
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.3 MARCH 2012
797

PAPER

Authentication Binding between SSL/TLS and HTTP

Takamichi SAITO†a), Member, Kiyomi SEKIGUCHI††, and Ryosuke HATSUGAI††, Nonmembers

SUMMARY While the Secure Socket Layer or Transport Layer Se-
curity (SSL/TLS) is assumed to provide secure communications over the
Internet, many web applications utilize basic or digest authentication of
Hyper Text Transport Protocol (HTTP) over SSL/TLS. Namely, in the
scheme, there are two different authentication schemes in a session. Since
they are separated by a layer, these are not convenient for a web applica-
tion. Moreover, the scheme may also cause problems in establishing secure
communication. Then we provide a scheme of authentication binding be-
tween SSL/TLS and HTTP without modifying SSL/TLS protocols and its
implementation, and we show the effectiveness of our proposed scheme.
key words: web information systems, web services, security protocol, au-
thentication protocol, SSL/TLS

1. Introduction

Secure Socket Layer [1] or Transport Layer Security [2]
(SSL/TLS) is a de facto standard for secure communica-
tions over the Internet. SSL/TLS works in the transport
layer of the Open Systems Interconnection (OSI) model and
provides communication security for the upper layers. How-
ever, since SSL/TLS works in the transport layer, its original
specification does not provide a password-based authentica-
tion scheme operating in the application layer. For example,
when a web application server needs to identify a connect-
ing user, it utilizes a Hyper Text Transport Protocol (HTTP)
authentication scheme such as basic or digest over SSL/TLS
in server authentication mode [3], [4]. In this case, however,
the web server manages two security channels separately in
both application and transport layers. In other words, the
web browser authenticates the server by SSL/TLS while the
web server authenticates a user of the client by an HTTP
authentication scheme. Although it is popular, the scheme
designed specially for a web application is not the best way
to obtain security. As described above, there are two au-
thentications in a session worked in two layers. Since au-
thentication of SSL/TLS is independent of that of HTTP,
SSL/TLS could be lead to man-in-the-middle (MITM) at-
tacks used with Phising [5]. On the other, when we need
stronger security for communication, we can select to use
mutual authentication by using SSL/TLS in client authen-
tication mode. However, since this mode forces a client to

Manuscript received September 16, 2009.
Manuscript revised October 9, 2010.
†The author is with Meiji University, Kawasaki-shi, 214–8571

Japan.
††The authors are with Nomura Research Institute, Ltd., Tokyo,

100–0005 Japan.
a) E-mail: saito@cs.meiji.ac.jp

DOI: 10.1587/transinf.E95.D.797

require its X.509 certificate in accordance with Public Key
Infrastructure (PKI) [6], a web application server tends to
avoid utilizing this mode. Moreover, a web application of-
ten needs its own user authentication scheme for identify-
ing a client. In the case, there is a demand to utilize HTTP
authentication. Due to duplications of user authentications,
one of user authentications should be eliminated from the
scheme.

Therefore, built-in ways of password-based authentica-
tion are proposed to modify an SSL/TLS handshake proto-
col such as an RFC standard [7] or Secure Remote Password
(SRP) [8], [9]. However, these approaches have the follow-
ing disadvantages. Since SSL/TLS works in the transport
layer, a client as a browser needs to prepare a user interface
mechanism to obtain the user’s ID and its password when
establishing the SSL/TLS channel. The password itself that
is input into the client needs to be confirmed before estab-
lishing the channel. Then, if the provided password is in-
correct due to human error, the browser and the SSL/TLS
server need to re-start the handshake from the beginning.
This process wastes much computational cost for maintain-
ing the SSL/TLS context, especially in the web server.

In this paper, we review related works, and provide
a way of binding authentications worked in an application
layer rather than in transport layer, for overcoming the dis-
advantages.

2. Preliminary

2.1 Terms and Symbols

2.1.1 Hosts

SSL/TLS communication consists of a client C and server
S . An attacker that could be active or passive is denoted as
I. If the attacker is masquerading as server S , the attacker
is denoted as I(S ). If it is masquerading as client C, the
attacker is denoted as I(C).

