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PAPER

A Noise-Robust Continuous Speech Recognition System Using
Block-Based Dynamic Range Adjustment

Yiming SUN†a), Nonmember and Yoshikazu MIYANAGA†, Fellow

SUMMARY A new approach to speech feature estimation under noise
circumstances is proposed in this paper. It is used in noise-robust contin-
uous speech recognition (CSR). As the noise robust techniques in isolated
word speech recognition, the running spectrum analysis (RSA), the running
spectrum filtering (RSF) and the dynamic range adjustment (DRA) meth-
ods have been developed. Among them, only RSA has been applied to a
CSR system. This paper proposes an extended DRA for a noise-robust CSR
system. In the stage of speech recognition, a continuous speech waveform
is automatically assigned to a block defined by a short time length. The
extended DRA is applied to these estimated blocks. The average recogni-
tion rate of the proposed method has been improved under several different
noise conditions. As a result, the recognition rates are improved up to 15%
in various noises with 10 dB SNR.
key words: CMS, CSR, DRA, noise-robust, RSA

1. Introduction

Recently, continuous speech recognition (CSR) has made
great progress and yielded a high recognition rate [1]. The
high recognition rate can be achieved under clean and high
SNR, i.e., over 20 dB SNR, environments. However, cur-
rent CSR technology has not matured to provide high recog-
nition accuracy under severe noisy environments, i.e., the
conditions lower than 20 dB SNR [2].

On the other hand, some noise robust speech recog-
nition methods have been developed for isolated speech,
i.e., isolated words and phrases. For the improvement
of speech recognition performance, the spectrum subtrac-
tion (SS), RelAtive SpecTrA (RASTA), Cepstral mean sub-
traction (CMS), running spectrum filtering and dynamic
range adjustment (RSF/DRA) and running spectrum anal-
ysis (RSA) have been used [3]–[5]. They can efficiently re-
duce the noise effects from noisy speech data. Even when
an environment noise is lower than 20 dB SNR, the isolated
speech recognition system with noise robust techniques can
recognize target speech with high recognition rate.

Although RASTA is a well known method focusing
on modulation spectrum domain (MSD), a primary RASTA
employs IIR filtering and it may cause a problem such as
phase distortion [6]. RSF is based on a FIR filter. RSA is di-
rectly used in the MSD. Compared with RASTA and RSF,
RSA can realize ideal processing [7], [8]. In this paper, we
select RSA to reduce any noise effects on the MSD.
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Among the noise robust methods used in a CSR sys-
tem [9]–[11], a method using RSA and CMS has been de-
veloped in [11] and it can show a little higher performance
than others. The RSA and CMS are used for the reduction
of distortion embedded into a training data set and the CMS
is also used for the time invariant noise reduction to an ob-
served speech waveform in a recognition stage. By using
the above noise robust techniques, the recognition accuracy
can be improved. However, compared with the results of
isolated speech recognition accuracy, its performance is in-
sufficient for many actual applications.

In this paper, the modified technique of a dynamic
range adjustment (DRA) is proposed for a CSR system. The
speech waveform is observed within unlimited time length
since any continuous speech data are supposed to the CSR
system. On the other hand, the dynamic range of speech fea-
tures disturbed by any noises should be properly adjusted in
order to minimize the difference between the dynamic range
of clean speech features and that of noisy speech features.
The proposed method introduces a short time length block
chosen stochastically from the feature sequence of continu-
ous speech. Using these given blocks, the DRA algorithm
is properly applied. By using such processing, the proposed
CSR system can show higher speech recognition accuracy
where 15 different noise types are used with 10, 15 and
20 dB SNR.

Section 2 introduces three methods we used in simu-
lation. Section 3 shows influence of noises in continuous
speech data. Section 4 details a block-based DRA algo-
rithm. Section 5 describes the conditions in the procedure
of model training and recognition. Section 6 presents all
conditions and results in modeling and recognition.

2. Conventional Methods

2.1 CMS

CMS is a channel normalization approach to compensate
for the acoustic channel [12]. The time invariant channel
parameters in a recording system and convolutional distur-
bance noise are evaluated by CMS and these noises are re-
duced from an observed speech waveform. By using CMS,
the distortion between training speech data and observed
speech data can be improved.

In CMS, the averages of all MFCC components are
calculated, and then these averages are subtracted from
MFCC [13] components. CMS can remove the channel ef-
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fects happened in the convolutional distortion. Since we
have no information about the microphone system and any
other convolutional effects for recording the speech, we
choose CMS as one of preprocessing methods.

