche, T. Ropars, E. Brunet, M. Snir, and F. Cappello,
“Uncoordinated checkpointing without domino effect for send-
deterministic message passing applications,” 25th IEEE Interna-
tional Parallel & Distributed Processing Symposium (IPDPS2011),
Anchorage, USA, 2011.

[12] C. Coti, T. Herault, P. Lemarinier, L. Pilard, A. Rezmerita, E.
Rodriguez, and F. Cappello, “Blocking vs. non-blocking coordi-
nated checkpointing for large-scale fault tolerant MPI,” Proc. 2006
ACM/IEEE Conference on Supercomputing, Tampa, Florida, Nov.
2006.

[13] G. Bronevetsky, D. Marques, K. Pingali, and P. Stodghill, “Au-
tomated application-level checkpointing of MPI programs,” Proc.
Ninth ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, San Diego, California, USA, June 2003.

[14] G. Bronevetsky, D. Marques, K. Pingali, and P. Stodghill, “Col-
lective operations in application-level fault-tolerant MPI,” Proc.
17th Annual International Conference on Supercomputing, San
Francisco, CA, USA, June 2003.

[15] R.D. Schlichting and F.B. Schneider, “Fail-stop processors: An ap-
proach to designing fault-tolerant computing systems,” ACM Trans.
Comput. Syst., vol.1, no.3, pp.222–238, 1983.

[16] P. Wang, Y. Du, H. Fu, X. Yang, and H. Zhou, “Static analysis for
application-level checkpointing of MPI programs,” 10th IEEE Inter-
national Conference on High Performance Computing and Commu-
nications (HPCC2008), Dalian, China, 2008.

[17] X. Yang, P. Wang, H. Fu, Y. Du, Z. Wang, and J. Jia, “Compiler-
assisted application-level checkpointing for MPI programs,” 28th In-
ternational Conference on Distributed Computing Systems, Beijing,



796
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.3 MARCH 2012

China, June 2008.
[18] M.M. Strout, B. Kreaseck, and P.D. Hovland, “Data-flow analysis

for MPI programs,” Proc. 2006 International Conference on Parallel
Processing (ICPP06), pp.175–184, Washington, DC, USA, 2006.

[19] M. Xie, Y. Lu, L. Liu, H. Cao, and X. Yang, “Implementation
and evaluation of network interface and message passing services
for TianHe-1A supercomputer,” Proc. 19th Annual Symposium
on High-Performance Interconnects, Santa Clara, CA, USA, Aug.
2011.

[20] G. Bronevetsky, D. Marques, K. Pingali, P. Szwed, and M. Schulz,
“Application-level checkpointing for shared memory programs,”
Proc. 11th International Conference on Architectural Support for
Programming Languages and Operating Systems, Boston, MA,
USA, Oct. 2004.

[21] N.S. Bowen and D.K. Pradhan, “Processor- and memory-based
checkpoint and rollback recovery,” Computer, vol.26, no.2, pp.22–
32, Feb. 1993.

[22] X. Besseron and T. Gautier, “Optimized coordinated check-
point/rollback protocol using a dataflow graph model,” Workshop
APRETAF: Algorithmes Parallèles, Répartis Et Tolérance Aux
Fautes, Grenoble, France, Jan. 2009.

Xinhai Xu Born in 1984. Received his
B.S. and M.S. degree in computer science from
the National University of Defense Technol-
ogy (NUDT) in 2006 and 2008. He is now
a Ph.D. candidate in Computer Science from
School of Computer Science at NUDT. His re-
search interest lies in high-performance comput-
ing and fault tolerance. His email address is
xuxinhai@nudt.edu.cn

Xuejun Yang Born in 1963. Received his
M.S. and Ph.D. degree in computer science from
the National University of Defense Technology
(NUDT) in 1986 and 1991. He is now a profes-
sor in the National Laboratory for Parallel and
Distributed Processing, School of Computer,
NUDT. His research interests include super-
computer architecture, parallel and distributed
operating systems, parallel language, and com-
pilers. His email address is xjyang@nudt.edu.cn

Yufei Lin Born in 1985. Received her
B.S. degree in automation from the University
of Science and Technology of China (USTC) in
2006 and M.S. degree in computer science from
the National University of Defense Technology
(NUDT) in 2008. She is now a Ph.D. candi-
date in Computer Science from School of Com-
puter Science at NUDT. Her research interest
lies in high-performance computing and evalua-
tion. Her email address is linyufei@nudt.edu.cn