2.1.2 Exchanged Messages

The symbol Msg means an arbitrary message. For exam-
ple, an expression in which C sends Msg to S is denoted as
follows:

C → S : Msg

When I masquerading as S sends Msg to C, it is de-

Copyright c© 2012 The Institute of Electronics, Information and Communication Engineers



798
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.3 MARCH 2012

noted as follows:

I(S )→ C : Msg

Note that the following two expressions have different
meanings:

C → I(S ) : Msg
C → I : Msg

The first one means that C regards the receiver as S , but
in fact, C sends it to I. The second means that C regards I
as a legitimate responder and sends Msg to it; namely, C
trusts I as a legitimate server.

2.1.3 Messages

A parameter generated by host C is expressed as XC , which
means X is generated by C. S A is the cipher suite list,
composed of protocol version, public key algorithm, com-
pressed algorithm, bulk cipher algorithm and MAC algo-
rithm, which specifies the ciphers supported by each host.
RN consists of three components: date, time and 28 bytes
of a random number. S ID is the SSL/TLS session identi-
fier, which is held by each host, and it is used in session
resumption. The symbol cert list is an X.509 certificate
chain. CN is a common name of the server specified in an
X.509 certificate. The symbol cert auth is a parameter for
requesting the client to send back the client certificate, and
cert type indicates the type of acceptable certificate. The
symbol pre master secret, from which the session key is
derived, is the concatenation of 46 bytes of the random num-
ber and protocol version. The symbol msg all shows all
messages exchanged between client and server in that time.
The symbol Ack is a parameter that informs the opposite
side that all necessary messages were transmitted to estab-
lish the SSL/TLS connection. The symbol uid and pass,
which are utilized in HTTP authentication, denote the iden-
tifier of the user and its password, respectively.

2.1.4 Encryption

A public key is denoted as P, and so PC means a public key
owned by C. {Msg}Y means that Msg is encrypted with an
encryption key Y . A secret key corresponding to the public
key P is denoted as P−1, then {Msg}P−1 means that Msg is
signed with P−1. KS is a session key generated with RNs
and pre master secret, e.g., KS CS or KS S C is a session
key between C and S . h(Msg1) is the hash value of Msg1.
h(Msg1,Msg2, · · · ,Msgi) is also a hash value, which is cal-
culated after concatenating Msg1,Msg2, · · · , and Msgi.

2.2 HTTP Authentication over SSL/TLS

Although SSL/TLS supports RSA, DH (Diffie-Hellman)
and Fortezza as key exchange algorithms, not all are dis-
cussed here since they are regarded to be same. We only
discuss the case of SSL/TLS handshake using RSA as a key

Table 1 SSL/TLS handshake in server authentication mode.

M1) C → S : S AC , S IDC ,RNC

M2) S → C : S AS , S IDS ,RNS

M3) S → C : cert listS
M4) S → C : AckS

M5) C → S : {pre master secretC }PS
M6) C → S : {h(KS CS , h(msg allCS ,C,KS CS ))}KS CS
M7) S → C : {h(KS CS , h(msg allCS , S ,KS CS ))}KS CS

Table 2 Basic authentication of HTTP over SSL/TLS.

M8) C → S : {[Request S ome page]}KS CS

M9) S → C : {[Authorization Request]}KS CS

M10) C → S : {uidC , passC }KS CS

M11) S → C : {[Requested page]}KS CS

Table 3 Digest authentication of HTTP over SSL/TLS.

M8) C → S : {[Request S ome page]}KS CS

M9) S → C : {[Authorization Request]}KS CS

M10) C → S : {h(uidC , passC)}KS CS

M11) S → C : {[Requested page]}KS CS

exchange algorithm. Table 1 shows SSL/TLS handshake
protocol using RSA in server authentication mode.

When using the server authentication mode, the web
server cannot identify a connecting user. Therefore, when it
requires user authentication, it can utilize an HTTP authen-
tication scheme, basic or digest, after SSL/TLS handshake.