2.2 RSA

RSA is applied for both of low and high frequency com-
ponents in modulation spectrum domain (MSD). The com-
ponents of low and high frequency in MSD are reduced by
using RSA [14]. The reduction of low frequency compo-
nents has the same effect of CMS technique. In addition,
the reduction of high frequency components results in the
elimination on time varying noises which cannot be created
by a human speech production.

The speech features are calculated from observed
speech. In this paper, MFCCs are used in a speech feature
vector. Let us assume that we obtain M speech feature vec-
tors defined as:

si = [si,1 si,2 si,3 . . . si,L]T , i = 1, . . . ,M. (1)

where L denotes the number of speech features, i denotes a
time index, and T stands for a transpose. The above feature
vector consists of MFCC, ΔMFCC and ΔΔMFCC, where Δ
MFCC is calculated from the differentiation of MFCC and
ΔΔMFCC is calculated from the differentiation of ΔMFCC.
In order to obtain the frequency components of MSD, the
following equations are applied:

pk =

M∑

i=1

sie
− j2πki

M (2)

ck = fRS A[pk] (3)

ŝk =
1
M

M∑

i=1

cke j 2πki
M (4)

where k = 1, 2, . . . ,M. Equation (3) indicates the function
of RSA for pk. RSA reduces the value of pt where t = 0
and t > N where N is decided as the cut-off frequency of
higher band in MSD. The vector ŝk is RSA speech features
in which noise components are reduced.

2.3 DRA

When any noises are added to speech data, the estimated
speech features are affected and distorted by these noises.
The dynamic range of each MFCC component in MSD is
normally affected. In addition, the RSA which reduces the
influences of noises changes the dynamic range of MFCC
component in MSD. From these reasons, the adjustment of
the dynamic range on MFCC trajectory in MSD has been
developed [15].

The dynamic range adjustment (DRA) adjusts the dy-
namic range of MFCC on MSD by normalizing the ampli-
tude of each component.

If we define the i-th component of ŝk as ŝk,i, DRA cal-
culates the following new value:

s′k,i =
ŝk,i

max j=1,...,M[ŝ j,i]
(5)

where s′k,i denotes the i-th element of the MFCC feature vec-
tor after DRA.

3. Influence of Noises in Continuous Speech Data

3.1 Noise Disturbance

Figure 1 shows an example of noise influence in an iso-
lated word. In Fig. 1, there are two different trajectories,
i.e., the trajectories of the 2nd MFCC calculated from a
clean speech and a noisy speech with 10 dB SNR white
noise. Note that both MFCC are estimated from the same
speech sound. However, due to the serious influence of
noise, the dynamic range of MFCC from the noisy speech
is much smaller than the others. If a clean speech is used in
the HMM straining stage, the automatic speech recognition
(ASR) system cannot correctly recognize any noisy speech
because of such difference. The DRA method has been de-
veloped as the compensation method for such difference in
an isolated word and phrase.

Figure 2 shows an example of a clean continuous
speech waveform and its instant power trajectory. Normally
an observed continuous speech consists of many words and

Fig. 1 Noise influences in word feature vectors.

Fig. 2 Continuous speech in clean condition.
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phrases and thus its dynamic rage is decided from the max-
imum energy selected among the continuous speech. The
conventional DRA may employ its maximum value and then
apply its value to all MFCC components. However, as
we can easily recognize the difference among the dynamic
ranges of all words in the example of Fig. 2a, the dynamic
rage should be carefully adjusted in each word.

Although only a clean continuous speech can be ob-
served, the selection of each word and the dynamic rage ad-
justment for the selected word are not difficult. However,
under noisy conditions, the selection of words may be diffi-
cult issue. In this paper, the following two step processing
is considered.

(1) From an observed noisy continuous speech wave-
form, all short sentences are selected.

(2) A short sentence is divided into several blocks and
then each block is independently applied by DRA.

The above processing is applied to an observed un-
known continuous speech in recognition.

The definition of the short sentence is given on acousti-
cal conditions. If a speech waveform has a certain length of
silent, e.g., 200 msec, the location of this silent part is called
“speech pause”. The short sentence consists of “speech
pause”, its following speech and again “speech pause” af-
ter the speech. The defined short sentence may represent a
word, several words, a phrase and some phrases. Although
the exact meaning of a sentence cannot be defined on acous-
tic data, the above simple definition can be used in the pro-
posed method.