After establishing SSL/TLS connection, triggered
by the message requesting user’s credential, e.g., "401
Authorization Required" from the web server, the
browser pops up a window to obtain ID and password of
the user. After the user inputs them, the browser sends them
to the server. Hereafter, when the authenticated client sends
a request massage, it attaches the client’s credential to the
message. This is shown in Table 2. Where the message
"401 Authorization Required" is in M9.

In addition, the web server can select the protocol in
which ID and its password are hashed (cf. Table 3). The
option can be specified in the configuration file of a web
server such as Apache.

2.3 Consideration of Related Work and Our Approach

As mentioned above, some studies have proposed the in-
tegration of password-based user authentication into the
SSL/TLS protocol itself. In this subsection, we consider
them and show our approach.

2.3.1 Protocol Extensions

One of the most promising proposals is the SSL/TLS exten-
sion using SRP [8], [9]. In addition, there is more standard-
ized protocol [7].

These schemes are just extensions of SSL/TLS hand-
shake in order to include password-based user authenti-
cation. These approaches force the SSL/TLS protocol to
be modified in both client and server. An authenticated
SSL/TLS server can authenticate the connecting user just



SAITO et al.: AUTHENTICATION BINDING BETWEEN SSL/TLS AND HTTP
799

Table 4 SSL/TLS handshake in client authentication mode.

M1) C → S : S AC , S IDC ,RNC

M2) S → C : S AS , S IDS ,RNS

M3) S → C : cert listS , cert auth
M4) S → C : cert type, AckS

M5) C → S : {pre master secretC }PS
M6) C → S : {h(KS CS , h(msg allCS ,KS CS )}P−1

C
M7) C → S : {h(KS CS , h(msg allCS ,C,KS CS ))}KS CS
M8) S → C : {h(KS CS , h(msg allCS , S ,KS CS ))}KS CS

as in SSL/TLS handshake. As described above, therefore,
when the user inputs the wrong password, SSL/TLS hand-
shake could be re-negotiated from the beginning. Moreover,
the server must hold connecting status in the handshake.

Another standardized choice is using SSL/TLS in
client authentication mode (cf. Table 4). This is commonly
regarded as the most secure protocol. When the client signs
the message M6, the client needs to prepare its public key
pair as its certificate for the web server. However, it could
be troublesome to do this in many cases, since the user has
to obtain an X.509 certificate for the web application.

2.3.2 Authentication Binding

There is a concept to unify two security channels by inte-
grating an upper channel into a lower one [10], [11]. For
example, when the web server requires SSL/TLS authenti-
cation over Internet Protocol Security (IPsec) in a Virtual
Private Network (VPN), this duplication of security wastes
computing power and resources. Then, it integrates the
upper into the lower. We adopt the approach to integrate
SSL/TLS and HTTP authentication scheme. However, for
convenient to manage the schemes in web application, we
integrate them in the application layer.

To bind two channels, especially from the point of view
of authentication, there are the following three combina-
tions:

1. Binding two mutual authentications
2. Binding a mutual authentication and a one-way authen-

tication
3. Binding two opposite one-way authentications.

Although the first and second concepts involve the du-
plication of security protocols, they can be integrated by
channel binding. On the other, in HTTP authentication over
SSL/TLS in server authentication mode, a client authenti-
cates a server by SSL/TLS while the server authenticates the
client by HTTP. Then, HTTP authentication over SSL/TLS
in server authentication mode is regarded as the third case.
Note that, in HTTP authentication, the client does not au-
thenticate the server while the server authenticates the client.
And, HTTP itself does not encrypt its channel. Then, for
binding the two opposite directions of authentications, we
propose a new scheme in the application layer. In this pa-
per, we call this integration authentication binding, and pro-
pose a way of authentication binding between SSL/TLS and
HTTP authentication in a secure manner.

3. Design and Implementation

3.1 Requirements

To design a new scheme, we define the following require-
ments:

1. SSL/TLS is not modified.
2. A server can obtain user’s credential after the SSL/TLS

connection is established.