In the first step (1), non-speech parts are eliminated.
A continuous speech has many non-speech parts and only
noises. These parts effects DRA inappropriately. In the sec-
ond step (2), the unbalance of several dynamic ranges ex-
isted in a continuous speech can be compensated.

3.2 Sentence Selection

In the training stage, the set of continuous speech data is
given as a prior information. From these given speech data,
a short sentence is manually selected. There are many
speech waveforms with high SNR environment. Figure 2
shows one of example. In other words, the selection of a
short sentence can be easily executed. The length of speech
pause is defined as 12 window frames. In Fig. 2, we can
select three short sentences.

However, in the recognition stage, a speech was nor-
mally observed with several noises where SNR was low. In
addition, a short sentence should be selected automatically.
Figure 3 represents an observed speech waveform as an ex-
ample. In order to detect a short sentence, 30-frame-width-
window is used and its window is shifted by 15 frames. We
define E j,n (1 ≤ n ≤ 30) as the energy for the n-th frame in
the window. In the selected 30-frame-width-window, three
lowest energy values E j,n, which satisfy the both limitations
E j,n < E j,n−1 and E j,n < E j,n+1 at the same time among 30
different energy values, are selected. The average of three
low energy values is assumed to be noise energy and thus

Fig. 3 Continuous speech in 10 dB SNR white noise condition.

the 1.5 times as much as the average value is defined as a
threshold. When all 30 energy values in a 30-frame-width-
window are lower than the threshold, this window includes
non-speech and unvoiced speech. If such windows includ-
ing non-speech and unvoiced speech are succeedingly de-
tected, the zero-crossing point nearest the center point of
the first window among such succeeding windows is esti-
mated as the end point of a short sentence and that of the
last window is estimated as the start point of the next short
sentence.

4. Block Based DRA

4.1 A Short Sentence and Blocks

In this paper, the proposed algorithm identifies a block be-
tween the zero-crossings of p j,i in a short sentence, where
p j,i denotes the i-th feature vector in j-th dimension. The
definition of the block is a part between the zero-crossing
points in the trajectory of p j,i. Please note that the different
location of a block is used for p j,i at different i. In an esti-
mated block, we use different maximum value to calculate
the p′j,i from p j,i by DRA.

In Fig. 4, the simple concept of block separation is ex-
plained. The algorithm finds out the maximum value in a
given short sentence, i.e., “Peak Point” in Fig. 4. From the
peak point, the Lm length of the forward and backward posi-
tions is decided. In the forward short sentence from the peak
point, the algorithm finds out the first zero-crossing point
over the Lm length. In the backward short sentence from the
peak point, the algorithm finds out the first zero-crossing
point over the Lm length. The main block is selected be-
tween the above two zero-crossing points.

In the right-hand side of the short sentence from the
main block, the algorithm finds out the first zero-crossing
point over Lw length from the right edge of the main block.
Between these zero-crossing points, the next block is se-
lected. In the left hand side of the short sentence from the
main block, the same procedure is applied.

In a short sentence, the main block has a larger peak
value than others. In other words, the lengths of 2Lm and
Lw are given by different lengths and they are decided from
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Fig. 4 An example for a short sentence and blocks.

prior experiments.

4.2 First Step: Block Separation

As mentioned in Sect. 4.1, the trajectory of pj,i given in a
sentence is divided into some blocks with the zero-crossing
points. The proposed algorithm searches the zero-crossing
points in p j,i by the equation:

f j,i = p j,i−1/p j,i. (6)

If f j,i < 0, there is a zero-crossing point between p j,i−1 and
p j,i.

The value of P0, j is defined as the maximum value
of the peak point. Then Lj(P0) is recorded as the loca-
tion of P0, j. After that, the length of Lm frames is sub-
tracted and added from Lj(P0), and they are recorded as
L̂ j(P−1) = Lj(P0) − Lm and L̂ j(P1) = Lj(P0) + Lm. Next
the algorithm searches the zero-crossing points nearest to
left-hand side of L̂ j(P−1) and the right-hand side of L̂ j(P1).
Once the algorithm finds the zero-crossing points, we de-
fine them as the Lj(P−1) and Lj(P1) as the locations of the
zero-crossing points in this block. From Lj(P−1) to Lj(P1),
we can get the main block. The range of the main blocks is
from the start-point as Lj(P−1) to the end-pint as Lj(P1).

There are numerous zero-crossing points in a short sen-
tence due to noise. Furthermore, the noise caused some
abrupt changes between zero-crossing points. We consider
limitations to select the zero-crossing points of blocks. The
limitations focus on preserving the continuity of the pj,i in
zero-crossing points. If p j,i is zero-crossing point, |p j,i+1| <
2 and |p j,i−1| < 2, it means a smooth variation near this zero-
crossing point. Otherwise, there is a discontinuity between
p j,i+1 and p j,i−1. In other words, the zero-crossing points
used in a short sentence are selected under the above limita-
tions.

We continue to divide the other two segments into
blocks. The shortest length of a block is defined as Lw, i.e.,
Lj(Pi) − Lj(Pi+1) > Lw. Nearest to Lj(Pi+1), we use Eq. (6)
to search zero-crossing points which satisfy the limitations.
Then, we set i = ±i ± 1 to search the next block boundary.
Symbol ±i is the ±i-th block whose boundary satisfies the

Fig. 5 An example of p j,i( j = 3) for block separation and determination
of maximum value.

above limitations.
From the above selection, we can get all zero-crossing

points which give the block boundaries. They are given
as Lj(P−N), Lj(P1−N), Lj(P2−N), . . ., Lj(P−1), Lj(P1, . . .,
Lj(PM). The main block is given from Lj(P−1) to Lj(P1).
In the left-hand side, the −ith block is given from Lj(P−i−1)
to Lj(P−i). In the right-hand side, the i-th block is given
from Lj(Pi) to Lj(Pi+1).

Figure 5 shows an example of blocks, where j = 3. In
Fig. 5, two longer vertical dot-lines show the boundary of
the main block. S 1, S 2 and S 3 indicate the main block, the
left-hand side block and the right-hand side blocks, respec-
tively. The shorter vertical dot-lines show the boundary of a
block in S 3.

4.3 Second Step: Determination of the Maximum Value

From the above step, several blocks are selected and they
have many peaks. In this step, the algorithm finds out the
adjustment value used in the block-based DRA. Although
the conventional DRA employs the maximum value in an
observed MFCC trajectory as the adjustment value, the pro-
posed block-based DRA has an additional restriction for this
determination.

The value of P±i, j is defined as the maximum value
within the ±i-th block in a right-hand side block and a left-
hand side block.

The proposed algorithm uses the assumption in which
there is not large difference between the adjustment values
of neighborhood blocks. If we assume such difference value
is δp, then the adjustment value in the right-hand side is cal-
culated as follows:

(1) Determine the maximum value among Pi, j (i = 1, 2,
. . . , M) as T1, j.

(2) If P0, j − T1, j < δp and T1, j − Pi, j < δp, then Pi, j is
selected the adjustment value in the ±i-th block.

(3) If P0, j − T1, j < δp or T1, j − Pi, j < δp, then the
adjustment value is given as T1, j. In other words, Pi, j = T1, j.

(4) If P0, j − T1, j > δp and T1, j − Pi, j > δp, then the
adjustment value is give as P0, j − δp. In other words, Pi, j =

P0, j − δp.
In the left-hand side, we apply the same calculation.
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Fig. 6 Before DRA in CSR.

Fig. 7 Results for block-based DRA algorithm in CSR.

4.4 Third Step: Using Block-Based DRA

We have obtained all blocks from a short sentence and de-
termined adjustment values. In each block, the following
block-based DRA is applied:

p′k,i =
pk,i

P±i, j
, (7)

Figure 6 shows the same MFCC feature vectors be-
tween the clean and 10 dB SNR white noise conditions. Fig-
ure 7 shows the results for the block-based DRA algorithm.
In Fig. 6, almost all of |p j,i| in noisy speech are smaller than
that of clean speech feature at the same time, especially in
marked position from A to F. If we use the proposed al-
gorithm, we can adjust the features of noisy speech. Fig-
ure 7 shows the adjustment happened at the mark positions
from A to F. It means the proposed algorithm effectively
increases the similarity between clean and noisy speech fea-
tures.

5. Discussion

In the training of HMM [16], [17], all sentences are assumed
to be recorded under clean or low noise situation. In other
words, any time varying noises and high level noises are
not considered in this training stage. From these reasons,
conventional CMS, RSA and DRA are applied to all given
training speech data set.

The cepstral variance normalization (CVN) technique
normalizes the feature variance to the same scale. In partic-
ular, CVN has been developed in [18] which is applied to the

Table 1 Long vowel frame average length [%].