Based on SSL/TLS and HTTP authentication, we can
apply the combined benefits to network performance, con-
nectivity and security. For example, a programmer of a web
application can utilize legacy softwares and libraries.

A client and a server establish an SSL/TLS connection
in server authentication mode, and then the server authenti-
cates a user of the client by using HTTP authentication in an
arbitrary time. The server acting as a web application can
control the timing to obtain the user’s credential, when user
authentication is required. This feature is more convenient
than fixing the timing of authentication in SSL/TLS hand-
shake. Moreover, for example, when utilizing the scheme
with reverse proxy in server authentication mode, a proxy
does not need a password file due to separating password
authentication from the SSL/TLS protocol.

To satisfy the above requirements, we need the follow-
ing features in our proposed system:

1. A web application server and a browser can obtain
SSL/TLS session information including the session key
shared in the SSL/TLS handshake.

2. A web application server can obtain a user password in
plaintext.

In the first feature, it is for utilizing SSL/TLS session
key and a user’s credential in the application layer. In the
second, contrary to standard management of a password file
in the UNIX system, a web application server here needs
to access a password in plaintext, since the client and the
server need to bind the above authentications. The detail of
binding is described in a later section.

3.2 System Preliminary

In this paper, we implement our proposed scheme with the
following software component modules:

- Browser with Network Security Service (NSS)
- Apache web server with mod_ssl
- Web application using PHP

NSS [12] is a security library for developing a web
client and a server. It supports the development of a browser
with SSL, TLS, PKCS, S/MIME, X.509 certificate and other
security standards. Using the library, we modify the browser
to obtain the credentials of a user and a server, and a session
key shared by SSL/TLS handshake. On the server side, we
implement a web application, in which a session key can



800
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.3 MARCH 2012

be extracted via PHP [13] and mod_ssl [14]. Therefore, we
prepare to implement an interface to obtain them on both the
server and client side.

3.3 Proposed Scheme

The proposed scheme of authentication binding consists of
the following three steps:

1. Establishing SSL/TLS handshake in server authentica-
tion mode

2. HTTP authentication over the SSL/TLS channel
3. Exchanging and verifying the credential for binding au-

thentications

While the first and second ones are utilizing an exist-
ing way, the third is implemented in this paper. To achieve
the binding, the server and the client exchange the messages
(from the message 8 to 11 in Table 5) after HTTP authenti-
cation over SSL/TLS in server authentication mode:

After establishing SSL/TLS handshake, the client
and server share the session key KS CS derived from
pre master secretC . After the client requests a page in M8,
in an application layer, the server requests the user’s creden-
tial from the client in M9. Then the client sends back ID
and hcC→S in M10. In our proposed scheme for binding two
authentications, the server and client each compute a hash
value locally. They compare them in each side. That is, the
server computes hcC→S and compares it with the received
one in M10, while the client computes hcS→C and compares
it with the received one in M11. If the local value is the
same as the received one in each side, we can conclude the
channel is integrated securely.

3.4 Exchanging Messages among Modules

In this subsection, we explain the exchange of messages and
related computations in the software modules by referring
to Fig. 1. In this figure, the numbers correspond to those in
the following descriptions, the dotted line is the SSL/TLS
communication, and the solid line is an inside exchange in
plaintext. Note that, the message 4, 5, 8, 9, 10 and 11 are
internal messages of the server.

Table 5 Complete image of proposed scheme.

M1) C → S : S AC , S IDC ,RNC

M2) S → C : S AS , S IDS ,RNS

M3) S → C : cert listS
M4) S → C : AckS

M5) C → S : {pre master secretC }PS
M6) C → S : {h(KS CS , h(msg allCS ,C,KS CS ))}KS CS
M7) S → C : {h(KS CS , h(msg allCS , S ,KS CS ))}KS CS
M8) C → S : {[Request S ome page]}KS CS

M9) S → C :
{ HTTP/1.1 401 (PJ_Late_Bind_over_ADH-RSA) }KS CS

M10) C → S : {uidC , hcC→S }KS CS

M11) S → C : {CNS , hcS→C , [Requested page]}KS CS

where hcC→S = h(CNS , PS , h(uidC , passC ,KS CS ))
hcS→C = h(uidC , passC , h(CNS , PS ,KS CS )))

[1,2] The browser and server establish SSL/TLS chan-
nel by a handshake. These correspond to the messages
from M1 to M7 in Table 5.