Phoneme Averages Variance Appear Times
a: 13.35 13.50 2054
e: 14.46 15.59 12688
i: 14.93 20.97 1724
o: 13.83 19.01 37657
u: 10.64 17.50 4831

recognition of Japanese digit strings. The cepstral mean nor-
malization (CMN) and CVN are used in cascade to execute
the mean and variance normalization (MVN). The concept
of our proposed method is similar to the above method. Our
proposed method focuses on any Japanese character strings.
In our method, the segmentation, i.e., 4.2, is designed for
any character strings against high noisy circumstances. The
result comparisons are given in Table 4 and from Table 6 to
Table 11.

Furthermore, in the recognition, many various and dif-
ferent noises should be considered during the recording to
speech waveform. Accordingly, the proposed block-based
DRA is applied. Numerical comparison results for MVN
and our proposed method will be shown in Sect. 6.

5.1 Model Training Stage

Even when the speech data sets for the training are recorded
under low noise circumstances, the effect of convolutional
disturbance, i.e., microphone, may influence speech fea-
tures. During the training stage for HMMs, CMS, RSA and
DRA should be used where conventional systems have em-
ployed only CMS and CMS/RSA.

As the merit of RSA, the un-speech feature over 15 Hz
on MSD can be accurately reduced than RSF. In addition,
using RSA with CMS, the noise and disturbance compo-
nents can be eliminated effectively.

The effects of CMS and RSF are not small for the
dynamic range of speech feature trajectory mentioned in
the previous section. The conventional DRA is applied for
the dynamic rage normalization of their estimated and pro-
cessed speech features.

Table 1 shows the averages and variance of five long
vowels in all training data.

5.2 Speech Recognition Stage

CMS and RSA can reduce any impulsive noise before block-
based DRA. In the speech recognition stage, the block-
based DRA is applied. In the speech recognition, it is impos-
sible to know the length of speech waveform as prior infor-
mation. In addition, during recording, some different noises
and disturbances may happen. For the reduction of noise
and disturbance, the proposed block-based DRA is applied.

For conventional DRA, we use p j,i

P0, j
for normalization.

From the Sect. 4.3 (2) to (4), we can compute the inequality
P0, j > Pi, j > P0, j − 2δp and P0, j > Pi, j > P0, j − δp. In
Sect. 4.3, we have set Pi, j = P0, j − 2δp or Pi, j = P0, j − δp as
the adjustment value. If we suppose P0, j = 13, T1, j = 11,
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Pi, j = 9 and δp = 2, it satisfies the Sect. 4.3 (4). Then, we
substitute Pi, j = P0, j−δp into Eq. (7). For the point |p j,i| = 9
in Fig. 8, the |p′j,i| improves 0.1 compared with conventional
DRA. If the values of P0, j, T1, j and Pi, j satisfy Sect. 4.3 (2)
or (3), we substitute Pi, j = P0, j − 2δp into Eq. (7). The |p′j,i|
improves more compared with conventional DRA. There-
for, we set the δp to 2 in Sect. 4.3.

In Fig. 8, the horizontal axis denotes the MFCC value
before DRA and the vertical axis denotes the MFCC value
after DRA. We have known as the dynamic range of MFCC
from the noisy speech is much smaller than the others from
Fig. 1. In horizontal axis, the large value means the MFCC
value under clean condition. Otherwise, the small value
means the MFCC value under noise conditions.

As well as for the same |p j,i| in Fig. 8, if |p j,i| < 2,
the deviation is less than 0.03 between the neighbor max-
ima. This deviation between the neighbor maxima is ac-
ceptable in the range from -1 to 1 and thus we set |p j,i−1| <
2 or |p j,i+1| < 2 in Sect. 4.2.

From Table 1, the averages of all vowels are less than
15. The main block width is longer than 2Lm from Sect. 4.2.
If we set Lm = 15, the main block width include at least a
vowel.

The value of Lw determines the block width. If the
value of Lw is large, it causes large changes into a block
and leads to recognition rate abrupt decrease. On the other
hand, if the value of Lw is small, it causes small changes into
a block and leads to the recognition rate close to the results
by using conventional DRA. As Fig. 9 shown, the recogni-
tion result becomes high when we set Lw = 80.

Fig. 8 The normalization effect by using different maxima for same |p j,i |.

Fig. 9 Recognition rate with different Lw.

6. Results

In our experiments, all HMMs have been trained by using
JNAS database [19]. It is produced by 153 males’ native
Japanese speakers. The conditions on speech analysis are
given in Table 2.

We use two criterions for the evaluation of speech
recognition:

RC =
N − S − D

N
× 100 [%], (8)

RA =
N − S − D − I

N
× 100 [%], (9)

where N is the total number of words in the set of speech
sentences, S is the number of misrecognized words, D de-
notes the number of words which are not selected as words,
I denotes the number of words which are misrecognized as
words, i.e., noise components and non-speech. Above, RC

shows the correct word recognition rate for the entire set of
speech words, and RA shows the accuracy of the total CSR
performance.

In recognition, we use the sets of known and unknown
data for our recognition tests. Known data denotes the test
data which comes from the training database. Unknown
data denotes the test data are collected from by Hokkaido
university students, where the sentences are different from
the training database. The conditions in this experiment are
shown as Table 3. Additionally, we use Julius as an evalua-
tion tool in the recognition.

We have simulated all data under both of clean condi-
tion and noise conditions with different SNRs. We define 15
kinds noise as Table 5.

In all tables, the ‘Proposed’ column denotes the method

Table 2 Acoustic analysis conditions.

Sampling frequency 16 kHz
Frame shift 10.0 ms
Frame length 25.0 ms
Window type Hanning
Training data 23651 sentences from 153 people
Emphasizing of High Frequency1 − 0.97z−1

HMM state number 5 states
(include start and end states)

Number of Gaussian Mixtures 16
Clustering about 2000 states

Table 3 Recognition conditions.

Known data for testing 50 sentences from 12 people
Unknown data for testing 180 sentences from 6 people
Sampling and frame conditions the same with Table 2

Table 4 Recognition rates for clean condition [%].

Proposed RSA MVN Con DRA
Corr Acc Corr Acc Corr Acc Corr Acc

known data 93.22 92.29 92.55 91.22 91.29 90.09 89.63 88.03
unknown data 83.90 82.43 82.69 81.00 82.87 81.43 82.69 81.33
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Table 5 Noise definition.

Symbol Noise Name Symbol Noise Name Symbol Noise Name
N1 babble N2 buccaneer1 N3 buccaneer2
N4 destroyerenginer N5 destroyerops N6 f16
N7 factory1 N8 factory2 N9 hfchannel
N10 leopard N11 m109 N12 machinegun
N13 pink N14 volvo N15 white

Table 6 Known data recognition rates at 20 dB SNR [%].

Proposed RSA MVN Con DRA
Corr Acc Corr Acc Corr Acc Corr Acc

N1 76.06 70.84 76.46 73.01 76.26 68.48 75.12 72.76
N2 76.46 74.87 73.40 71.68 72.33 71.00 70.69 69.59
N3 76.86 74.34 73.94 72.74 74.52 73.59 69.22 67.84
N4 75.66 73.67 77.39 75.93 75.20 74.00 73.80 71.94
N5 81.65 80.32 82.85 81.78 80.04 79.11 79.79 78.86
N6 78.32 76.86 74.60 72.74 75.85 74.79 74.34 72.87
N7 81.65 80.32 77.79 76.60 77.79 76.46 75.80 74.87
N8 87.90 86.97 77.79 76.60 80.90 79.84 75.80 74.87
N9 67.42 64.49 57.31 55.05 64.36 62.33 63.56 60.77
N10 85.64 81.65 86.57 83.11 85.64 81.52 82.63 81.24
N11 88.56 87.50 89.89 88.96 88.09 87.89 87.23 86.30
N12 84.04 78.19 80.98 74.47 82.91 75.86 81.48 75.92
N13 80.32 79.26 76.99 76.06 79.78 78.45 79.41 78.09
N14 89.89 88.83 91.09 89.89 90.69 89.36 90.43 88.83
N15 68.22 65.65 69.95 68.62 69.40 68.07 63.56 61.84
Ave 80.08 77.72 77.80 75.82 78.25 76.05 76.19 74.44

Table 7 Known data recognition rates at 15 dB SNR [%].