[3] The client sends the following message to request
a page over SSL/TLS. In this case, authentication is
required for obtaining some_page. This corresponds
to M8 in Table 5:

"GET" <some_page>

[4,5] After receiving the message, Apache requests the
user’s credential with the following message, which
corresponds to M9 in Table 5:

"HTTP/1.1 401 (PJ_Late_Bind_over_ADH-RSA)"

where PJ_Late_Bind_over_ADH-RSA is a trigger of
authentication binding.

[6,7] The Apache module mod_ssl encrypts it for send-
ing over the SSL/TLS channel. When receiving this
trigger, the client starts to bind the authentication. The
client extracts CN and its public key of the server from
the server certificate received in the SSL/TLS hand-
shake. With the CN and its public key, the client con-
structs a part of credential message of the user, i.e.,
hcC→S , to bind the authentications. The client sends
the following message with the credential message:

GET <some_page> Authorization: Basic "XXX"

This corresponds to M10 in Table 5, where XXX is the
hashed credential hcC→S that is encoded by Base64.

[8] The module mod_ssl decrypts it, and delivers the
credential via Apache to the web application.

[9,10] The web application decodes the Base64 data and
extracts hcC→S to compare it with the local hcC→S .
If they are the same, authentication binding has suc-
ceeded. If not, authentication has failed or has possibly

Fig. 1 Binding process.



SAITO et al.: AUTHENTICATION BINDING BETWEEN SSL/TLS AND HTTP
801

been attacked.

[11,12] When it is successful, Apache passes the requested
page to mod_ssl. It then sends the message with
hcS→C encoded by Base64 over the SSL/TLS channel.
After receiving the message, the client decodes it by
Base64 and verifies it to compare the received hcS→C

and the one computed locally. This message corre-
sponds to M11 of Table 5.

4. Security Considerations

4.1 Possibility of MITM Attack

In the case of using an HTTP authentication after establish-
ing SSL/TLS in server authentication mode, it is possible
not to protect a password of HTTP authentication [5]. Here
we show an attack process in which the password is plun-
dered by an attacker masquerading as a legitimate server.
On the other, it should be noted that the proposed scheme
can prevent it, since a pre-shared key can be effect to detect
an attacker.

4.1.1 Attack Process over SSL/TLS Handshake

As a precondition, a client C has its ID and password regis-
tered in a legitimate server S . An attacker I wants to know
the password. And, I as a web site prepares a server cer-
tificate which is tied to the trust anchor in a browser of the
client C. Then there is a situation that C can trust I as one
of the legitimate servers. Namely, it is possible that C in-
tentionally connects with I. In this case especially, there is
no warning message on the browser. Therefore, the attacker
can control the situation by cheating the client, for example,
by setting up a phishing site.

1: C sends the following HTTP request to I.

GET /index.html HTTP/1.1

1′: Masquerading as C, the attacker I(C) forwards it to S .

2: S sends index.html back to I(C) with the HTTP re-
sponse:

HTTP/1.1 200 OK

2′: I forwards them to C.

3: Now, it assuming that an HTTPS link written in
index.html, C sends a next HTTP request over
SSL/TLS. Then, C is forced to connect with I and
initiate an SSL/TLS handshake in server authentication
mode with the following message:

GET /basic auth/test.html HTTP/1.1

Where, this massage is prepared for this explanation
as an example page, which requests user’s ID and its
password registered in S .

3′: After establishing the SSL/TLS connection with C,
I(C) forwards the HTTP request to S . Namely, I(C)
also initiates another SSL/TLS handshake with S .

4: S sends an HTTP response with the status code 401 to
I(C) to state that it requires the user’s id uidC and its
password passC:

HTTP/1.1 401 Authorization Required

4′: I forwards it to C.

5: After receiving the HTTP response, in case of HTTP
basic authentication, C again sends the HTTP request
with uidC and passC to I:

GET /basic auth/test.html HTTP/1.1

Authorization:Basic (uidC : passC)

5′: I(C) forwards it to S . Here, the attacker I obtains the
security credential of the user.

6: After receiving the credential, S verifies it and sends
the HTTP response to I(C):

HTTP/1.1 200 OK

6′: I forwards it to C.

It should be noted that the attacker can provide the
same service as the legitimate server S does. Therefore, C
cannot detect the attack without avoiding the site. Table 6
explains the attack process in more detail. Where, the page
requesting messages are omitted here.

Table 6 Attack process against SSL/TLS handshake.

M1) C → I : S AC , S IDC ,RNC

M1′) I(C)→ S : S AI, S IDI,RNI
M2) S → I(C) : S AS , S IDS ,RNS

M2′) I → C : S AI, S IDI,RNI
M3) S → I(C): cert listS
M3′) I → C : cert listI
M4) S → I(C) : AckS

M4′) I → C : AckI
M5) C → I : {pre master secretC }PI
M5′) I(C)→ S : {pre master secretI}PS
M6) C → I : {h(KS CI, h(msg allCI,C,KS CI))}KS CI
M6′) I → C : {h(KS CI, h(msg allCI,I,KS CI))}KS CI
M7) I(C)→ S :{h(KS IS , h(msg allIS ,I,KS IS ))}KSIS
M7′) S → I(C) :{h(KS IS , h(msg allIS , S ,KS IS ))}KSIS
M8) C → I : {uidC , passC }KS CI
M8′) I(C)→ S : {uidC , passC }KSIS



802
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.3 MARCH 2012

Table 7 Detecting and preventing the attack.

M1) C → I : S AC , S IDC ,RNC

M1′) I(C)→ S : S AI, S IDI,RNI
M2) S → I(C) : S AS , S IDS ,RNS

M2′) I → C : S AI, S IDI,RNI
M3) S → I(C) : cert listS
M3′) I → C : cert listI
M4) S → I(C) : AckS

M4′) I → C : AckI
M5) C → I : {pre master secretC }PI
M5′) I(C)→ S : {pre master secretI}PS
M6) C → I : {h(KS CI, h(msg allCI,C,KS CI))}KS CI
M6′) I → C : {h(KS CI, h(msg allCI,I,KS CI))}KS CI
M7) I(C)→ S :{h(KS IS , h(msg allIS ,I,KS IS ))}KSIS
M7′) S → I(C) :{h(KS IS , h(msg allIS , S ,KS IS ))}KSIS
M8) C → I :

{uidC , h(CNI, PI, h(uidC , passC ,KS CI))}KS CI
M8′) I(C)→ S :

{uidC , h(CNI, PI, h(uidC , passC ,KS CI))}KSIS

or
M8′′) I(C)→ S :

{uidC , h(CNS , PS , h(uidC , passC ,KS IS ))}KSIS

4.1.2 Detecting the Attack

In this subsection, we explain how our proposed scheme can
detect the attack. The preconditions are the same as ones
in the case of Sect. 4.1.1 (cf. Table 7). Where, the page-
requesting messages are omitted here.

After receiving the message M8, the attacker has to
send the valid message to the server. If the attacker tries
to send the message M8′, the server S can detect the exis-
tence of an attack since S expects to receive M8′′. However,
it cannot construct the valid message M8′′ to complete the
attack in the next step, since the attacker does not have or
cannot know the valid password of the user.

4.1.3 Misleading Attack

This kind of attack such like phising seems to be prevented
by a user’s carefulness when connecting a web server about
to be deployed by the attacker. A client cannot prevent the
attack without checking the server certificate every access.
However, since the attacker can utilize a legitimate certifi-
cate which is tied to the trust anchor in a browser and there
are a lot of web sites, without a warning from a browser, it
is not easy for most users to decide if there is an attacker.