Proposed RSA MVN Con DRA
Corr Acc Corr Acc Corr Acc Corr Acc

N1 62.90 55.32 62.63 59.31 59.84 48.54 55.23 50.33
N2 54.79 52.93 41.49 40.65 50.24 47.71 54.52 53.17
N3 60.11 57.31 44.02 41.89 52.63 50.9 52.53 50.04
N4 63.83 60.24 56.78 54.79 52.63 49.44 58.27 55.80
N5 74.07 71.81 66.36 64.63 65.80 63.40 68.44 65.67
N6 64.23 62.23 54.39 52.26 57.95 55.69 60.18 58.41
N7 65.03 63.30 55.72 54.26 55.69 52.77 61.16 59.16
N8 77.93 76.46 77.26 75.53 76.99 75.26 73.49 71.42
N9 47.61 43.35 35.77 32.85 46.28 43.25 45.55 42.27
N10 81.91 76.06 82.18 77.53 80.38 75.00 75.57 72.40
N11 85.11 84.04 81.38 80.05 80.30 80.11 77.11 75.11
N12 80.98 72.47 78.86 69.81 80.31 71.27 74.63 66.01
N13 65.82 64.76 49.07 47.07 58.06 55.69 57.81 55.73
N14 89.89 88.83 91.36 90.16 89.69 88.49 79.71 77.45
N15 46.68 43.09 39.23 36.04 42.98 39.79 39.56 37.14
Ave 68.06 64.81 61.10 58.40 63.32 59.82 62.25 59.34

using CMS, RSA and conventional DRA for HMM training,
and using CMS and block-based DRA for recognition. The
‘RSA’ column denotes the method using CMS and RSA for
HMM training, and using CMS for recognition. The ‘MVN’
column denotes CMS, RSA and MVN for HMM training
and using CMS and MVN for recognition. The ‘Con DRA’
column denotes the method using CMS, RSA and conven-
tional DRA for HMM training, and using CMS and con-
ventional DRA for recognition. ‘Ave’ denotes the average
recognition rate in all Tables. Table 4 shows the results in
the clean conditions, Table 6, 7 and 8 show the recognition
results on training data with 20, 15 and 10 dB SNR condi-
tions. The Table 9, 10 and 11 show the recognition results

Table 8 Known data recognition rates at 10 dB SNR [%].

Proposed RSA MVN Con DRA
Corr Acc Corr Acc Corr Acc Corr Acc

N1 36.84 25.80 36.04 32.05 36.30 22.61 34.49 25.90
N2 30.19 28.19 15.56 14.63 25.90 22.45 30.35 28.62
N3 34.31 32.31 18.08 16.87 31.62 29.23 30.51 28.88
N4 40.96 38.03 24.07 23.14 34.22 29.70 38.84 37.07
N5 51.33 49.07 34.18 33.24 47.58 43.59 47.41 43.57
N6 39.10 36.17 24.07 23.14 36.82 32.29 31.86 30.61
N7 42.15 39.23 25.93 25.00 36.28 31.49 39.63 38.46
N8 61.70 58.64 52.66 51.06 52.64 48.91 53.12 51.24
N9 25.54 23.24 15.29 13.96 18.80 16.10 18.00 16.08

N10 79.26 73.81 77.93 72.87 77.39 70.61 72.21 68.55
N11 74.07 72.07 61.30 59.97 67.39 65.00 67.04 64.78
N12 79.46 69.88 77.53 66.89 79.19 69.35 72.13 59.54
N13 36.64 33.91 19.28 18.09 35.88 33.75 34.62 33.14
N14 90.03 88.38 88.96 87.50 88.23 87.50 78.21 76.90
N15 28.32 25.00 17.55 16.22 24.04 21.25 23.30 21.49
Ave 49.93 46.25 39.23 36.98 46.15 41.86 44.78 41.66

Table 9 Unknown data recognition rates at 20 dB SNR [%].

Proposed RSA MVN Con DRA
Corr Acc Corr Acc Corr Acc Corr Acc

N1 73.72 70.14 73.38 69.42 72.96 69.15 73.38 69.42
N2 70.66 68.51 67.46 65.69 70.11 67.85 70.14 68.02
N3 69.61 67.23 66.63 64.74 67.98 65.83 67.36 64.80
N4 77.91 75.17 69.65 67.84 72.66 71.00 72.51 70.89
N5 77.64 75.49 77.11 75.45 77.56 75.08 77.15 75.04
N6 73.00 71.68 70.81 69.16 71.23 69.42 72.93 71.53
N7 73.04 71.34 72.81 71.53 72.40 70.21 73.27 71.53
N8 78.39 76.92 80.09 78.92 79.34 77.19 77.87 76.21
N9 62.10 59.58 60.26 58.63 61.97 60.20 60.07 59.58

N10 76.21 73.30 77.39 74.81 76.13 73.00 75.98 72.85
N11 80.77 79.37 82.65 81.45 80.96 79.03 80.69 79.37
N12 77.92 71.70 76.06 69.57 76.85 71.23 76.06 69.57
N13 74.13 72.44 70.32 68.51 73.77 72.19 73.94 72.13
N14 80.05 77.87 81.83 79.71 81.83 80.13 80.13 77.90
N15 61.16 58.90 60.41 58.07 60.57 58.08 60.63 58.79
Ave 73.76 71.31 72.46 70.23 73.08 70.63 72.81 70.51

Table 10 Unknown data recognition rates at 15 dB SNR [%].