As shown in Sect. 4.1.2, a server in the scheme can de-
tect the attacker even when connecting a phishing site under
the same conditions. Therefore, the proposed scheme is one
of solutions for this kind of attack. It should be noted that
the attacker cannot obtain user’s password in this scheme,
even in case of connecting with the attacker’s phishing site,
contrary to an HTTP authentication over SSL/TLS. In an
HTTP authentication over SSL/TLS, a client sends a user’s
ID and its password in plaintext. Then, if misconnect with
phishing site, ID and its password are snatched.

4.2 Off-Line and Replay Attack

Due to using a hashed message rather than over SSL/TLS
encryption, the proposed scheme could not reveal a pass-
word. Namely, in the scheme, since the password is actually
hashed as an authentication key, it cannot be obtained by the
attacker if the SSL/TLS connection is compromised.

Moreover, each SSL/TLS session utilizes a different
key to prevent the attacker from guessing an encryption key.
That is, SSL/TLS holds Perfect Forward Security (PFS).
Then, a replay attack cannot be effective against the scheme,
which means the scheme is invulnerable to these attacks.

5. Conclusion

In this paper, we introduce the concept of authentication
binding between SSL/TLS and HTTP authentication with-
out modifying SSL/TLS protocol, and we implement our
proposed scheme to show its effectiveness. In summary, our
proposed scheme provides yet another method to establish a
secure channel for a web application.

As we had dealt only with binding authentications in
SSL/TLS in server authentication mode, we will apply our
scheme to SSL/TLS in client authentication mode in the fu-
ture work.

References

[1] A. Frier, P. Karlton, and P. Kocher, “The SSL 3.0 protocol,” Netscape
Communications Corp., Nov. 1996.

[2] T. Dierks and C. Allen, “The TLS protocol Version 1.0,” RFC 2246,
Jan. 1999.

[3] E. Rescorla, “HTTP over TLS,” RFC 2818, May 2000.
[4] J. Franks, P. Hallam-Baker, J. Hostetler, S. Lawrence, P. Leach, A.

Luotonen, E. Sink, and L. Stewart, “HTTP authentication: Basic and
digest access authentication,” RFC 2617, June 1999.

[5] T. Saito, “A scenario-based protocol checker for the public-key au-
thentication scheme,” IEICE Trans. Inf. & Syst., vol.E92-D, no.6,
pp.1268–1279, June 2009.

[6] R. Housley, W. Ford, W. Polk, and D. Solo, “Internet public key
infrastructure: Part I: X.509 certificate and CRL profile,” RFC 2459,
Jan. 1999.

[7] P. Eronen and H. Tschofenig, “Pre-shared key ciphersuites for trans-
port layer security (TLS),” RFC4279, Dec. 2005.

[8] T. Wu, “SRP-6: Improvements and refinements to the secure remote
password protocol,” Oct. 2002, http://srp.stanford.edu/srp6.ps

[9] T. Wu, “The SRP authentication and key exchange system,” RFC
2945, Sept. 2000.

[10] J. Linn, “Generic security service application program interface Ver-
sion 2,” RFC2743, Jan. 2000.

[11] N. Williams, “On the use of channel bindings to secure channels,”
RFC 5056, Nov. 2007.

[12] http://www.mozilla.org/projects/security/pki/nss/
[13] http://www.php.net/
[14] http://www.modssl.org/



SAITO et al.: AUTHENTICATION BINDING BETWEEN SSL/TLS AND HTTP
803

Takamichi Saito Associate Professor, De-
partment of Computer Science, Faculty of Sci-
ence, Meiji Univertsity.

Kiyomi Sekiguchi April 2009, Nomura Re-
search Institute, Ltd.

Ryosuke Hatsugai IT Security Architect,
Managed Security Services Division, NRI Se-
cureTechnologies, Ltd.