Proposed RSA MVN Con DRA
Corr Acc Corr Acc Corr Acc Corr Acc

N1 65.20 60.41 65.27 63.08 55.20 48.26 53.28 51.04
N2 54.64 53.39 41.25 40.08 48.14 46.03 48.45 47.64
N3 52.71 50.15 40.05 38.54 48.11 45.92 47.78 45.92
N4 58.61 56.03 53.09 51.36 52.22 51.22 51.85 50.39
N5 68.44 65.80 63.16 61.49 65.59 62.38 61.12 59.53
N6 60.78 58.79 51.58 49.96 53.91 51.80 52.68 51.35
N7 60.97 59.01 54.22 52.83 55.14 52.58 53.67 52.61
N8 73.27 71.42 71.42 70.02 74.19 72.63 73.47 71.18
N9 45.85 42.72 39.22 37.37 42.74 40.63 42.69 39.36

N10 75.64 72.55 76.24 72.51 74.68 71.21 72.68 70.19
N11 77.26 75.49 78.17 76.89 76.49 74.38 74.67 73.60
N12 74.52 65.82 74.96 66.10 74.24 65.57 73.25 68.41
N13 58.37 56.26 45.29 43.78 52.22 49.99 46.20 44.65
N14 79.64 77.45 81.98 79.90 80.67 79.02 78.23 77.36
N15 39.22 36.88 36.73 35.33 40.45 38.04 37.67 35.41
Ave 63.01 60.14 58.18 55.95 59.60 56.64 57.85 55.91

on unspecific speakers with 20, 15 and 10 dB SNR condi-
tions. All averaged results have shown highest accuracy on
the proposed method under noisy conditions. Especially, at
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Table 11 Unknown data recognition rates at 10 dB SNR [%].

Proposed RSA MVN Con DRA
Corr Acc Corr Acc Corr Acc Corr Acc

N1 44.72 36.05 38.80 36.69 33.51 32.65 32.80 30.69
N2 30.24 28.43 14.48 13.88 24.01 22.09 14.48 13.88
N3 31.11 29.52 18.93 18.29 26.54 25.35 18.93 18.29
N4 38.35 36.20 21.08 20.51 34.12 31.67 21.08 20.51
N5 49.98 47.18 34.92 34.28 42.64 39.13 34.92 34.28
N6 41.70 40.42 19.42 18.55 36.08 34.08 19.42 18.55
N7 39.44 38.08 23.23 22.89 31.03 28.73 23.23 22.89
N8 62.97 60.90 54.86 53.51 52.08 51.12 51.86 50.51
N9 22.81 20.59 14.29 13.57 16.06 14.10 14.29 13.57
N10 74.21 70.14 72.21 68.55 72.25 68.55 74.74 71.98
N11 69.85 67.55 59.31 57.88 68.78 66.02 59.31 57.88
N12 74.21 61.46 72.13 59.54 74.06 62.86 73.19 60.48
N13 36.29 34.90 17.87 17.16 33.44 31.63 17.87 17.16
N14 79.32 77.24 78.21 76.90 79.05 77.05 78.09 76.12
N15 24.04 22.62 16.25 15.61 19.41 17.68 16.25 15.61
Ave 47.91 44.75 37.06 35.19 42.87 40.18 36.70 34.95

10 dB SNR, all results have been improved, and the average
recognition rate has been improved by more than 10%.

7. Conclusions

In this paper, a new noise robust continuous speech recogni-
tion system has been proposed. In this system, a new block-
based dynamic range adjustment (DRA) algorithm has been
implemented into the module of unspecific speaker recog-
nition. The proposed method has enhanced the recogni-
tion rate under lower SNR noise environments. The DRA
normalizes the maximum amplitudes of MFCC in each se-
lected block. The proposed CSR system can show higher
accuracy than conventional systems under 20, 15 and 10 dB
SNR noise environments. Especially in destroyerenginer,
destroyerops, f actory1 and pink noise environment, more
than 15% improvement can be obtained for known and un-
known data. Our target is noise-robust Japanese character
string recognition. Compared with [20] and [21], the both
paper are aiming to Japanese digital strings recognition. The
training database and language model are different as well.
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